
Using Factor Oracles for Machine Improvisation
G. Assayag, S. Dubnov

Abstract We describe variable markov models we have
used for statistical learning of musical sequences, then we
present the factor oracle, a data structure proposed by
Crochemore & al for string matching. We show the rela-
tion between this structure and the previous models and
indicate how it can be adapted for learning musical se-
quences and generating improvisations in a real-time
context.

Keywords Variable markov models, Machine learning,
Computer music, Improvisation, Suffix trees, Prediction
suffix trees, Incremental parsing, Factor oracle

1
Modeling musical sequences
Statistical modeling of musical sequences has been
experimented since the very beginnings of musical infor-
matics (see [Con03] for a review and criticism of most
existing models, and [Zic87] for one of the first available
real-time interactive system). The idea behind context
models, which we are mostly interested in here, is that
events in a musical piece can be predicted from the se-
quence of preceding events. The operational property of
such models is to provide the conditional probability
distribution over an alphabet given a sequence. For
example, if w is musical sequence, r a symbol belonging to
the musical alphabet

P
, P(r|w) is the probability that r

will follow w, i.e. the probability of wr given w. This dis-
tribution P will be used for generating new sequences or
for computing the probability of a given one. First
experiments in context based modeling made intensive use
of Markov chains. [Ron96] explain that this idea dates
back to Shannon : complex sequences do not have obvious
underlying source, however, they exhibit a property called
short memory property by the authors; there exists a cer-
tain memory lengh L such that the conditional probability
distribution on the next symbol r does not change sig-
nificantly if we condition it on suffixes of w longer than L.
In the case of Markov chains, L is the order. However, the
size of Markov chains is O(|

P
|L), so only low order

models have been actually experimented.

To cope with the model order problem, in earlier works
[Dub98, Dub02, Dub03, Ass99] we have proposed a
method for building musical style analyzers and genera-
tors based on several algorithms for prediction of discrete
sequences using Variable Markov Models (VMM). The
class of these algorithms is large and we focused mainly on
two variants of predictors – universal prediction based on
Incremental Parsing (IP) and prediction based on Proba-
bilistic Suffix Trees (PST).

The IP method is derived from Information Theory. J.
Ziv and A. Lempel [Ziv78] first suggested the core of this
method called Incremental Parsing in the context of loss-
less compression research. IP builds a dictionary of dis-
tinct motifs by making a single left to right traversal of a
sequence, sequentially adding to a dictionary every new
phrase that differs by a single last character from the
longest match that already exists in the dictionary. Using a
tree representation for the dictionary, every node is
associated with a string, whose characters appear as labels
on the arcs that lead from the root to that node. Each time
the parsing algorithm reaches a longest-match node it
means that the node’s string has already occurred in the
sequence. Then IP grows a child node, with an arc labeled
by the next character in the sequence. The new node de-
notes a new phrase that differs by one last character from
its parent. [Fed03] has proved that an universal predictor
outperforms asymptotically (when the sequence length
grows to infinity) any Markov predictor of a finite order L.
Furthermore, at a given stage, the dictionary representa-
tion stores nodes that are associated with strings of length
from 1 to L, where L is the depth of the IP Tree. These
nodes have the same meaning as Markov states; only their
number is dramatically smaller than the number of states
that would be needed by a regular L-order Markov model.

[Ron96] suggested a different VMM structure called
Prediction Suffix Tree (PST), named after the data struc-
ture used to represent the learned statistical model. PST
represents a dictionary of distinct motifs, much like the
one generated by the IP algorithm. However, in contrast to
the lossless coding scheme underlying the IP parsing, the
PST algorithm builds a restricted dictionary of only those
motifs that both appear a significant number of times
throughout the complete source sequence, and are mean-
ingful for predicting the immediate future. The framework
underlying the approach is that of efficient lossy com-
pression.

