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Preface

This book grew out of two series of five two-hour lectures, given by Jean
Berstel and Christophe Reutenauer in March 2007. The lectures were deliv-
ered during the school on “Combinatorics on Words” organized by Srečko
Brlek, Christophe Reutenauer and Bruce Sagan that took part within the
theme semester on Recent Advances in Combinatorics on Words at the Cen-
tre de Recherches Mathématiques (CRM), Montréal, Canada.

Notes for the lectures were written down by Aaron Lauve and Franco
Saliola. They have augmented their notes with several topics and have added
more than 100 exercises. There has been a lot of work in adding bibliographic
references and a detailed index.

The text is divided into two parts. Part I, based on the lectures given by
Christophe Reutenauer, is a comprehensive and self-contained presentation
of the current state of the art in Christoffel words. These are finitary versions
of Sturmian sequences. It presents relationships between Christoffel words
and topics in discrete geometry, group theory, and number theory. Part I
concludes with a new exposition of the theory of Markoff numbers.

Part II, based on the lectures by Jean Berstel, starts with a system-
atic exposition of the numerous properties, applications, and interpretations
of the famous Thue-Morse word. It then presents work related to Thue’s
construction of a square-free word, followed by a detailed exposition of a
linear-time algorithm for finding squares in words. This part concludes with
a brief glimpse of several additional problems with origins in the work of
Thue.
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Notation

We gather in one place the notational conventions shared by the two parts.
The reader may also consult the subject index to locate the major occur-
rences within the text of most of the symbols and bold words below.

Let N denote the set of nonnegative integers. If a, b and n are integers,
then the notation a ≡ b mod n shall mean that a − b is divisible by n.
Equivalently, a ≡ b mod n if and only if a and b have the same remainder
upon division by n.

Let A denote a finite set of symbols. The elements of A are called letters
and the set A is called an alphabet. A word over an alphabet A is an
element of the free monoid A∗ generated by A. The identity element ǫ of A∗

is called the empty word. Given a word w ∈ A∗, the square of w is the
monoid product w2 = ww in A∗. Higher powers of w are defined analogously.
We frequently take A to be a subset of the nonnegative integers N. The reader
is cautioned to read 101 not as “one hundred and one” but as “1 · 0 · 1,” an
element of {0, 1}3.

If w ∈ A∗, then there exists a unique integer r ≥ 0 and unique letters
a1, a2, . . . , ar ∈ A such that w = a1a2 · · · ar; the number r is called the
length of w and denoted by |w|. A positive integer p is a period of w if
ai = ai+p for all 1 ≤ i ≤ |w| − p. (Note that if p ≥ |w|, then p is a period
of w.) If w ∈ A∗ and a ∈ A, then |w|a denotes the number of occurrences of
the letter a in the word w so that

|w| =
∑

a∈A

|w|a.

If w = a1a2 · · · ar, where a1, a2, . . . , ar ∈ A, then the reversal of w is the
word

w̃ = ar · · · a2a1.
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We say w is a palindrome if w = w̃.
An infinite word is a map from N to A, typically written in bold or

as a sequence such as w = w(0)w(1)w(2) · · · or w = w0w1w2 · · · (we freely
pass between the two notations wn and w(n) in what follows). Any finite
word m gives rise to a periodic infinite word denoted m∞, namely

m∞ = mmm · · · .

A factorization of a finite word w over A is a sequence (w1, w2, . . . , wr)
of words over A such that the relation w = w1w2 · · ·wr holds in the monoid
A∗. We sometimes write w = (w1, w2, . . . , wr) to emphasize a particular
factorization of w. Factorizations of infinite words are similarly defined (with
wr necessarily the only infinite word in the sequence). If w is a finite or
infinite word over A and w = uv for some (possibly empty) words u and v,
then u is called a prefix of w and v is a suffix of w. Conversely, a factor of a
finite or infinite word w is a finite word v such that w = uvu′ for some words
u, u′; we say v is a proper factor if v 6= ǫ and uu′ 6= ǫ. Given two words
w,w′ ∈ A∗, we say that w is a conjugate of w′ if there exists u, v ∈ A∗ such
that w = uv and w′ = vu.

Let w be a finite or infinite word over an alphabet A and write w =
a0a1a2 · · · , where a0, a1, a2, . . . ∈ A. If v is is a factor of w, then

v = aiai+1 · · · aj for some 0 ≤ i < j,

and aiai+1 · · · aj is said to be an occurrence of v in w. (Specifically, an
occurrence of v in w also includes information about where it appears in w;
for the factor above, we say the starting index is i.) If u and v are words,
then u is said to contain v if there is an occurrence of v in u.

Given two alphabets A,B, a morphism from A∗ to B∗ shall always
mean a “morphism of monoids.” That is, a set mapping f : A∗ → B∗

satisfying
f(uv) = f(u)f(v) for all u, v ∈ A∗.

In particular, f(ǫA∗) = ǫB∗ since the empty word ǫ is the only element in
a free monoid satisfying w2 = w. The identity morphism on A∗ is the
morphism sending each w ∈ A∗ to itself. The trivial morphism from A∗

to B∗ is the morphism sending each w ∈ A∗ to ǫB∗ .



Part I

Christoffel Words

The goal of Part I of the text is to present a comprehensive and self-contained
account of the combinatorics of Christoffel words, named after the Ger-
man mathematician and physicist Elwin B. Christoffel (1829–1900). Since
their first appearance in the literature, arguably as early as 1771 in Jean
Bernoulli’s study of continued fractions [Ber1771], many relationships be-
tween Christoffel words and other areas of mathematics have been revealed.
After laying out the current state of the art in Christoffel words, we close
by recounting some of these relationships in the last four chapters.
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Chapter 1

Christoffel Words

Although the theory of Christoffel words began to take shape in the late
1800s [Chr1875, Smi1876, Mar1879, Mar1880, Mar1881, Chr1888], the term
was not introduced until 1990 by Jean Berstel [Ber1990]. By now there are
numerous equivalent definitions and characterizations of Christoffel words
. We choose as our working definition and point-of-view a geometric one:
a Christoffel word is a “discretization” of a line segment in the plane by a
path in the integer lattice Z × Z [OZ1981,Ber1990,BL1993].

1.1 Geometric definition

Notation. If a, b ∈ N, then a and b are said to be relatively prime if 1 is
the only positive integer that divides both a and b. The notation a ⊥ b shall
mean “a and b are relatively prime”.

Suppose a, b ∈ N and a ⊥ b. The lower Christoffel path of slope b
a is

the path1 from (0, 0) to (a, b) in the integer lattice Z × Z that satisfies the
following two conditions.

(i) The path lies below the line segment that begins at the origin and
ends at (a, b).

(ii) The region in the plane enclosed by the path and the line segment
contains no other points of Z × Z besides those of the path.

1By a path in Z×Z from (a, b) to (c, d) we actually mean a continuous map α : [0, 1] →
(Z×R)∪(R×Z) such that α(0) = (a, b) and α(1) = (c, d). Since such paths are essentially
determined by the points of Z × Z that lie on the path, we identify such a path with a
sequence of points in Z × Z with consecutive points of the sequence differing by ~e1 or ~e2,
where ~e1 and ~e2 are the standard basis vectors of R2.

3



4 CHAPTER 1. CHRISTOFFEL WORDS

Upper Christoffel paths are defined analogously, using paths in Z × Z
that lie above the line segment. See Figure 1.1 for examples. The unmodified
term Christoffel path will always mean lower Christoffel path.

Figure 1.1: The lower and upper Christoffel paths of slope 4
7 .

Since every step in a Christoffel path moves from a point (i, j) ∈ Z × Z
to either the point (i+1, j) or the point (i, j +1), a Christoffel path of slope
b
a determines a word C(a, b) in the alphabet {x, y} by encoding steps of the
first type by the letter x and steps of the second type by the letter y. See
Figure 1.2.

x x

x x

x x

x

y

y

y

y

x

x x

x x

x x

y

y

y

y

Figure 1.2: The lower and upper Christoffel words of slope 4
7 are

xxyxxyxxyxy and yxyxxyxxyxx, respectively.

Definition 1.1. Let a, b ∈ N. A word w ∈ {x, y}∗ is a (lower) Christoffel
word of slope b

a if a ⊥ b and w = C(a, b). A Christoffel word is trivial
if its length is at most 1, and is nontrivial otherwise. Upper Christoffel
words are defined analogously.

Since every positive rational number can be expressed as b
a where a ⊥ b

in only one way, there is a unique lower Christoffel word of slope r for all
positive rational numbers r.

Examples. The following are examples of Christoffel words.

1. The Christoffel word of slope 0 is x, since C(1, 0) = x.
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2. The Christoffel word of slope ∞ is y, since C(0, 1) = y.

3. The Christoffel word of slope 1 is xy, since xy = C(1, 1).

4. The Christoffel word of slope 4
7 is xxyxxyxxyxy (see Figure 1.2).

Remarks. 1. The empty word ǫ is not a Christoffel word since 0 6⊥ 0. There-
fore, x and y are the only trivial Christoffel words.

2. The square or higher power of a Christoffel word is not a Christof-
fel word. Nor is a Christoffel word the power of a shorter word, that is,
Christoffel words are primitive words. These statements follow from the
observation that the number of occurrences of the letters x and y in the
k-th power of a word are both multiples of k (so they cannot be relatively
prime if k ≥ 2).

3. Christoffel words have a natural generalization to infinite sequences:
replace the defining line segment of slope b

a with an infinite ray of irrational
slope before building the lattice path. The resulting right-infinite word is
called a (characteristic) Sturmian word. See [PF2002], [Lot2002, Chapter
2] or [AS2003] for more information. While many of the references cited in
what follows offer results at this level of generality, we restrict ourselves to
Christoffel words here.

Exercise 1.1. Christoffel words are primitive words, as are all of their
conjugates.

Exercise 1.2. Suppose a and b are nonnegative integers. Then a ⊥ b if
and only if the line segment from (0, 0) to (a, b) contains no integer points
besides (0, 0) and (a, b).

Exercise 1.3. Suppose a ⊥ b. Prove that the region bounded by the segment
from (0, 0) to (a, b) and the Christoffel path from (0, 0) to (a, b) has area
1
2(a + b − 1). (Hint: Consider the region bounded by the upper and lower
Christoffel words.)

Exercise 1.4. Suppose a and b are nonnegative integers. Then a ⊥ b if and
only if a ⊥ (a + b).

Exercise 1.5. (Fibonacci word) Let φ∨ denote the conjugate 1−
√

5
2 of the

golden ratio. Using the Christoffel construction, compute the first 16 or so
letters in the (Sturmian) word s corresponding to the ray of slope −φ∨. The
infinite word f satisfying s = xf is called the Fibonacci word. (The word
f is the “cutting sequence” of the ray of slope −φ∨: it records the order in
which the ray intersects the lines x = i and y = j for i, j ∈ N.)
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1.2 Cayley graph definition

We introduce an equivalent definition for the Christoffel word of slope b
a

that will occasionally be useful. In fact, it is the definition originally used by
Christoffel [Chr1875]. It amounts to reading edge-labellings of the Cayley
graph of Z/(a+b)Z.

Definition 1.2. Suppose a ⊥ b and (a, b) 6= (0, 1). The label of a point
(i, j) on the (lower) Christoffel path of slope b

a is the number ib−ja
a . That

is, the label of (i, j) is the vertical distance from the point (i, j) to the line
segment from (0, 0) to (a, b).

0
7

4
7

8
7

1
7

5
7

9
7

2
7

6
7

10
7

3
7

7
7

0
7

Figure 1.3: The labels of the points on the Christoffel path of
slope 4

7 .

The labels 1
7 and 10

7 from Figure 1.3 hold a special place in the theory.
We return to them in Chapters 3 and 2, respectively. Exercise 1.8 gives an
interesting fact about the label 3

7 (or rather, the number 3).

Now, suppose w is a lower Christoffel word of slope b
a and suppose

(
s
a , t

a

)

are two consecutive labels on the Christoffel path from (0, 0) to (a, b). Either
( s

a , t
a) represents a horizontal step (in which case t = s + b) or it represents

a vertical step (in which case t = s − a). The following lemma summarizes
these observations.

Lemma 1.3. Suppose w is a lower Christoffel word of slope b
a and a ⊥ b.

If s
a and t

a are two consecutive labels on the Christoffel path from (0, 0) to
(a, b), then t ≡ s + b mod (a + b). Moreover, t takes as value each integer
0, 1, 2, . . . , a + b − 1 exactly once as ( s

a , t
a) ranges over all consecutive pairs

of labels.

We have discovered an equivalent definition of (lower) Christoffel words.
(See Exercise 1.7 for details.)
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Definition 1.4. Suppose a ⊥ b. Consider the Cayley graph of Z/(a + b)Z
with generator b. It is a cycle, with vertices 0, b, 2b, 3b, . . . , a, 0 mod (a + b).
Starting from zero and proceeding in the order listed above,

(i) label those edges (s, t) satisfying s < t by x;

(ii) label those edges (s, t) satisfying s > t by y;

(iii) read edge-labels in the prescribed order, i.e., 0
x→ b

∗→ · · · ∗→ a
y→ 0.

The lower Christoffel word of slope b
a is the word x · · · y formed above.

Example. Pick a = 7 and b = 4. Figure 1.4 shows the Cayley graph of Z/11Z
with generator 4 and edges u → v labelled x or y according to whether or not
u < v. Reading the edges clockwise from 0 yields the word xxyxxyxxyxy,

0 x
4 x

8

y

1

x
5

x9
y

2x

6
x

10

y
3

x 7

y

Figure 1.4: The Cayley graph of Z/(7+4)Z with generator 4 and
the associated Christoffel word.

which is the Christoffel word of slope 4
7 (see Figure 1.2).

Remark. Had we chosen the generator a instead of b for Z/(a + b)Z and
swapped the roles of x and y in Definition 1.4, the resulting word would
have been the upper Christoffel word of slope b

a . (This fact is immediate
after Proposition 4.2 but perhaps difficult to see before it.)

Exercise 1.6. Suppose a ⊥ b. Let (i, j) be the point on the Christoffel path
path from (0, 0) to (a, b) with label t

a . Then t ≡ (i + j)b mod (a + b) and
t ≡ ((a − i) + (b − j))a mod (a + b).

Exercise 1.7. Let w be the Christoffel word of slope b
a . Let wk denote the

(k + 1)-st letter of w.

(a) wk = x if and only if kb mod (a + b) < (k + 1)b mod (a + b).
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(b) wk = y if and only if the set {kb + 1, kb + 2, . . . , kb + b} contains a
multiple of a + b.

Exercise 1.8. ([Sim2004, Theorem 3]) Suppose a ⊥ b and suppose w =
w0w1 · · ·wa+b−1 is the Christoffel word of slope b

a , where wi ∈ {x, y} for
0 ≤ i < a + b. If 0 < c < a + b is such that ca ≡ −1 mod (a + b), show that

{
jc mod (a + b) | j = 0, 1, . . . , a − 1

}
=
{
k mod (a + b) | wk = x

}
.



Chapter 2

Christoffel Morphisms

In this chapter we introduce the monoid of Christoffel morphisms and exhibit
a minimal set of generators for the monoid. See also Chapter 2 of [Lot2002].

2.1 Christoffel morphisms

Definition 2.1. A Christoffel morphism is an endomorphism of the
free monoid {x, y}∗ that sends each Christoffel word onto a conjugate of
a Christoffel word.

Note that the set of Christoffel morphisms is closed under composition
since any endomorphism of {x, y}∗ maps conjugate words to conjugate words
(Exercise 2.1).

If G is an endomorphism of {x, y}∗ and w = a0a1 · · · ar is a word in
{x, y}∗ with a0, a1 . . . , ar ∈ {x, y}, then

G(w) = G(a0a1 · · · ar) = G(a1)G(a2) · · ·G(ar).

Therefore, G is determined by the images of x and y, so we identify G with
the ordered pair (G(x), G(y)).

Example. We use the above notation to define the following five important
endomorphisms of {x, y}∗.

G = (x, xy), D = (yx, y),

G̃ = (x, yx), D̃ = (xy, y),

E = (y, x).

9



10 CHAPTER 2. CHRISTOFFEL MORPHISMS

It is easy to see that these five morphisms are injective on {x, y}∗ (Exercise
2.4). The remainder of this section is devoted to showing that they are also
Christoffel morphisms.

Lemma 2.2. The morphism G maps the Christoffel word of slope b
a to the

Christoffel word of slope b
a+b . The morphism D̃ maps the Christoffel word

of slope b
a to the Christoffel word of slope a+b

a .

Proof. We first prove the result for G. Suppose a ⊥ b. The Christoffel word
w of slope b

a , by definition, encodes the steps of the Christoffel path from
(0, 0) to (a, b): the letter x encodes the step ~e1 and the letter y encodes the
step ~e2, where ~e1 and ~e2 are the standard basis vectors of R2. Since G maps
x to x and y to xy, the word G(w) corresponds to the path obtained from
the Christoffel path from (0, 0) to (a, b) by replacing each step ~e2 by the two
steps ~e1 and ~e2. We will show that this path is the Christoffel path from
(0, 0) to (a + b, b), implying that G(w) is the Christoffel word of slope b

a+b .

Define a linear transformation G : R2 → R2 by G(c, d) = (c + d, d) for
all (c, d) ∈ R2. Let W denote the Christoffel path from (0, 0) to (a, b). Then
G(W ) is a path in the integer lattice Z × Z consisting of steps G(~e1) = ~e1

and G(~e2) = ~e1 + ~e2. See Figure 2.1. We argue that the path obtained from

W
G−−−→ G(W )

Figure 2.1: The image of a Christoffel path W under the linear
transformation G.

G(W ) by replacing the steps ~e1 + ~e2 with the pair of steps ~e1 and ~e2 is the
Christoffel path from (0, 0) to (a + b, b).

Let R denote the region between the Christoffel path W and the line
segment from (0, 0) to (a, b). Then there are no integer points in the interior
of the region G(R) because G is a linear transformation and the region R
contains no integer points in its interior. Therefore, there are no integer
points in the interior of the region obtained from G(R) by adjoining the
triangles with vertices ~v, ~v+~e1 and ~v+(~e1 +~e2) whenever ~v and ~v+(~e1 +~e2)
are in G(R). See Figure 2.2. The boundary of this new region consists of the
line segment from (0, 0) to (a+ b, b) and the path P obtained from the path
G(W ) by replacing the steps ~e1+~e2 with the steps ~e1 and ~e2. Also, (a+b) ⊥ b
since a ⊥ b (see Exercise 1.2 or 1.4). Therefore, P is the Christoffel path
from (0, 0) to (a + b, b). Moreover, P is the path encoded by the word G(w)
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G−−−→

Figure 2.2: The image of the region between the line segment
and the Christoffel path from (0, 0) to (3, 2) under the map G.

since P is obtained from the Christoffel path from (0, 0) to (a, b) by replacing
each step ~e2 with the steps ~e1 and ~e2 (see Figure 2.3). Hence, G(w) is the
Christoffel word of slope b

a+b .

w

G−→ −→
G(w)

Figure 2.3: The geometric interpretation of the morphism G.

The proof that D̃(w) is a Christoffel word for any Christoffel word w is
similar: define a linear transformation D̃ : R2 → R2 by D̃(c, d) = (c, c + d)
for all (c, d) ∈ R2 and argue, as above, that D̃ maps the Christoffel word of
slope b

a to the Christoffel word of slope a+b
a .

Tracing backwards through the proof we also have the following result.

Corollary 2.3. If u is a Christoffel word of slope at most one, then the
unique word w such that G(w) = u is a Christoffel word. If u is a Christoffel
word of slope at least one, then the unique word w such that D̃(w) = u is a
Christoffel word.

G(w)

x← [x
xy← [ y−−−−−→ w

Figure 2.4: Christoffel words G(w) of slope less than 1 come from
Christoffel words w.

The next lemma relates the image of G with that of G̃. We will use it
again in future chapters.
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Lemma 2.4. For every word w ∈ {x, y}∗, there exists a word u ∈ {x, y}∗
such that G(w) = xu and G̃(w) = ux, and a word v ∈ {x, y}∗ such that
D(w) = yv and D̃(w) = vy.

Proof. We prove the result for G and G̃; the proof for D and D̃ is the same.
Proceed by induction on the length of w. If |w| = 1, then w is either x or y. So
G(x) = x = G̃(x) with u = ǫ, or G(y) = xy and G̃(y) = yx with u = y. This
establishes the base case of the induction. Let w be a word of length r ≥ 1
and suppose the claim holds for all words of length less than r. If w = xw′ for
some w′ ∈ {x, y}∗, then the induction hypothesis implies there exists a word
u′ ∈ {x, y} such that G(w′) = xu′ and G̃(w′) = u′x. Therefore, G(w) =
G(x)G(w′) = xxu′ and G̃(w) = G̃(x)G̃(w′) = xu′x. Taking u = xu′, we
are done. Suppose, instead, that w = yw′. Then the induction hypothesis
implies there exists u′ ∈ {x, y} such that G(w′) = xu′ and G̃(w′) = u′x.
Here, G(w) = G(y)G(w′) = xyxu′ and G̃(w) = G̃(y)G̃(w′) = yxu′x, so
take u = yxu′.

Corollary 2.5. The morphisms G, D, G̃ and D̃ are Christoffel morphisms.

Proof. By Lemma 2.2, G and D̃ map Christoffel words to Christoffel words.
Hence, they are Christoffel morphisms. We prove that G̃ is a Christoffel
morphism; the same argument proves that D is a Christoffel morphism. Let
w be a Christoffel word. Lemma 2.4 implies there exists a word u ∈ {x, y}∗
such that G(w) = xu and G̃(w) = ux. Therefore, G(w) and G̃(w) are
conjugate words. Since G(w) is a Christoffel word, G̃(w) is a conjugate of
a Christoffel word; that is, G̃ is a Christoffel morphism.