One may note that both IP and PST build tree structures
in the learning stage, where finding the best suffix consists
of walking the tree from the root to the node bearing that

Focus Soft Computing 8 (2004) 604–610 � Springer-Verlag 2004

DOI 10.1007/s00500-004-0385-4

Published online: 20 August 2004

G. Assayag (&), S. Dubnov
Ircam – UMR Cnrs 9912, 1 Place Stravinsky,
F-75004, Paris France
Tel: +33 1 44 78 48 58
Fax: +33 1 44 78 15 40
e-mail: assayag@ircam.fr

604

suffix. The main difference between the methods is that IP
operates in the context of lossless compression, cleverly
and efficiently sampling the string statistics in a manner
that allows a compressed representation and exact recon-
struction of the original string. PST, which was originally
designed for classification purposes, has the advantage of
better gathering of statistical information from shorter
strings, with a tradeoff of deliberately throwing away some
of the original sub-strings during the analysis process to
maintain a compact representation (thus being a ‘‘lossy’’
compression method), as well as allowing for a small
probability production for all possible continuations for
any given suffix.

We have carried extensive experiments on using IP for
music classification and music generation. We have also
implemented a version of PST’s adapted to music and
compared the results with IP. These experiments are de-
scribed in [Dub03]. From these experiences we can draw a
series of prescriptions for a music learning and generating
method. In the following, we consider a learning algo-
rithm, that builds the statistical model from musical
samples, and a generation algorithm, that walks the model
and generates a musical stream by predicting at each step
the next musical unit from the already generated sequence.
Depending on the specific application, learning and gen-
erating can be off-line or on-line, consecutive or threaded,
real-time or non real-time. Of course the real-time appli-
cation is the more demanding, so we will specify the fol-
lowing prescriptions for a real time improvisation system:

1. Learning must be incremental and fast in order to be
compatible with real-time interaction, and to switch
instantly to generation (real-time alternation of
learning and generating can be seen as ‘‘machine
improvisation’’ where the machine ‘‘reacts’’ to other
musician playing).

2. The generation of each musical unit must bounded in
time for compatibility with a real time scheduler

3. In order to cope with the variety of musical sources, it
is interesting to be able to maintain several models
(e.g. IP, PST, others) and switch between them at
generation time.

4. In order to cope with the parametric complexity of
music (multi-dimensionality and multi-scale struc-
tures) multi-attribute models must be searched for.

As for point 1., IP is fine, but PST does not conform
[Dub03].

In order to comment on point 2, some precision on the
generation process must be given. Whatever model is
chosen, a generation step is as follows:

let w be the sequence generated so far, let w ¼ vu where
u is the best suffix of w, that is the longest string that can
be find associated to a node in the model. u ¼ e and u ¼ w
are possible situations. There is a conditional probability
distribution P associated to the node, which, for every
symbol r 2

P
gives the probability P(r|u) that r follows

u. Let r0 be a stochastic choice drawn from
P

with respect
to P. The sequence w is now grown as wr0.

As IP and PST build tree structures in the learning
stage, finding the best suffix involves walking the tree from
the root to the node bearing that suffix. The depth of this

walk is bounded by the maximum memory length L, but
there are cases, in open learning-generating cycles for
example, where one does not want to limit L a-priori.
Furthermore this involves maintaining a particular data
structure for w, in order to build the candidate suffixes in
an efficient way.

A solution might be to use suffix automata instead of
trees. In such machines, the current state models auto-
matically the best suffix, so there is no cost in searching it.
[Ron96] for instance have proposed Probabilistic Suffix
Automata, for which there exists an equivalence theorem
with a subclass of PST’s. Unfortunately, these are much
harder to learn, so they rather propose to learn a PST and
transform it afterwards into a PSA. Using this strategy
however would invalidate prescription 1.

The best structure we have found so far in order to
validate prescriptions 1–4 is the Factor Oracle (FO) pro-
posed by Crochemore [All99]. In the following, we are
going to explain how FO fits in the same family than IP
and PST, how we use it in learning and generating music,
how it conforms to the prescriptions. In the last section,
we shall address the question of multi-attribute streams
and parallel FO’s.

2
A suffix tree family
Figure 1 shows three models learned from the sample se-
quence w ¼ ABABABABAABB. The suffix tree is the one
that carries most information. The implicit memory length
can be as big as the sequence itself. The IP model has
identified the patterns {A,B,AB,ABA,BA,ABB}, in this or-
der. Although there is a loss of information, due to the
shortness of the sample, it has identified that B is often
followed by A. The PST has even less information: the
leftmost leaves have been removed because ABA has not a
significantly better prediction power than BA, and ABB is a
singularity.

Obviously, the classical suffix tree (ST) structure serves
as a reference structure for the IP and PST representations
(the tree representation of an IP or a PST is a subtree of
the suffix tree). ST is complete, which means every pos-
sible pattern in the sample sequence can be found, and it
provides maximum memory length (|w|)1). However,
suffix trees are hard to grow incrementally and they are
space consuming as they incorporate a lot of redundant
information. IP and PST try on the contrary to compute
and store the minimal relevant information efficiently.
They are actually compression schemes.

We shall be interested now by any learning mechanism
which builds incrementally a structure equivalent to a
subset of the reference suffix tree, which captures a suffi-
cient amount of statistical information, and is suitable for
a real-time generation scheme.

The Factor Oracle has these properties, as we shall show
it now.

3
Factor oracles
Initially introduced by Crochemore & al in their seminal
paper [All99], FO’s were initally conceived for optimal
string matching, and were extended easily for computing

605

repeated factors in a word and for data compression
[Lef00]. Basically, FO is a compact structure which rep-
resents at least all the factors in a word w. It is an acyclic
automaton with an optimal (m+1) number of states and is
linear in the number of transitions (at most 2m)1 tran-
sitions), where m ¼ |w|. The construction algorithm pro-
posed by the authors is incremental and is 0(m) in time
and space. Here is a brief description of the algorithm:
w ¼ r1r2,…,rm is the sample word to be learned. m + 1
states, labeled by numbers from 0 to m will be created. The
transition function d(i, rj) ¼ k specifies a link from state i
to state k>i with label rj. These links run from left to right,
if the states are ordered along the sequence w. In any FO,
the relation 8i, 0 � i < m, d(i, ri+1) ¼ i + 1 holds. There is
another set of links S(i) ¼ j, called Suffix Links, running
backward. These links will be discussed further. w is read
from left to right, and for each symbol ri the following
incremental processing is performed:

Create a new state labeled i

Assign a new transition dði� 1; riÞ ¼ i

Iterate on Suffix Links, starting at

k ¼ Sði� 1Þ; then k ¼ SðkÞ;
while k 6¼ ? and dðk; riÞ ¼ ?
do Assign a new transition dðk; riÞ ¼ i

EndIterate

if k 6¼ ? then SðiÞ ¼ dðk; riÞ else SðiÞ ¼ 0

At initialisation, the leftmost state (state 0) is created.
Its suffix link is by convention Sð0Þ ¼ ?: Figure 2 shows
the output of the algorithm for w = ABABABABAABB.

4
Turning ST into FO
We want to show that there is a strong connection between
suffix trees and factor oracles. We propose a non-optimal
algorithm that turns ST(w) into FO(w) for any word
w ¼ r1r2,…,rm.

Consider the longest path from the root to a leaf in the
Suffix Tree. This path bears the string w itself. Number the
nodes in this path from 0 to m. A connection from node i
to node i + 1, 0 � i � m� 1, is labeled by symbol ri+1.
Descend the path starting at root. When there is a bifur-
cation to another subtree at node i, the longest path
starting at this bifurcation and leading to a leaf has to be a
suffix rj,…,rm of w for some j. Delete the subtree starting
at this bifurcation, and add a connection between node i
and node j. When the transformation is completed, the
suffix tree has been ‘‘collapsed’’ along its longest path, and
is exactly the factor oracle.

Figure 3 shows the transformation step by step for
w ¼ ABABABABAABB. Of course, there is loss of infor-
mation in the process: the fact that whole subtrees are
collapsed to a single link between node i and j may
introduce some patterns not present in w, and nonetheless
recognized by the model. This accounts for the fact that
the language recognized by FO (considering all the states
are terminal) includes all the factors of w but is not equal
to the set of factors. This language has not been charac-
terized yet.

5
Using suffix links for generation
Compared to IP and PST, FO is even closer to the reference
suffix tree. Its efficiency is close to IP (linear, incremental).