We now turn to proving that E is a Christoffel morphism.

Lemma 2.6. The morphism E maps lower Christoffel words of slope r onto
upper Christoffel words of slope 1

r .

Proof. This follows from an argument similar to that of Lemma 2.2, by using
reflection about the line x = y. See Figure 2.5.

Lemma 2.7 (Cohn [Coh1972], de Luca, Mignosi [dLM1994]). Suppose a ⊥
b. The lower and upper Christoffel words of slope b

a are conjugates.

Proof. Suppose a ⊥ b and let w be the Christoffel word of slope b
a . The word

ww encodes a path in Z× Z from (0, 0) to (2a, 2b). It consists of two copies
of the Christoffel path of slope b

a , the first starting at the origin and the
second starting at (a, b). See Figure 2.6.
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Figure 2.5: The geometric interpretation of the morphism E is
reflection about the line x = y.

Let P denote the point on the first copy of the Christoffel path that is
farthest (vertically) from the line segment defining the Christoffel path. By
Lemma 1.3, this distance is a+b−1

a . Let P ′ denote the corresponding point on
the translated copy of the Christoffel path. Then P and P ′ determine a word
w′ ∈ {x, y}∗ by encoding the part of the path from P to P ′ as a word in the
letters x, y. Note that w′ is a factor of ww of length equal to that of w. Since
w′ is a factor of ww and l(w′) = l(w), the words w′ and w are conjugate
(see Exercise 2.3). It remains to show that w′ is the upper Christoffel word

P

P ′

Figure 2.6: The path in Z × Z corresponding to the word ww =
xxyxyxxyxy. The factor corresponding to the path from P to P ′

is w′ = yxyxx. There are no integer points in the shaded region,
so w′ is an upper Christoffel word.

of slope b
a . We will argue that there is no other integer point in the region

(shaded in Figure 2.6) enclosed by the line segment PP ′ and the path from
P to P ′. The argument is illustrated in Figure 2.7. Suppose (i, j − 1) is an
integer point directly below a point (i, j) on the path from P to P ′, with
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i > 0. Then (i−1, j) is also a point on the path. Suppose the point (i, j −1)

b(i−1,
(i−1)b

a
)

b
(i, ib

a
)

b

(i−1,j)
b

(i,j)

b

(i,j−1)

Figure 2.7: The points (i, j) and (i − 1, j) are on a Christoffel
path, whereas (i, j − 1) is not.

lies above or on the segment PP ′. Then the vertical distance from (i, j − 1)
to the segment from (0, 0) to (2a, 2b) is at most the vertical distance from
this segment to P , by the choice of P . The former is ib

a − (j − 1) and the

latter is a+b−1
a . That is,

ib − (j − 1)a

a
≤ a + b − 1

a
.

Equivalently, (i−1)b−ja
a ≤ − 1

a . But (i−1)b−ja
a is nonnegative because it is the

distance from the point (i− 1, j) to the segment from (0, 0) to (2a, 2b). This
is a contradiction, so there is no integer point within the region enclosed by
the line segment PP ′ (of slope b

a) and the path from P to P ′. That is, w′ is
the upper Christoffel word of slope b

a .

Theorem 2.8. The morphisms G,D, G̃, D̃,E are Christoffel morphisms.

Proof. The first four morphisms are Christoffel morphisms by Corollary 2.5.
It remains to show that E is a Christoffel morphism. This follows from
the previous two results: if w is a Christoffel word, then E(w) is an upper
Christoffel word, which is a conjugate of the corresponding lower Christoffel
word.

Exercise 2.1. Prove that if f is an endomorphism of a free monoid A∗ and
w and w′ are conjugate words in A∗, then f(w) and f(w′) are conjugate.

Exercise 2.2. Suppose A is a finite set. Let 〈A〉 denote the free group
generated by A and let A∗ denote the free monoid generated by A. Prove
that any w,w′ ∈ A∗ are conjugate in 〈A〉 (in the group-theoretic sense) if
and only if w,w′ are conjugate in A∗ (in the word-theoretic sense).
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Exercise 2.3. Suppose w and w′ are words of the same length. If w′ is a
factor of ww, then w and w′ are conjugate.

Exercise 2.4. Prove that the morphisms G, D, G̃, D̃ are injective. (Hint:
Study a minimal counterexample, a pair of words u 6= v with total length
|u| + |v|.)

Exercise 2.5. Complete the proof of Lemma 2.4: For every word w ∈
{x, y}∗, there exists a word v ∈ {x, y}∗ such that D(w) = yv and D̃(w) = vy.

Exercise 2.6. Recall that the reversal of a word w = a0a1 · · · ar is the word
w̃ = ar · · · a1a0. Let w be a word over {x, y}∗. Prove that

G̃(w) = G̃(w̃) and D̃(w) = D̃(w̃).

Exercise 2.7. If u ∈ {x, y}∗ is a palindrome, then G(u)x and D(u)y are
palindromes.

Exercise 2.8. (A stronger version of Lemma 2.4) If w ∈ {x, y}∗ is a palin-
drome, then there exist palindromes u, v ∈ {x, y}∗ such that G(w) = xu
and G̃(w) = ux, and D(w) = yv and D̃(w) = vy.

2.2 Generators

The following theorem gives a manageable characterization of the monoid
of Christoffel morphisms. We will see in Section 3.2 that it implies a very
close relationship between the set of Christoffel morphisms and the set of
Christoffel words. References in the language of Sturmian words and Stur-
mian morphisms include [MS1993], [Lot2002, Chapter 2], [WW1994] and
[BdLR2008].

Theorem 2.9. The monoid of Christoffel morphisms is generated by G, D,
G̃, D̃ and E.

In fact, D = E ◦G ◦E and G̃ = E ◦ D̃ ◦E, but it will simplify the proof
to retain these superfluous generators. The proof makes frequent use of the
following easy fact, so we separate it as a lemma.

Lemma 2.10. If w is a Christoffel word or a conjugate of a Christoffel
word, then xx and yy cannot both be factors of w.
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×

×

No yy if b
a < 1. No xx if b

a > 1.

Figure 2.8: Impossible configurations in Christoffel words.

Proof. Indeed, let w be the Christoffel word of slope b
a . Figure 2.8 indicates

a geometric proof of the following statements. If b
a < 1, then w begins with

xx and yy is not a factor of w. In the case b
a > 1, w ends with yy and xx

is not a factor of w. The only nontrivial Christoffel word with neither xx
nor yy is C(1, 1) = xy. Since w begins with an x and ends with a y, xx and
yy are not both factors of the square w2. Finally, since every conjugate of
w appears as a factor of w2, the property holds for conjugates of Christoffel
words as well.

Proof of Theorem 2.9. In five steps.

1. A Christoffel morphism f is nonerasing, that is, the length of f(w) is
at least the length of w.

An erasing morphism f must necessarily send x or y to the empty word.
In the first case, f(xyy) is not primitive, in the second f(xxy) is not prim-
itive. On the other hand, all conjugates of a Christoffel word are primitive
(Exercise 1.1).

2. If f is a nonidentity Christoffel morphism, then f(x) and f(y) must begin
or end by the same letter.

Assume f(x) begins by x (study E ◦ f otherwise) and f(y) begins by y.
There are two possibilities:

(i): Suppose f(x) ends by y. Either f(y) ends by x or we are done. In
the remaining case, f(xy) = f(x)f(y) becomes x · · · yy · · · x, so xx and yy
are both factors of every conjugate of f(xy), save perhaps for f(y)f(x) =
y · · · xx · · · y. On the other hand, f(xy) is a conjugate of a Christoffel word
u that is not equal to f(x)f(y) or f(y)f(x) since u begins by x and ends by
y. Lemma 2.10 yields a contradiction.

(ii): Suppose instead f(x) ends by x and f(y) ends by y. Note that in
this case, xx is a factor of f(xxy) = f(x)f(x)f(y) = (x · · · x)(x · · · x)(y · · · y).
Hence, yy is not a factor of f(xxy) by the lemma. In particular, yy is a factor
of neither f(x) nor f(y). Similarly, by considering f(xyy), we see that xx
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is a factor of neither f(x) nor f(y). This in turn forces f(x) = (xy)ix,
f(y) = y(xy)j and f(xy) = (xy)i+j+1. Whence i + j = 0 (Exercise 1.1).
Then f is the identity morphism, contrary to our hypothesis.

3. If f is a nonidentity Christoffel morphism, then there exists a morphism
g : {x, y}∗ → {x, y}∗ and an H ∈ {G,D, G̃, D̃} such that f = H ◦ g.

A nonempty word w on {x, y} belongs to {x, xy}∗ (i.e., is a word on
the “letters” x and xy) if and only if w begins by x and does not contain
the factor yy. Similar descriptions hold for words in {y, xy}∗, {x, yx}∗ and
{xy, y}∗. We argue that the image of f belongs to one of these monoids.
Since G, D, G̃ and D̃ are injective morphisms (Exercise 2.4), with images
in the respective monoids above, this will allow us to compose f with G−1,
D−1, G̃−1 or D̃−1, respectively to find g.

Since f(xy) is a conjugate of a Christoffel word, xx and yy are not both
factors of f(xy). Assuming yy is not a factor of f(xy), it follows that yy is
a factor of neither f(x) nor f(y). By Step 2, f(x) and f(y) must then begin
or end by the same letter, setting up several cases to check.

(i): If f(x) and f(y) both begin by x, then the image of f is a subset of
{x, xy}∗. Therefore, G−1 ◦ f = g is also a morphism of {x, y}∗.

(ii): If f(x) and f(y) both begin by y, then neither may end by y (on
account of the lemma and our assumption that yy is not a

factor of f(xy)). Thus f(x) and f(y) both end by x and neither contain yy
as a factor. That is,

f(x), f(y) ∈ {x, yx}∗ and G̃−1 ◦ f is a morphism of {x, y}∗.
(iii): The cases where f(x) and f(y) end by the same letter are handled

analogous to the cases above.

4. In the composition f = H ◦ g built above, g is a Christoffel morphism.

We now have that f = H ◦ g, with H ∈ {G,D, G̃, D̃}, and that f sends
Christoffel words onto conjugates of Christoffel words. We aim to show that
g does as well. We analyze the case H = G, the rest being similar.

First, recall that if G(w) is a Christoffel word, then w is a Christoffel
word too (Corollary 2.3). We must show that if G(w) is a conjugate of a
Christoffel word then w is as well. This is now easy, for if G(w) = uv with
vu a Christoffel word, then v begins by x and u ends by y. Moreover, by
the definition of G, u must begin by x and yy is a factor of neither u, v nor
uv. This implies that u, v ∈ {x, xy}∗, so G−1(u) and G−1(v) are defined,
w = G−1(u)G−1(v) and G−1(v)G−1(u) is a Christoffel word.

5. There exist Hi ∈ {G,D, G̃, D̃} such that f = H1 ◦ · · · ◦Hs.
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From Step 4, f = H1 ◦ g for some Christoffel morphism g and some
H1 ∈ {G,D, G̃, D̃}. Moreover, |f(x)|+ |f(y)| > |g(x)|+ |g(y)|. An induction
on |f(x)| + |f(y)| completes the proof.