Fig. 1. From left to right, the standard suffix
tree, the IP tree and a possible PST
learned from the sample sequence
w = ABABABABAABB. Probability distribu-
tions at each node are not indicated for IP and
PST

A

A

B

B

B

B B BA BA A BAA
0 1 2 3 4

Fig. 2. The Factor Oracle for
w = ABABABABAABB. Black arrows are factor
transitions gray arrows are suffix links

606

It is an automaton, rather than a tree, so it should be easier
to handle maximum suffixes in the generation process. In
order to show this, some more information on FO must be
given.

[All99] demonstrates that the suffix link S(i) points to a
state j which recognizes the longest suffix in Prefixi (w)
that has at least 2 occurrences in Prefixi (w). The suffix
chain Sn(i) thus connects states where maximal length
redundant factors are recognized. To the left of these
states, suffixes of these factors will be found (see Fig. 4).

Furthermore [Lef00] give a linear method for comput-
ing the length lrs(i) of the maximal repeated suffix in
Prefixi (w). This gives us the required tool for generating
efficiently the next symbol. We suppose the FO has been
learned from the sample w ¼ r1r2,…,rm At each

generation step, there is a current sequence generated so
far v ¼ r¢1,r¢2,…,r¢n and an active state i in FO such that all
the transitions pointing at i are labeled by r¢n.

Incremental generation step:

if SðiÞ ¼ ? then q :¼ 1 else q ¼ p

Choose stochastically between 2 options;

1:with probability q :

i :¼ iþ 1
v :¼ vriþ1

2:with probability 1� q :

Choose at random a symbol r in

rj 2 RjdðSðiÞ; rjÞ 6¼ ?
� �

i :¼ dðSðiÞ; rÞ
v :¼ vr

The first option means that we are moving linearly
forward in the FO thus duplicating a substring of the
sample w. The second option means we are jumping back
along a suffix link. By definition we arrive in a state where
a maximal suffix of v is recognized. From there, a choice is
made among outgoing transitions. These transitions
indicate which symbols can possibly follow a suffix of v.

The probability variable p controls how close we want
to be to the original sample w. If it is close to 1, large
sections of w will be simply duplicated in the generation of
v. If it is close to 0, the suffix links will be mostly used,
resulting in a bigger rate of bifurcations with regard to w.

Fig. 3. Turning the Sufix Tree into a Factor
Oracle (read left-right,top-bottom)

state i

j=S(i)

lrs(i)

state 0

Suffixes of
Repeated factor

Fig. 4. Suffix links and repeated factors

607

An interesting option is to consider not only the suffix
link starting at i, but the whole suffix chain Sn(i), then
choose some element in this chain with regard to some
criterion. For example, the suffix length lrs can be used:
choosing a smaller lrs will result again in more variety,
with smaller factors duplicated from w. A probability
distribution on the possibles lrs might even be used in
order to fine tune the variety rate.

A remark should be made on the random choice per-
formed in option 2. of the algorithm : as a difference with
IP and PST, there is no probability model in FO, thus there
is no probability distribution over

P
attached to each

state. Even without a probability model, when we generate
long sequences, we should get asymptotically closed to the
empirical distribution observed in w. However, it should
be interesting as a future improvement to add a proba-
bility model to FO’s.

6
Multiple channel models
In the case of music there is not only one channel of
information as in the text examples seen so far. Rather,
several musical attributes must be considered. These
attributes describe data or metadata. Data describe the
actual musical material and its attribute are: pitch, dura-
tion, timbre, intensity, position in bar, etc. Metadata are
comments over data that can help the analysis or the
generation process. For example, harmonic labels attached
to musical data are abstractions, not to be played but to be
used as complementary information. Data and metadata
can be treated exactly in the same way, so we won’t dis-
tinguish them anymore.

There are many different ways to arrange musical
attributes values: they can flow in parallel information
channels, or they may be grouped in a single stream of
elements taken in a cross-alphabet. A cross-alphabet is the
cross product of several attribute alphabets (e.g. pitch
alphabet, duration alphabet, etc). Different combination of
these two solutions may be experimented. It is possible to
imagine, for example, a stream of information which ele-
ments are drawn from the cross-alphabet built upon har-
monic labels and durations. This would make sense in an
application where it is considered that a couple (label,
duration) is a significant unit of musical information,
better to be kept together. Then this stream could be
combined with a stream of pitches, resulting actually in a
2-channels information structure.

However, each solution has its drawbacks. Cross-
alphabets are simple and compatible with all the models
seen so far, but they are more demanding on memory.
Multi-channel structures allow different memory lengthes
for different attributes, thus optimizing memory, but
known models are hard to learn and badly suited to
real-time.

Two interesting multi-channel models have been
proposed. [Con95] described a Multiple Viewpoint System,
where a viewpoint is a model based on a cross-alphabet
upon a subset of available attributes (e.g. pitch � dura-
tion). In order to predict the next event, independent

predictions with respect to each viewpoint (i.e. channel)
are combined using a weighted linear combination.

[Tri01] describes a structure called MPSG (Multiat-
tribute Prediction Suffix Graph), which is an extension of
PST’s where the nodes are labeled not by words in

P� but
by tuples in ð

P�
1�
P�

2� � � � �
P�

nÞ where
P

i is the
alphabet for attribute i. One MPSG is build for every
attribute i, using at each node a probability distribution
that predicts the next value for attribute i with respect to
every other attribute. In order to generate the next event,
each MPSG is looked for the best multi-suffix and a pre-
diction is made for the corresponding attribute, then the
attribute values are aggregated to form the next event. It is
not clear however if such an event exists, i.e. has been
effectively encountered in the training sample.

In a Factor Oracle, we would proceed differently. First,
in FO, there is no reduction of the number of nodes by
considering the difference in prediction power between
two suffixes differing by a single symbol. The power of FO
is to stay close to the completeness of the suffix tree while
being simple to compute and efficient in memory size. All
the attribute values for a musical event can be kept in a
object attached to the corresponding node. The actual
information structure is given by the configuration of ar-
rows (forward transitions and suffix links). Multi-channel
structures with n channels can thus be simulated by pro-
viding n sets of typed arrows. A set of arrows for the
attribute i will be now characterized by the transition
function di and the suffix link function Si. The n sets can be
learned in parallel, with a very simple modification of the
learning algorithm.

Let the training sample W = E1 E2,...,Em with
Ei 2 ð

P
1�
P

2�� � � � �
P

nÞ. W is read from left to
right, and for each event Ei ¼ ri

1ri
2,…,ri

n the following
incremental processing is performed:

Create a new state labeled i

Attach a copy of Ei to state i

For j from 1 to n

Assign a new transition dði� 1; rj
iÞ ¼ i

Iterate on Suffix Links, starting at

k ¼ Sjði� 1Þ; then k ¼ SjðkÞ;
while k 6¼ ? and djðk; rj

iÞ ¼ ?
do Assign a new transition djðk; rj

iÞ ¼ i

EndIterate

if k 6¼ ? then SjðiÞ ¼ dðk; rjiÞ
EndFor

7
Musical applications
We have now a rich structure that can give rise to many
musical applications. As an example, we propose in this
section the description of a possible ‘‘real life’’ machine
improviser in a complex performance situation. The
machine improviser ‘‘listens’’ to three synchronized

608

sources: a metric source that generates a stream of pulses,
a harmonic source that sends harmonic labels, and a
melodic source that sends a stream of time-tagged note
events. These sources are processes that synchronise in
order to align one harmonic label per beat. The granularity
of the improviser is the beat: it learns one beat at a time
and generates one beat at a time. The three source pro-
cesses may acquire their data by listening and analysing
the signal produced by actual performers, or they can be
algorithmic generators, or combinations of both, including
combinations that change in time. The improviser con-
tinuously learns from the harmonic and melodic source
and aligns to the metric source. Upon a triggering signal
(such as a human solist who stops playing), it starts (or
stops) generating either a melodic part, or a harmonic one,
or both. We give a short specification in the case where it
generates both.