Remark. We have proved something a priori stronger.

Corollary 2.11 (Berthé, de Luca, Reutenauer [BdLR2008]). A morphism
f on {x, y}∗ is a Christoffel morphism if and only if f(xy), f(xxy) and
f(xyy) are conjugates of Christoffel words.



Chapter 3

Standard Factorization

The first section of this chapter proves that every Christoffel word can be
expressed as the product of two Christoffel words in a unique way, and
the second section builds an infinite, complete binary tree whose vertices
correspond to Christoffel words via this unique factorization.

3.1 The standard factorization

This section proves that every Christoffel word can be expressed as the
product of two Christoffel words in a unique way. This factorization is called
the standard factorization and was introduced by Jean-Pierre Borel and
François Laubie [BL1993]. Most of the results in this section are due to
them.

Given that a ⊥ b, recall the method of labelling the Christoffel path from
(0, 0) to (a, b) for nontrivial Christoffel words. By Lemma 1.3, if a and b are
nonzero, then there is a unique point C on this path having label 1

a . We call
C the closest point for the path. It is the lattice point on the Christoffel
path from (0, 0) to (a, b) with minimum nonzero distance to the line segment
from (0, 0) to (a, b).

Definition 3.1. Suppose a ⊥ b with a, b > 0. The standard factorization
of the Christoffel word w of slope b

a is the factorization w = (w1, w2), where
w1 encodes the portion of the Christoffel path from (0, 0) to the closest point
C and w2 encodes the portion from C to (a, b).

Example. The standard factorization of the Christoffel word of slope 4
7 is

(xxy, xxyxxyxy). See Figure 3.1.

19
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b

x x

x x

x x

x

y

y

y

y

Figure 3.1: The closest point for the Christoffel path of slope
4
7 occurs between the third and fourth steps, thus the standard
factorization of xxyxxyxxyxy is (xxy, xxyxxyxy).

Proposition 3.2. If (w1, w2) is the standard factorization of a nontrivial
Christoffel word, then w1 and w2 are Christoffel words.

Proof. Suppose w is a Christoffel word of slope b
a and let (i, j) be the point

on the Christoffel path from (0, 0) to (a, b) labelled 1
a . Then w1 encodes the

subpath P1 from (0, 0) to (i, j) and w2 encodes the subpath P2 from (i, j)
to (a, b). See Figure 3.2.

Since (i, j) is the point on the Christoffel path that is closest to the line
segment from (0, 0) to (a, b) without being on the segment, no point of the
Christoffel path besides (0, 0), (a, b) and (i, j) lies in the triangle determined
by these three points. See Figure 3.2. Let S1 be the line segment from (0, 0)
to (i, j). Note that the region bounded by P1 and S1 contains no interior
lattice points. Since, moreover, no integer points lie in the interior of the

b
(i, j)

P1

P2

Figure 3.2: The standard factorization of a Christoffel word gives
two Christoffel words.

line segment S1, it follows that i ⊥ j (Exercise 1.2) and w1 is the Christoffel
word of slope j

i . Similarly, w2 is the Christoffel word of slope b−j
a−i .

In fact, the standard factorization is the only factorization of a Christoffel
word with this property.
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Theorem 3.3 (Borel, Laubie [BL1993]). A nontrivial Christoffel word w
has a unique factorization w = (w1, w2) with w1 and w2 Christoffel words.

We present a proof suggested by Hugh Thomas.

Proof. Let (w1, w2) denote the standard factorization of w. Recall that this
factorization is obtained from cutting the Christoffel path at its closest point
C. Suppose there is another factorization w = (u, v) with u and v Christoffel

b

C

h

b

C′

h′

u

v
No interior lattice points for

the region ∪ .

A

B

Figure 3.3: A Christoffel factorization w = uv at cutpoint C′.

words. See Figure 3.3. That is, C ′ = (c, d) is another point on the path
having no integer points in its corresponding regions (shaded in Figure 3.3)
and satisfying c ⊥ d. We reach a contradiction by comparing triangles ABC
and ABC ′ in Figure 3.3. Since w1, w2 are Christoffel words, we know there
are no integer lattice points in the interior of triangle ABC. Moreover, the
only lattice points on its boundary occur at A, B and C. By Pick’s Theorem
(Exercise 3.1), we have

area ABC = i +
1

2
b − 1 = 0 +

3

2
− 1 =

1

2
,

where i is the number of lattice points interior to ABC and b is the number
of lattice points on its boundary. The same may be said for triangle ABC ′:
since u, v are Christoffel words, the line segments AC ′ and BC ′ do not cross
the Christoffel path for w; since w is a Christoffel word, this implies there are
no interior lattice points in ABC ′; there are only 3 boundary lattice points
by the same reasoning. Now we have two triangles with the same base, the
same area, but different heights. Contradiction.

Finally, we record some additional facts about the factorization (w1, w2)
that will be useful in what follows. Recall that SL2(Z) is the group of in-
vertible matrices with integer entries and determinant equal to 1.
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Lemma 3.4. Suppose (w1, w2) is the standard factorization of the Christof-
fel word w of slope b

a , where a ⊥ b. Then

(|w1|x |w2|x
|w1|y |w2|y

)
∈ SL2(Z).

Proof. The point (i, j) of the Christoffel path labelled 1
a is (|w1|x, |w1|y).

Also, (a − i, b − j) = (|w2|x, |w2|y). Since exactly three integer points lie in
the triangle with vertices (0, 0) (i, j), (a, b), it follows from Pick’s Theorem
(see Exercises 3.1 and 3.2) that

det

(
i j

a − i b − j

)
= 1.

Therefore, the matrix is an element of SL2(Z).

Lemma 3.5. Let w denote the Christoffel word of slope b
a and let (w1, w2)

denote its standard factorization. Then |w1|b ≡ 1 mod (a+b) and |w2|a ≡ 1
mod (a + b). Moreover, |w1| and |w2| are relatively prime.

Proof. By Exercise 1.6, the point (i, j) on the Christoffel path from (0, 0) to
(a, b) has label t

a , where t satisfies

t ≡ (i + j)b mod (a + b),

t ≡
(
(a − i) + (b − j)

)
a mod (a + b)

(recall that |w|x = a and |w|y = b). Since (|w1|x, |w1|y) is the closest point
of the Christoffel path to the line segment from (0, 0) to (a, b), it has label
1
a . Applying the above to t = 1 and the point (i, j) = (|w1|x, |w1|y), we have
|w1|b ≡ 1 mod (a + b) and |w2|a ≡ 1 mod (a + b).

It remains to show that |w1| and |w2| are relatively prime. By Corollary
3.4,

(|w1|x |w2|x
|w1|y |w2|y

)
∈ SL2(Z).

This implies that

det

(|w1| |w2|
|w1|y |w2|y

)
= det

(|w1|x |w2|x
|w1|y |w2|y

)
= 1.

That is, there exist integers k and l such that |w1|k+|w2|l = 1, which implies
|w1| ⊥ |w2| (see Bézout’s Lemma in Exercise 3.3).
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Exercise 3.1 (Pick’s Theorem). Let P be a simple polygon (that is, the
boundary of P has no self-intersections) with vertices in Z × Z. Then the
area of P is i+ 1

2b−1, where i is the number of integer points in the interior
of P and b is the number of integer points of the boundary of P . (Hint:
Proceed by induction on the number of vertices of P .)

Exercise 3.2. Suppose i, j, k, l are positive integers. If no other integer
points lie in the triangle with vertices (0, 0), (i, j), (i + k, j + l), then

det

(
i j
k l

)
= 1.

(Hint: Use Pick’s Theorem above and the fact that the determinant is twice
the area of the triangle.)

Exercise 3.3 (Bézout’s Lemma). Let a and b be positive integers. If the
greatest common divisor of a and b is d, then there exist integers i and j
such that ia + jb = d. Moreover, a ⊥ b if and only if there exist integers i
and j such that ia + jb = 1.

3.2 The Christoffel tree

We close this chapter with a description of the Christoffel tree, following
[BL1993] and [BdL1997]. This is the infinite, complete binary tree whose
root is labelled (x, y) and whose vertices are labelled by pairs (u, v) of words
in {x, y}∗ subject to the following branching rules.

(u, v)

(u, uv)

◦G

(uv, v)

◦D̃

View the vertex (u, v) above as a morphism (x, y)
f7→ (u, v). We have labelled

the edges to indicate that f = (u, v) has two branches, f ◦ G and f ◦ D̃.
These rules were introduced by Gerard Rauzy in [Rau1984]. The first few
levels of the Christoffel tree appear in Figure 3.4.

Theorem 3.6. The Christoffel tree contains exactly once the standard fac-
torization of each (lower) Christoffel word.

Example. Recall that (xxy, xxyxxyxy) is the standard factorization of the
Christoffel word of slope 4

7 (see Figure 3.1). It appears in Figure 3.4 at the

fifth level as (G ◦ D̃ ◦G ◦G)(x, y).
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(x, y)

(x, xy)

(x, xxy)

(x, x3y) (x3y, x2y)

(xxy, xy)

(x2y, x2yxy)

(x2y, x2yx2yxy) (x2yx2yxy, x2yxy)

(x2yxy, xy)

(xy, y)

(xy, xyy)

(xy, xyxy2) (xyxy2, xy2)

(xyy, y)

(xy2, xy3) (xy3, y)

Figure 3.4: The Christoffel tree.

Proof of Theorem 3.6. In three steps.

1. Each vertex (u, v) on the tree has the property that u, v and uv are
Christoffel words.

We have seen that G and D̃ send Christoffel words to Christoffel words.
Since each f = (u, v) on the tree corresponds to a composition of Gs and D̃s,
we get immediately that u = f(x), v = f(y) and uv = f(xy) are Christoffel
words.

2. A vertex (u, v) on the Christoffel tree is the standard factorization of the
Christoffel word uv.

By Step 1, u, v and uv are Christoffel words. By Theorem 3.3, the only
way to factor uv as Christoffel words is the standard factorization (u, v).

3. The standard factorization (w1, w2) of a Christoffel word w appears ex-
actly once in the Christoffel tree.

We demonstrate how to write

(w1, w2) = (H1 ◦H2 ◦ · · · ◦Hr) (x, y)

for some r ∈ N and Hi ∈ {G, D̃}, thereby explicitly describing a path in
the Christoffel tree from the root to the vertex (w1, w2). The argument is
illustrated in the example following this proof. We need only argue that
standard factorizations may be lifted via G or D̃. Specifically, we apply
G−1 if w1w2 has slope less than 1 and D̃−1 if w1w2 has slope greater than 1
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(see Corollary 2.3). An example where the slope is less than 1 is illustrated
in Figure 3.5.

b

C

x← [ x
xy← [ y−−−−−→

b

G−1C

Figure 3.5: C is the closest point for the Christoffel path of
G(xxyxxyxy) = xxxyxxxyxxy and G−1(C) is the closest point
for the Christoffel path of the word xxyxxyxy. (Here G is the lin-
ear transformation (~e1, ~e2) 7→ (~e1 + ~e2, ~e2) mimicing G.)