Process PA sends a stream of regular beat pulses pi, PB

sends synchronously a stream of harmonic labels hi, PC

sends time-tagged asynchronous midi events mj. The
learning process F is equipped with a factor oracle and
receives continuously the messages pi, hi, and mj from PA,
PB and PC. As soon as the next beat starts, F performs a
learning step on the previously acquired beat pi, : it col-
lects the set Mi of midi events falling between pi and pi+1,
turns it into a set of descriptors indicating melodic mo-
tion, intervalic content, rhythm structure, and codes it into
some signature di. F creates the next state i in the oracle,
associates a copy of Mi to i, and learns hi and di into two
separate types of arrow (dh, Sh) and (dd, Sd).

The generating process F0 shares the oracle data struc-
ture with F. When it is asked to begin generation, it awakes
and waits for the completion of the current beat, pj then
begins its duty. The last state learned in the oracle is j. The
main loop of F0 is as follows:

Loop

Collect all the states inferred from

j by ðdd; SdÞ into Id

Collect all the states inferred from

j by ðdh; ShÞ into Ih

If Id \ Ih 6¼ ;
j best inferred state in Id \ Ih

Else

dwith probability p; j best inferred

state in Id

bwith probability 1� p; j best inferred

state in Ih

Send out Mj and hj

EndLoop

The states inferred by another state are all the states
attainable from the latter either by a d-arrow or an Sn-
arrow. The best inferred state is the one that shares the
longest suffix with the originating state. The rationale
behind F0 is : try to generate a combination of harmony

and melody which is a well predicted continuation of the
harmony/melody that occured in the previous beat; if you
can’t, either follow a melodic prediction or a harmonic
one, under control of variable p. In any case, the midi
events and the harmonic label sent out as a result are
consistent because they are associated to the same state
(i.e. they were learned together).

In the case we do not want to improvise the harmony
and the solo, but we would like the improvised solo to be
aligned with the incoming harmony, the algorithm is
simple : choose among the states inferred by (dd, Sd) the
ones that have an entering dh-arrow labeled with the same
harmonic label than the one currently provided by process
PB (or a compatible label for some harmonic theory). If
there’isnt one, a possibility is to remain silent till the next
beat and try again, or scan the oracle in order to find a
better position.

8
Conclusion and future works
We have shown the musical potentialities of the factor
oracle, a clever data structure that had been mostly dem-
onstrated on textual and biological pattern detection, and
we have described the extensions necessary to fit with
actual musical situations. We have given a generic archi-
tecture for a virtual improviser based on this algorithm in
a large class of music, performance situations.

Implementations of the factor oracle and its extensions
have been written in the OpenMusic environment
[Ass99b] and tested for a great variety of musical styles.
The musical prediction power of the oracle has also been
compared to human listener prediction capabilities in a set
of auditive tests performed by Emilie Poirson in collabo-
ration with Emmanuel Bigand from the LEAD lab, Uni-
versité de Bourgogne [Poir02]. Nicolas Durand has
implemented a set of experiments for pitch/rhythm
recombination using parallel oracles [Dur03].

A real time experiment close to the one described in the
previous section has been implemented using a commu-
nication protocol between OpenMusic and Max, the real
time environment invented by Miller Puckette [Puc02].
Marc Chemillier has proposed the real time interaction
scheme in Max as well as the harmonic model.

An interesting improvement would be to learn har-
monic intervals instead of absolute harmonic labels. In
this case, the algorithm would find many more inferred
state for a given state, but the midi events in Mi would
have to be transposed with regards to the context. Inter-
esting combination of transposed patterns would emerge
and increase the variety of the improvised material.

As for the oracle itself, experiments have shown that it
was fruitful to turn the suffix links into backward and
forward links, by adding reversed arrows, otherwise the
model tends sometimes to get stuck into some region of
the automaton.

Finally, a consistent probability model should be pro-
posed for the factor oracle, although it is not clear yet if it
would radically change the generation performance.

Audio and video examples demonstrating this work will
be installed at : http://www.ircam.fr/equipes/repmus/
MachineImpro

609

Bibliography
[All99] Allauzen C, Crochemore M, Raffinot M, (1725) Factor

oracle: a new structure for pattern matching, in Pro-
ceedings of SOFSEM’99, Theory and Practice of Infor-
matics, J. Pavelka, G. Tel and M. Bartosek ed., Milovy,
Czech Republic, Lecture Notes in Computer Science pp.
291–306, Springer-Verlag, Berlin

[Ass99] Assayag G, Dubnov S, Delerue O (1999) Guessing the
Composer’s Mind: Applying Universal Prediction to
Musical Style, Proc. Int’l Computer Music Conf., Int’l
Computer Music Assoc., pp. 496–499

[Ass99b] Assayag G et al (1999) Computer Assisted Composition
at Ircam: PatchWork and OpenMusic, The Computer
Music J., Vol. 23, no. 3, pp. 59–72

[Bej01] Bejerano G, Yona G (2001) Variations on Probabilistic
Suffix Trees: Statistical Modeling and Prediction of
Protein Families, Bioinformatics, Vol. 17, pp. 23–43

[Dub03] Dubnov S, Assayag G, Lartillot O, Bejerano G (2003)
Using Machine-Learning Methods for Musical Style
Modeling, IEEE Computer, Vol. 10, n� 38, p.73–80

[Dub02] Dubnov S, Assayag G (2002) Universal Prediction Ap-
plied to Stylistic Music Generation in Mathematics and
Music, A Diderot Mathematical Forum, Assayag, Ger-
ard; Feichtinger, Hans-Georg; Rodrigues, Jose Fran-
cisco (Eds.), pp.147–160, Springer-Verlag, Berlin

[Dub98] Dubnov S, Assayag G, El-Yaniv R (1998) Universal
Classification Applied to Musical Sequences, Proc. Int’l
Computer Music Conf., Int’l Computer Music Assoc.,
pp. 332–340

[Dur03] Durand N (2003) Apprentissage du style musical et
interaction sur deux échelles temporelles, Master’s
Thesis, Ircam, UPMC Paris 6, http://www.ircam.fr/
equipes/repmus/Rapports/

[Con95] Conklin D, Witten I (1995) Multiple Viewpoint Systems
for Music Prediction, Interface, Vol. 24, pp. 51–73

[Con03] Conklin D (2003) Music Generation from Statistical
Models, Proceedings of the AISB 2003 Symposium on
Artificial Intelligence and Creativity in the Arts and
Sciences, Aberystwyth, Wales, 30–35

[Fed03] Feder M, Merhav N, Gutman M (1992) Universal Pre-
diction of Individual Sequences, IEEE Trans. Informa-
tion Theory, Vol. 38, pp. 1258–1270. August 2003

[Lef00] Lefebvre A, Lecroq T Computing repeated factors with
a factor oracle, In: Brankovic L, Ryan J (Eds.), Pro-
ceedings of the 11th Australasian Workshop On Com-
binatorial Algorithms, Hunter Valley, Australia, 2000,
pp. 145–158

[Pac02] Pachet (2002) Interacting with a Musical Learning
System: The Continuator, Proc. ICMAI 2002, Springer-
Verlag, pp. 119–132

[Poir02] Poirson E Simulations d’improvisations à l’aide d’un
automate de facteurs et validation expérimentale,
Master’s Thesis, Ircam, LEAD U. Bourgogne, UPMC
Paris 6, Jul 2002 http://www.ircam.fr/equipes/repmus/
Rapports/

[Puc02] Puckette M Max at seventeen. Computer Music Journal
26(4): pp. 31–43

[Ron96] Ron D, Singer Y, Tishby N (1996) The Power of
Amnesia: Learning Probabilistic Automata with Vari-
able Memory Length, Machine Learning, Vol. 25, pp.
117–149

[Tri01] Triviño-Rodriguez JL, Morales-Bueno R (2001) Using
Multiattribute Prediction Suffix Graphs To Predict And
Generate Music, Computer Music Journal, Spring Vol-
ume 25 No. 3, pp. 62—79

[Zic87] Zicarelli D (1987) M and Jam Factory, The Computer
Music J., Vol. 11, No. 4, pp. 13–29

[Ziv78] Ziv J, Lempel A (1978) Compression of Individual Se-
quences via Variable Rate Coding, IEEE Trans. Infor-
mation Theory, Vol. 24, No. 5, pp. 530–536

610