The figure suggests that the closest point does not change under a change
of basis. More precisely, we claim that if (u, v) is the standard factorization
of the Christoffel word uv of slope less than 1, then (G−1(u),G−1(v)) is
the standard factorization of G−1(uv). First, since yy is not a factor of uv
(see the proof of Lemma 2.10), yy is not a factor of u or v. Hence, u and v
are in the image of G. Moreover, u and v are Christoffel words, so G−1(u)
and G−1(v) are as well (Corollary 2.3). This is the standard factorization of
G−1(uv) by Theorem 3.3. The same argument works for D̃.

Finally, the fact that (w1, w2) can occur at most once in the Christoffel
tree comes from the following property of binary trees. Each vertex describes
a unique path back to the root, a finite sequence of statements of the form,
“I was a left branch” or “I was a right branch.” Since being a left branch
corresponds to precomposition by G and being a right branch corresponds
to precomposition by D̃, if (w1, w2) appears at two distinct vertices of the
graph, then we have two expressions of the form

(w1, w2) = (H1 ◦H2 ◦ · · · ◦Hr) (x, y)

(w1, w2) =
(
H′1 ◦ H′2 ◦ · · · ◦ H′s

)
(x, y)

for some r, s ∈ N and Hi,H
′
i ∈ {G, D̃}. Since the only Christoffel word in

the image of both G and D̃ is xy (corresponding to the root of the tree), it
follows that H1 = H′1, H2 = H′2, . . . , Hr = H′s. Therefore, both vertices of
the graph describe the same (unique) path back to the root, contradicting
the assumption that the two vertices are distinct.

Example. We illustrate the ideas of Step 3 of the proof in Figure 3.6, march-
ing upwards from the vertex (xxxy, xxxyxxy) to the root (x, y).
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some Christoffel words w . . . and their standard factorizations

xy

xxy

xyxyy

xxyxxyxy

xxxyxxxyxxy

slope < 1, apply G−1

slope > 1 (ends with yy),

apply eD−1

slope < 1, apply G−1

slope < 1 (starts with xx),
apply G

−1

(x , y)

(x , xy)

(xy ,xyy)

(xxy ,xxyxy)

(xxxy ,xxxyxxy)

Figure 3.6: Paths in the Christoffel tree from (u, v) to the root
(x, y) preserve the cutting points for standard factorizations.

Note that we have found a characterization of those Christoffel mor-
phisms that preserve Christoffel words. Namely, f : (x, y) 7→ (w1, w2) is
such a morphism if and only if (w1, w2) is a standard factorization of a
Christoffel word.

Exercise 3.4. Let f be a Christoffel morphism. Prove that f takes Christof-
fel words to Christoffel words if and only if f = (w1, w2), where (w1, w2) is
the standard factorization of some Christoffel word. (Hint: One direction is
Theorem 3.3. For the other direction, use the Christoffel tree to show that
f is a composition of Gs and D̃s.)



Chapter 4

Palindromization

Recall that a word u is a palindrome if it is equal to its own reversal
(u = ũ). This chapter begins with the observation that if w is a nontrivial
Christoffel word, then w = xuy with u a (possibly empty) palindrome.
It continues by investigating the set of palindromes u for which xuy is a
Christoffel word.

4.1 Christoffel words and palindromes

We prove that every nontrivial (lower) Christoffel word can be expressed
as xuy with u a palindrome, and that the corresponding upper Christoffel
word is yux.

Lemma 4.1. Suppose a ⊥ b. Translation by the vector ~e2 − ~e1 and rotation
about the point (a

2 , b
2 ) each map the interior points of the lower Christoffel

path from (0, 0) to (a, b) onto the interior points of the upper Christoffel path
from (0, 0) to (a, b).

Proof. Translation: Let Q be a point different from (0, 0) and (a, b) on the
lower Christoffel path from (0, 0) to (a, b). Then the translated point Q +
(~e2 − ~e1) is an integer point lying above the lower Christoffel path, and so
it lies above the segment from (0, 0) to (a, b). Since there is no path in the
integer lattice consisting of steps ~e1 and ~e2 that avoids Q and Q+ (~e2 −~e1),
and that has Q and Q + (~e2 − ~e1) on opposite sides of the path, it follows
that Q + (~e2 − ~e1) lies on the upper Christoffel path from (0, 0) to (a, b).

Rotation: Since there are no lattice points enclosed by the (upper or
lower) Christoffel path and the segment from (0, 0) to (a, b), a half-turn

27
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P

P ′

Figure 4.1: Translation by ~e2−~e1 maps P onto P ′; rotation about
(7
2 , 2) maps P onto the reverse of P ′.

about the midpoint of the line segment from (0, 0) to (a, b) maps the lower
Christoffel path to the upper Christoffel path.

The following result is the consequence of the above geometric lemma.
(Recall that a Christoffel word is nontrivial if its length is at least two.)

Proposition 4.2. Suppose a ⊥ b. If w is a nontrivial lower Christoffel word
of slope b

a , then w = xuy with u a palindrome. If w′ is the upper Christoffel

word of slope b
a , then w′ = yux. In particular, w′ = w̃.

Proof. Let w and w′ be the nontrivial lower and upper Christoffel words of
slope b

a , respectively. By construction any lower Christoffel word begins by
x and ends by y, so w = xuy for some u ∈ {x, y}∗. Similarly, w′ = yu′x for
some u′ ∈ {x, y}∗. The words u and u′ correspond to the subpaths P and
P ′ obtained from the lower and upper Christoffel paths from (0, 0) to (a, b),
respectively, by removing the endpoints. By Lemma 4.1, P is a translate of
P ′, so u = u′. Also by Lemma 4.1, a half-turn rotation maps P ′ onto P .
Since rotation reverses the direction of P ′, it follows that u = ũ′ = ũ. So u
is a palindrome. Finally, w′ = yu′x = yux = yũx = w̃.

4.2 Palindromic closures

We next determine those palindromes u for which xuy is a Christoffel word,
following the work of Aldo de Luca [dL1997] and others. A function Pal that
maps words to palindromes is defined and it will be shown that xPal(v)y
is a Christoffel word for every v ∈ {x, y}∗. It will be useful to have the
terminology palindromic prefix and palindromic suffix, that is, a prefix
(respectively, suffix) u of a word w such that u is a palindrome.
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Proposition 4.3 (de Luca [dL1997]). Let w be a word. Write w = uv,
where v is the longest suffix of w that is a palindrome. Then w+ = wũ is
the unique shortest palindrome having w as a prefix.

Proof. The proof is left as an exercise (Exercise 4.5).

Definition 4.4. Let w be a word. The word w+ constructed in Proposition
4.3 is called the (right) palindromic closure of w.

Example. Let w = yxyxxy. The longest palindromic suffix of w is v =
yxxy. Putting u = yx, we have w+ = wũ = yxyxxyxy and w+ is indeed a
palindrome.

Definition 4.5 (de Luca [dL1997]). Define a function Pal : {x, y}∗ →
{x, y}∗ recursively as follows. For the empty word ǫ, let Pal(ǫ) = ǫ. If
w = vz ∈ {x, y}∗ for some z ∈ {x, y}, then let

Pal(w) = Pal(vz) = (Pal(v)z)+.

The word Pal(w) is called the iterated palindromic closure of w.

Example. We compute Pal(xyxx).

Pal(x) = (Pal(ǫ)x)+ = x+ = x.

Pal(xy) = (Pal(x)y)+ = (xy)+ = xyx.

Pal(xyx) = (Pal(xy)x)+ = ((xyx)x)+ = xyxxyx.

Pal(xyxx) = (Pal(xyx)x)+ = ((xyxxyx)x)+ = xyxxyxxyx.

Note that the Christoffel word of slope 4
7 is xxyxxyxxyxy = xPal(xyxx)y.

The map w 7→ Pal(w) is injective. A complete proof is outlined in the
exercises (Exercise 4.9). Briefly, the inverse map is obtained by taking the
first letter after each palindromic prefix of Pal(w) (excluding Pal(w), but
including the empty prefix ǫ). The fact that this procedure works follows
from the observation that the only palindromic prefixes of Pal(w) are those
obtained during the iterated construction of Pal(w).

Example. Suppose Pal(w) = xyxxyxxyx. The palindromic prefixes of Pal(w)
excluding Pal(w) are: ǫ; x; xyx; and xyxxyx. The first letter after these pre-
fixes are: x; y; x; x. Therefore, w = xyxx. This agrees with the computation
of Pal(xyxx) in the previous example. Moreover, from that computation we
note that the words Pal(ǫ), Pal(x), Pal(xy), Pal(xyx) and Pal(xyxx) are
palindromic prefixes of Pal(xyxx), and that they are the only palindromic
prefixes of Pal(xyxx). See Exercise 4.8.
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The remainder of this section is devoted to proving a result that implies,
among other things, that xuy is a Christoffel word if u is in the image of Pal.
Before stating the full result we recall the definition of a period of a word.
A positive integer p is a period of w if wi = wi+p for all 1 ≤ i ≤ |w| − p,
where wi denotes the i-th letter of the word w. (Again, we allow p ≥ |w|.)

Theorem 4.6 (Borel, Laubie [BL1993], de Luca [dL1997], Berthé, de Luca,
Reutenauer [BdLR2008]). Let v ∈ {x, y}∗. Then w = xPal(v)y is a Christof-
fel word. If (w1, w2) is the standard factorization of w, then

µ(v) =

(|w1|x |w2|x
|w1|y |w2|y

)
∈ SL2(Z),

where µ : {x, y}∗ → SL2(Z) is the multiplicative monoid morphism defined
by

µ(x) =

(
1 1
0 1

)
and µ(y) =

(
1 0
1 1

)
,

and Pal(v) has relatively prime periods |w1| and |w2|.

Remark. We provide a converse to this result in Proposition 4.14, namely,
if w is a Christoffel word then w = xPal(v)y for some v ∈ {x, y}∗.
Example. Let w = xxyxxyxxyxy denote the Christoffel word of slope 4

7 .
Note that xyxxyxxyx has periods 3 and 8. In previous examples we saw that
w = xPal(xyxx)y and that the standard factorization of w is (w1, w2) =
(xxy, xxyxxyxy). Therefore,

µ(xyxx) =

(
1 1
0 1

)(
1 0
1 1

)(
1 1
0 1

)(
1 1
0 1

)
=

(
2 5
1 3

)
=

(|w1|x |w2|x
|w1|y |w2|y

)
.

The proof is divided into three propositions. We begin by proving that
xPal(v)y is a Christoffel word.

The following formulae of Jacques Justin give a very useful method for
computing Pal(v).

Lemma 4.7 (Justin [Jus2005]). For any word w ∈ {x, y}∗,

Pal(xw) = G
(

Pal(w)x
)

= G
(

Pal(w)
)
x,

Pal(yw) = D
(

Pal(w)y
)

= D
(

Pal(w)
)
y.

(4.8)
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A proof of this result is outlined in Exercise 4.11.

Example. We compute Pal(xyxx) using the formulae of Justin.

Pal(xyxx) = G
(

Pal(yxx)
)
x

= G
(
D
(

Pal(xx)
)
y
)
x

= G
(
D(xx)y

)
x

= G
(
yxyxy

)
x

= xyxxyxxyx.

Proposition 4.9. Suppose v ∈ {x, y}∗. Then w = xPal(v)y is a Christoffel
word.

Proof. Proceed by induction on |v|. Suppose the length of v is zero. Then
Pal(v) = ǫ and w = xy, which is a Christoffel word. Suppose that xPal(v)y
is a Christoffel word for all words v of length at most r and let v′ ∈ {x, y}∗
be a word of length r + 1. If v′ begins with x, then write v′ = xv for some
v ∈ {x, y}∗. Then, by the formulae of Justin,

xPal(v′)y = xPal(xv)y = xG(Pal(v)x)y = G(xPal(v)y).

This is a Christoffel word because xPal(v)y is a Christoffel word (by the
induction hypothesis) and because G maps Christoffel words to Christoffel
words (Lemma 2.2).

If v′ = yv, then

xPal(v′)y = xPal(yv)y = xD(Pal(v)y)y.

Lemma 2.4 implies there exists a word u such that D̃(Pal(v)y) = uy and
D(Pal(v)y) = yu. The first equality together with D̃(y) = y implies that
u = D̃(Pal(v)). Therefore, D(Pal(v)y) = yD̃(Pal(v)). Hence,

xPal(v′)y = xD(Pal(v)y)y = xyD̃(Pal(v))y = D̃(xPal(v)y).

This is a Christoffel word because xPal(v)y is a Christoffel word (by the
induction hypothesis) and because D̃ maps Christoffel words to Christoffel
words (Lemma 2.2).

We next prove that the entries of the matrix µ(v) are given by the
numbers of occurrences of the letters x and y in the words w1 and w2, where
(w1, w2) is the standard factorization of the Christoffel word xPal(v)y.
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Proposition 4.10. Suppose v ∈ {x, y}∗. If (w1, w2) is the standard factor-
ization of the Christoffel word xPal(v)y, then

µ(v) =

(|w1|x |w2|x
|w1|y |w2|y

)
.

Proof. We proceed by induction on the length of v. If |v| = 0, then v = ǫ. So
the Christoffel word xPal(ǫ)y is xy and its standard factorization is (x, y).
Therefore,

µ(ǫ) =

(
1 0
0 1

)
=

(|x|x |y|x
|x|y |y|y

)
.

This establishes the base case of the induction. Suppose the result holds for
all words v of length at most r − 1 ≥ 0 and let v′ be a word of length r.
If v′ begins with x, then v′ = xv for some v ∈ {x, y}∗. By the induction
hypothesis,

µ(v′) = µ(x)µ(v) =

(
1 1
0 1

)(|w1|x |w2|x
|w1|y |w2|y

)
=

(|w1| |w2|
|w1|y |w2|y

)
,

where (w1, w2) is the standard factorization of xPal(v)y. Writing (w′1, w
′
2)

for the standard factorization of the Christoffel word xPal(v′)y, we would
like to show that

(|w1| |w2|
|w1|y |w2|y

)
=

(|w′1|x |w′2|x
|w′1|y |w′2|y

)
.

In view of Lemma 3.4 and Exercise 4.3, it suffices to show that |w′1|x +
|w′2|x = |w1| + |w2| and |w′1|y + |w′2|y = |w1|y + |w2|y. Equivalently, we need
to show that |xPal(v′)y|x = |xPal(v)y| and |xPal(v′)y|y = |xPal(v)y|y. By
the formulae of Justin (4.8),

xPal(v′)y = xPal(xv)y = xG(Pal(v))xy = G(xPal(v)y).

Since G = (x, xy) replaces each letter of a word m ∈ {x, y}∗ with a word
having exactly one occurrence of x, the number of occurrences of the letter
x in G(m) is the length of m. Therefore,

|xPal(v′)y|x = |G(xPal(v)y)|x = |xPal(v)y|.

Since G = (x, xy) fixes the letter x and replaces y with a word having exactly
one occurrence of y, we have |G(m)|y = |m|y for any word m ∈ {x, y}∗.
Therefore,

|xPal(v′)y|y = |G(xPal(v)y)|y = |xPal(v)y|y .
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This completes the induction for words beginning with the letter x.
If, instead, v′ begins with the letter y, then v′ = yv for some v ∈ {x, y}∗,

and

µ(v′) = µ(y)µ(v) =

(
1 0
1 1

)(|w1|x |w2|x
|w1|y |w2|y

)
=

(|w1|x |w2|x
|w1| |w2|

)
,

where (w1, w2) is the standard factorization of xPal(v)y. As above, we need
only show that |xPal(v′)y|y = |xPal(v)y| and |xPal(v′)y|x = |xPal(v)y|x.
By the formulae of Justin (4.8), xPal(v′)y = xPal(yv)y = xD(Pal(v))yy.
Since D = (yx, y), it follows that |D(m)|y = |m| and |D(m)|x = |m|x for
any word m ∈ {x, y}∗, so

|xPal(v′)y|y = |xD(Pal(v))yy|y = |Pal(v)yy| = |xPal(v)y|,
|xPal(v′)y|x = |xD(Pal(v))yy|x = |xPal(v)|x = |xPal(v)y|x.

This completes the induction.

We now turn to the computation of periods of the word Pal(v). The
treatment here is based on the paper [BR2006] of Borel and Reutenauer.
The following result determines a period of palindromes having palindromic
prefixes.

Lemma 4.11 (de Luca [dL1997]). If a palindrome u has a palindromic prefix
p 6= u, then u has a period |u| − |p|.

Proof. Write u = pv for some word v. Then u = ṽp because u and p are
palindromes. Since u = pv, we have ui = pi for 0 ≤ i < |p|. And since u = ṽp,
we have ui+|v| = pi for 0 ≤ i < |p|. Therefore, ui = ui+|v| for 0 ≤ i < |p|.
That is, u has period |v| = |u| − |p|.

Proposition 4.12. Suppose v ∈ {x, y}∗. The word Pal(v) has periods |w1|
and |w2|, where (w1, w2) is the standard factorization of the Christoffel
word xPal(v)y. Moreover, the periods |w1| and |w2| are relatively prime and
|Pal(v)| = |w1| + |w2| − 2.

Proof. Let (w1, w2) denote the standard factorization of xPal(v)y. Then w1

and w2 are Christoffel words by Proposition 3.2. There are two cases to
consider.

Case 1: w1 or w2 is a trivial Christoffel word. If w1 = x, then

µ(v) =

(
1 |w2|x
0 |w2|y

)
.
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Since det(µ(v)) = 1, it follows that |w2|y = 1. So w2 = xey for some e ∈ N.
Hence, Pal(v) = xe, which has periods |w1| = 1 and |w2| = e+1, and length
|w1| + |w2| = 1 + (e + 1) − 2 = e. The same argument holds if w2 = y.

Case 2: w1 and w2 are nontrivial Christoffel words. By Proposition 4.2,
there exist palindromes u1 and u2 such that w1 = xu1y and w2 = xu2y.
Therefore, Pal(v) = u1xyu2. The previous lemma implies that Pal(v) has
periods |Pal(v)|− |u1| = |u2|+2 = |w2| and |Pal(v)|− |u2| = |u1|+2 = |w1|.
The fact that |w1| and |w2| are relatively prime follows from Lemma 3.5.

Exercise 4.1. Given any endomorphism f of the monoid {x, y}∗ and any
word w ∈ {x, y}∗, one has

(|f(w)|x
|f(w)|y

)
=

(|f(x)|x |f(y)|x
|f(x)|y |f(y)|y

)(|w|x
|w|y

)
.

Exercise 4.2. Show that the monoid SL2(Z) ∩ N2×2 is generated by

(
1 1
0 1

)
and

(
1 0
1 1

)
,

which are the images of x and y under the morphism µ of Theorem 4.6.

Exercise 4.3 ([Ran1973,BdL1997]). Two matrices

M =

(
a b
c d

)
and M ′ =

(
a′ b′

c′ d′

)
in N2×2 ∩ SL2(Z)

satisfy a + b = a′ + b′ and c + d = c′ + d′ if and only if M = M ′.

Exercise 4.4. If w ∈ {x, y}∗, then E(Pal(w)) = Pal(E(w)). (Hint: First
establish that (E(w))+ = E(w+).)

Exercise 4.5. Prove Proposition 4.3. (Hint: Show that w+ = wv−1w̃, where
the product on the left is evaluated in the free group generated by x and y.)

Exercise 4.6. If p 6= w+ is a palindromic prefix of w+, then p is a (palin-
dromic) prefix of w.

Exercise 4.7. Given two letters x and y and an integer s > 0, prove that:

(a) Pal(xys) = (xy)sx;

(b) Pal(xsy) = Pal(xs)y Pal(xs) = xsyxs;

(c) Pal(xysx) = Pal(xys) Pal(xys).
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Exercise 4.8. Let w be a word and z ∈ {x, y}.
(a) If u is a prefix of w, then Pal(u) is a prefix of Pal(w).

(b) uz is a prefix of w if and only if Pal(u)z is a prefix of Pal(w).

(c) If p is a palindromic prefix of Pal(w), then p = Pal(u) for some prefix
u of w.

(Hint: Proceed by induction on the length of w and use Exercise 4.6.)

Exercise 4.9 (Pal is injective.). If ǫ = p1, p2, . . . , pr denote the sequence
of palindromic prefixes of Pal(w) different than Pal(w) listed in order of in-
creasing length, and if z1, z2, . . . , zr ∈ {x, y} denote the letters in Pal(w) im-
mediately following the prefixes p1, p2, . . . , pr in Pal(w), then w = z1z2 · · · zr.
(Hint: Use Exercise 4.8.)

Exercise 4.10. If w = vzu, where u does not have an occurrence of the
letter z, then

Pal(wz) = Pal(w) Pal(v)−1 Pal(w),

where the product is evaluated in the free group generated by {x, y}. (Hint:
Using Exercise 4.8, establish that the longest palindromic suffix of Pal(w)z
is z Pal(v)z.)

Exercise 4.11. (Lemma 4.7) Let αx = G = (x, xy) and αy = D = (yx, y).
Verify the formulae of Justin: show that for any word w ∈ {x, y}∗ and any
z ∈ {x, y},

Pal(zw) = αz

(
Pal(w)

)
z.

(Hint: Proceed by induction on |w|. Establish the case |w| = 0, then write
w = w′a, where a is the last letter of w and consider the following two cases.

1. If the letter a occurs in w′, then write w′ = vau, where u is a word
that does not have any occurrences of a, and use Exercise 4.10 and the
induction hypothesis.

2. If the letter a does not occur in w′, then show that

αz

(
Pal(w)

)
z =

{
(Pal(zw′)a)+, if z = a,

(Pal(zw′)a)+, if z 6= a
= Pal(zw′a) = Pal(zw)

using Exercise 4.10, the induction hypothesis and Exercise 4.7.
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This completes the induction.)

Exercise 4.12 (Generalization of Lemma 4.7; see [Jus2005]). Let α denote
the morphism defined for words in {x, y}∗ by α(x) = G = (x, xy) and
α(y) = D = (yx, y). For any words v,w ∈ {x, y}∗,

Pal(vw) = α(v) (Pal(w)) Pal(v).

(Hint: Proceed by induction on |v| and use Exercise 4.11.)

4.3 Palindromic characterization

Here we provide a converse to Theorem 4.6, namely xuy is a Christoffel word
only if u = Pal(v) for some v in {x, y}∗. We also give a characterization of
the image of Pal in terms of periods.

Lemma 4.13. Fix an alphabet A and suppose p ⊥ q with p, q > 1. Up to
a permutation of A, there exists a unique word u ∈ A∗ satisfying: u has at
least two distinct letters, |u| = p + q − 2 and u has periods p and q.

Proof. (This proof is illustrated in the example below.) Since |u| = p+q−2,
write u = u1u2 · · · up+q−2, where uj ∈ A for 1 ≤ j ≤ p + q − 2. We will show
that 1, 2, . . . , p + q − 2 (the positions of the letters u1, u2, . . . , up+q−2 in u)
can be partitioned into two nonempty sets S and T such that ui = uj if and
only if i and j both belong to S or both belong to T .

Since p ⊥ q, it follows that p ⊥ (p + q), and so p generates Z/(p + q)Z.
Let G denote the Cayley graph of Z/(p + q)Z with generator p. Consider
the graph G′ = G−{0, p + q − 1} obtained from G by removing the vertices
0 and p + q − 1. Since G is connected and two vertices have been removed,
G′ has at most two connected components. If there is only one connected
component, then 0 and p + q − 1 are adjacent in G, and so p + q − 1 is
either p mod (p + q) or −p mod (p + q). The former implies that q = 1
and the latter implies that p = 1, contrary to the assumption that p, q > 1.
Therefore, there are exactly two connected components of G′.

Suppose i and j correspond to adjacent vertices in one connected com-
ponent of G′. Then 0 < i, j < p+q−1 and either j = i+p or j = i−q (since
p ≡ −q mod (p + q)). If j = i + p, then uj = ui+p = ui since u has period
p; and if j = i− q, then uj = ui−q = ui since u has period q. It follows that
ui = uj if i and j are in the vertex set of one connected component of G′.
Therefore, ui = a for all i in the vertex set of one connected component of
G′ and uj = b for all j in the vertex set of the other connected component
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of G′. Since u has at least two distinct letters, we have a 6= b. Thus, up to a
permutation of the alphabet A, the word u is uniquely defined.

Example. Suppose p = 4 and q = 7. The Cayley graph of Z/(4 + 7)Z
with generator 4 and the graph obtained by removing the vertices 0 and
4 + 7 − 1 = 10 are shown in Figure 4.2. The vertex sets of the two con-
nected components are {1, 2, 4, 5, 6, 8, 9} and {3, 7}. Therefore, the words
xxyxxxyxx and yyxyyyxyy are the only words u of length 4 + 7 − 2 = 9
with periods 4 and 7 that have at least two distinct letters.
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Figure 4.2: The Cayley graph of Z/(4+7)Z with generator 4 and
the connected components obtained by removing 0 and 10 = 4 +
7 − 1.

Remark. From the proof of the lemma, one learns that the word u in question
has exactly two distinct letters. Of course, this is already the case in the
setting of interest to us, namely A = {x, y}.
Proposition 4.14 (de Luca, Mignosi [dLM1994]).

1. u = Pal(v) for some v ∈ {x, y}∗ if and only if xuy is a Christoffel
word.

2. u = Pal(v) for some v ∈ {x, y}∗ if and only if u has relatively prime
periods p and q and |u| = p + q − 2.

Proof of 1. By Theorem 4.6, if u = Pal(v) then xuy is a Christoffel word.
Conversely, let w = xuy be a Christoffel word and let (w1, w2) be its standard
factorization. Then by Corollary 3.4,

(|w1|x |w2|x
|w1|y |w2|y

)
∈ SL2(Z) ∩ N2×2
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(writing N2×2 for the set of 2×2 matrices with nonnegative integer entries).
Let N be any matrix in SL2(Z) ∩ N2×2 such that N11 + N12 = |w|x and
N21+N22 = |w|y. Since SL2(Z)∩N2×2 is generated by the matrices µ(x) and
µ(y) (see Exercise 4.2), there exists a word v ∈ {x, y}∗ such that N = µ(v).
By Theorem 4.6, w′ = xPal(v)y is a Christoffel word and

µ(v) =

(|w′1|x |w′2|x
|w′1|y |w′2|y

)
,

where (w′1, w
′
2) is the standard factorization of w′. Since N = µ(v), it follows

that |w|x = |w′|x and |w|y = |w′|y. Thus w and w′ have the same slope, and
so w = w′ since there is a unique Christoffel word of any given slope. Since
w = xuy and w′ = xPal(v)y, we have u = Pal(v).

Proof of 2. By Theorem 4.6, if u = Pal(v), then u has relatively prime
periods |w1| and |w2| and |u| = |w1|+|w2|−2, where (w1, w2) is the standard
factorization of the Christoffel word xuy. Conversely, suppose u ∈ {x, y}∗
has length |u| = p + q − 2 and relatively prime periods p, q > 0. If p = 1 or
q = 1, then u = xp+q−2 or u = yp+q−2, and in both cases Pal(u) = u. So
suppose p, q > 1.

Since p and q are relatively prime, there exist integers 0 < p′, q′ < p + q
such that pp′ ≡ 1 ≡ qq′ mod (p + q) (Exercise 1.6). We argue that p′+ q′ =
p + q and that p′ ⊥ q′. Since pp′ ≡ 1 ≡ qq′ mod (p + q) and p ≡ −q
mod (p + q), we have

p(p′ + q′) ≡ p′p + q′p ≡ 1 + q′p ≡ 1 − qq′ ≡ 0 mod (p + q).

Therefore, p + q divides p(p′ + q′). Since p and p + q are relatively prime, if
follows that p + q divides p′ + q′. Since 0 < p′ + q′ < 2(p + q), we conclude
that p + q = p′ + q′. Finally, since pp′ ≡ 1 mod (p′ + q′), it follows that
p′ ⊥ (p′ + q′), or p′ ⊥ q′.

Let w be the Christoffel word of slope p′

q′ and write w = xu′y for some

u′ ∈ {x, y}∗. Then |u′| = p′ + q′ − 2 = p + q − 2 = |u|. By Part (1) of
this theorem, since w is a Christoffel word, there exists a word v ∈ {x, y}∗
such that u′ = Pal(v). Let (w1, w2) be the standard factorization of w. By
Theorem 4.6, u′ has periods |w1| and |w2|. By Lemma 3.5, |w1|p′ ≡ 1 ≡ |w2|q′
mod (p′ + q′). Since p′ + q′ = p + q, and 0 < |w1|, |w2| < p + q, it follows
that |w1| = p and |w2| = q because pp′ ≡ 1 ≡ qq′ mod (p + q). Therefore,
u′ is a word of length p + q − 2 having relatively prime periods p and q.
Since such words are unique up to a permutation of the alphabet (Lemma
4.13), it follows that either u′ = u or u′ = E(u). Therefore, u = Pal(v) or
u = E(Pal(v)) = Pal(E(v)), where the last equality is Exercise 4.4.
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Exercise 4.13. Prove the following statements.

(a) If p ⊥ q and w is a word of length p + q − 1 having periods p and
q, then w is a power of a letter. (Hint: Use the ideas in the proof of
Lemma 4.13.)

(b) (Fine-Wilf Theorem) If p and q are positive integers and w is a word
of length p + q − gcd(p, q) having periods p and q, then w has period
gcd(p, q).
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Chapter 5

Primitive Elements in the

Free Group F2

In this chapter we prove that the positive primitive elements of the free
group F2 = 〈x, y〉 are conjugates of Christoffel words. We begin by recalling
the relevant definitions.

5.1 Positive primitive elements of the free group

Let F2 denote the free group generated by the letters x and y. Recall that
every element g of F2 has a unique representation as a reduced word over
the alphabet {x, y, x−1, y−1}, where reduced means that there are no fac-
tors of the form xx−1, x−1x, yy−1 or y−1y in an expression g = a1a2 · · · ar(
with ai ∈ {x, y, x−1, y−1}

)
. The length of an element g ∈ F2, denoted by

ℓ(g), is the length of the reduced expression for g as a word over the alphabet
{x, y, x−1, y−1}.

A basis (u, v) of F2 is a pair of elements u, v ∈ F2 that generate F2. A
primitive element of F2 is an element u ∈ F2 such that (u, v) is a basis
of F2 for some v ∈ F2. By Exercise 5.1, any endomorphism f of F2 is an
automorphism if and only if (f(x), f(y)) is a basis of F2.

Remark. We have previously used the adjective primitive to refer to words
that are not nontrivial powers of shorter words (see Chapter 1). This will
be the customary sense of the word after the present chapter as well. To
avoid confusion here, we shall never omit the word element when referring
to primitive elements of F2.

Example. Since x and y generate F2, the couples (x, y) and (y, x) are bases
of F2. So x and y are primitive elements of F2.

41
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Example. Let u = xxy and v = xxyxyxxy. Then F2 is generated by u and
v because u(u−1vu−1)−1 = xxy(xy)−1 = x and x−1x−1u = y. Therefore,
(xxy, xxyxyxxy) is a basis of F2 and xxy and xxyxyxxy are primitive ele-
ments of F2. Note that xxy is a Christoffel word and xxyxyxxy is a conjugate
of the Christoffel word xxyxxyxy.

An element u ∈ F2 is positive if it is an element of the monoid {x, y}∗ ⊆
F2. Recall that u, v ∈ F2 are called conjugate if there exists g ∈ F2 such
that u = gvg−1. The following result establishes the relationship between
the notions of (monoid-theoretic) conjugacy in {x, y}∗ and (group-theoretic)
conjugacy in F2.

Lemma 5.1. Suppose u and v are positive elements of F2. Then u and v
are conjugate in F2 if and only if u and v are conjugate in {x, y}∗.
Proof. (Solution to Exercise 2.2.) Let u and v be positive elements of F2.
That is, u, v ∈ {x, y}∗. Suppose u and v are conjugate in {x, y}∗. Then
there exist words w,m ∈ {x, y}∗ such that u = wm and v = mw. Thus
mum−1 = m(wm)m−1 = mw = v, so u and v are conjugate in F2.

For the converse we prove the following statement: If h ∈ F2, then any
positive elements u and v are conjugate in {x, y}∗ whenever v = huh−1. We
proceed by induction on the length of h. If the length of h is 0, then h is the
identity element of F2 and v = u.

Now suppose that the statement holds for all h ∈ F2 of length less than
r > 0. Suppose g ∈ F2 is of length r and suppose that u and v are positive
elements with v = gug−1. Let g = a1 · · · ar be a reduced expression for g,
where ai ∈ {x, y, x−1, y−1} for 1 ≤ i ≤ r. We consider three cases.

(i): If ℓ(gu) < ℓ(g) + ℓ(u), then the first letter z of u must be a−1
r ∈

{x, y}. Write u = zu1 and g = hz−1 for some u1 ∈ {x, y}∗ and some h ∈ F2.
Then

v = gug−1 = (hz−1)(zu1)(hz−1)−1 = h(u1z)h−1.

Since ℓ(h) < r and z ∈ {x, y}, it follows from the induction hypothesis that
u1z and v are conjugate in {x, y}∗. Since u1z and u = zu1 are conjugate in
{x, y}∗, it follows that u and v are conjugate in {x, y}∗.

(ii): If ℓ(ug−1) < ℓ(u)+ ℓ(g−1), then an argument similar to that of the
previous case shows that u and v are conjugate in {x, y}∗.

(iii): Finally, suppose that ℓ(gu) = ℓ(g) + ℓ(u) and ℓ(ug−1) = ℓ(u) +
ℓ(g−1). Then a reduced expression for gug−1 is obtained by concatenating
the reduced expressions for g, u and g−1. Since u, v ∈ {x, y}∗ and v = gug−1,
it follows that g and g−1 are words in {x, y}∗. Therefore, g = 1 and u = v.
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This completes the induction.

Exercise 5.1. Suppose f : F2 → F2. Then f ∈ Aut(F2) if and only if
(f(x), f(y)) is a basis of F2.

Exercise 5.2. Suppose r and s are nonnegative integers such that r+s > 0.
Verify that w = xryxs is a primitive element of the free group 〈x, y〉 and
that w is a conjugate of the Christoffel word xr+sy.

5.2 Positive primitive characterization

In this section we prove the following characterization of the Christoffel
words.

Theorem 5.2 (Osborne,Zieschang[OZ1981], Kassel,Reutenauer [KR2007]).
The words in {x, y}∗ that are conjugates of Christoffel words are exactly the
positive primitive elements of the free group F2 = 〈x, y〉.

We begin by recalling some results about the free group F2. There is a
natural homomorphism from F2 onto the free Abelian group Z2 defined by
mapping the generators x and y of F2 onto the generators (1, 0) and (0, 1)
of Z2, respectively. This induces a map from the group Aut(F2) of auto-
morphisms of F2 onto the group Aut(Z2) ∼= GL2(Z) of automorphisms of
Z2. The map Aut(F2) → GL2(Z) is given by composing an automorphism
ϕ ∈ Aut(F2) with the morphism F2 → Z2 described above. The following
result of Jakob Nielsen from 1917 describes the kernel of this homomor-
phism. (Recall that an automorphism ϕ : G → G of a group G is an inner
automorphism if there exists an h ∈ G such that ϕ(g) = hgh−1 for all
g ∈ G.)

Theorem 5.3. The kernel of the natural group homomorphism Aut(F2) →
GL2(Z) is the subgroup of inner automorphisms.

Proof. A proof of this classical result from combinatorial group theory can
be found in either [LS2001, Chapter I, Proposition 4.5] or [MKS2004].

The following result characterizes pairs of generators of the free Abelian
group Z2.

Lemma 5.4. (a, b) and (c, d) generate Z2 if and only if |ad − bc| = 1.
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Proof. Suppose |ad− bc| = 1. Then (1, 0) and (0, 1) are in the span of (a, b)
and (c, d). Indeed, d(a, b) − b(c, d) = (ad − bc, 0) = ±(1, 0) and a(c, d) −
c(a, b) = ±(0, 1). Thus (a, b) and (c, d) generate Z2.

Conversely, suppose (a, b) and (c, d) generate Z2. Then the matrix equa-
tion

(
a c
b d

)
~x = ~b

has a unique solution ~x ∈ Z2 for all vectors ~b ∈ Z2. For ~b = (0, 1)T , we have

~x =

(
a c
b d

)−1(
0
1

)
=

1

ad − bc

(
d −c

−b a

)(
0
1

)
=

1

ad − bc

(
−c

a

)
∈ Z2.

It follows that |ad − bc| divides |a| and |c|. Since (a, b) and (c, d) generate
Z2, there exists i, j ∈ Z such that i(a, b) + j(c, d) = (1, 0). In particular,
ia + jc = 1, from which it follows that |a| ⊥ |c| (see Bézout’s Lemma in
Exercise 3.3). Since |ad− bc| divides |a| and |c|, and since |a| ⊥ |c|, we have
|ad − bc| = 1.

Proof of Theorem 5.2. Suppose w is a Christoffel word and let (u, v) de-
note its standard factorization. By Theorem 3.6, the couple (u, v) is in the
Christoffel tree. Hence, (w, v) = (uv, v) is in the Christoffel tree as well.
Since the root (x, y) of the Christoffel tree is a basis of F2 and since (u, uv)
and (uv, v) are bases of F2 whenever (u, v) is a basis of F2, it follows that
each couple (u, v) in the Christoffel tree is a basis of F2. In particular, (w, v)
is a basis of F2, thus w is a positive primitive element of F2.

Now suppose w′ ∈ {x, y}∗ is a conjugate of a Christoffel word w. By
Lemma 5.1, there exists u ∈ {x, y}∗ such w′ = u−1wu. Since w is a primitive
element of F2, there exists v ∈ F2 such that (w, v) is a basis of F2. Thus
(w′, u−1vu) = (u−1wu, u−1vu) is a basis of F2 and w′ is a positive primitive
element of F2 as well.

Conversely, suppose w is a positive primitive element of F2. Then there
exists w′ ∈ F2 such that (w,w′) is a basis of F2. Therefore, g = (w,w′)
is an automorphism of F2 (by Exercise 5.1). Our proof will construct an
automorphism f = (u, v) of F2 with u and v Christoffel words and show
that g = (w,w′) is conjugate (in the group-theoretic sense) to f = (u, v).
This will imply that w is a conjugate of u (and w′ is a conjugate of v) in
{x, y}∗. We begin by analyzing the image of g in Z2.

Define a group homomorphism F2 → Z2 by x 7→ (1, 0) and y 7→ (0, 1) and
let (a, b) and (c, d) denote the images of w and w′, respectively, under this
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homomorphism. Note that (a, b) and (c, d) generate Z2 because (w,w′) is a
basis of the free group F2. Therefore, by the previous lemma, ad− bc = ±1.

Note that a and b are nonnegative since w is a positive element of F2. Let
us analyze the possibilities for small values of a and b. Both cannot be zero
since ad − bc = ±1. If a = 0, then ±1 = ad − bc = −bc, which implies that
b = 1. Thus w = y, which is a Christoffel word. If b = 0, then ad − bc = ±1
implies that a = 1. So w = x, which is a Christoffel word. Hence, we suppose
a and b are positive integers. Fix n ≥ 1. A direct computation (see Exercise
5.2) reveals that all w ∈ F2 with (a, b) = (n, 1), respectively (a, b) = (1, n),
are positive primitive elements of F2 and are conjugate to the Christoffel
word xny, respectively ynx. Hence, we further suppose a, b ≥ 2.

If c < 0 and d ≥ 0 or if c ≥ 0 and d < 0, then |ad−bc| ≥ 2, contradicting
the fact that |ad − bc| = 1. Therefore, c and d are both nonnegative or
both nonpositive. If c and d are both nonpositive, then replace w′ with
(w′)−1; thus we can assume that c and d are nonnegative. Finally, we assume
ad − bc = 1 (otherwise, swap w and w′ in what follows). In summary, we
have a basis (and automorphism) g = (w,w′) of F2 such that: the images
(a, b) and (c, d) of w and w′ generate Z2; the points (a, b) and (c, d) lie in
the first quadrant; and ad − bc = 1. Hence,

(
a c
b d

)
∈ SL2(Z) ∩ N2×2.

Define a semigroup morphism M : {G, D̃}∗ → SL2(Z) ∩ N2×2 by

M(G) =

(
1 1
0 1

)
and M(D̃) =

(
1 0
1 1

)
.

Since the monoid SL2(Z) ∩ N2×2 is generated by the 2 × 2 matrices M(G)
and M(D̃) (see Exercise 4.2), there exists an endomorphism f of {x, y}∗
such that f is a composition of the morphisms G and D̃, and

M(f) =

(
a c
b d

)
.

Since f is a composition of the morphisms G and D̃, the couple (f(x), f(y))
is an element of the Christoffel tree. Therefore, (f(x), f(y)) is a basis of F2

by the first paragraph of this proof. In particular, f is an automorphism of
F2 and the elements u = f(x) and v = f(y) are Christoffel words.

We now compute the composition of f with the natural morphism F2 →
Z2 defined above. Note that we need only compute the images of f(x) and
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f(y) since they generate Z2. Note that the image of f(x) is (|f(x)|x, |f(x)|y)
and the image of f(y) is (|f(y)|x, |f(y)|y). Since G replaces each letter of a
word m with a word having exactly one occurrence of x, we have |G(m)|x =
|m|. Since G replaces y with xy, we have |G(m)|y = |m|y. Equivalently, for
any word m ∈ {x, y}∗,

(|G(m)|x
|G(m)|y

)
=

(|m|
|m|y

)
=

(
1 1
0 1

)(|m|x
|m|y

)
= M(G)

(|m|x
|m|y

)
.

Similarly,
(
|D̃(m)|x
|D̃(m)|y

)
=

(|m|x
|m|

)
=

(
1 0
1 1

)(|m|x
|m|y

)
= M(D̃)

(|m|x
|m|y

)
.

Since f is a composition of the morphisms G and D̃, these two identities
imply that the number of occurrences of the letters x and y in the word
f(m) is given by

(|f(m)|x
|f(m)|y

)
= M(f)

(|m|x
|m|y

)
=

(
a c
b d

)(|m|x
|m|y

)
.

In particular, (|f(x)|x, |f(x)|y) = (a, b) and (|f(y)|x, |f(y)|y) = (c, d). There-
fore, the image of u in Z2 is (a, b) and the image of v in Z2 is (c, d).

In summary, g = (w,w′) and f = (u, v) are two automorphisms of F2

that give the same morphism of Z2 after composing with the map F2 → Z2.
By Theorem 5.3, the morphism f−1g is an inner automorphism of F2. We
conclude that there exists z ∈ F2 such that f−1g(m) = zmz−1 for all m ∈ F2.
Applying f to each side of this equality, we get g(m) = f(z)f(m)f(z)−1. In
particular, w = g(x) is conjugate in F2 to the Christoffel word u = f(x) and
w′ = g(y) is conjugate in F2 to the Christoffel word v = f(y). Then Lemma
5.1 yields that w and w′ are conjugates of Christoffel words in the monoidal
sense.

By refining the method of the above proof one can obtain the following
result relating the Christoffel morphisms with the automorphisms of the free
group F2. Recall that an element w ∈ F2 is positive if w ∈ {x, y}∗ ⊆ F2. An
endomorphism f of F2 is a positive morphism if both f(x) and f(y) are
positive.

Theorem 5.5 (Wen, Wen [WW1994]). The Christoffel morphisms of {x, y}∗
are exactly the positive morphisms of the free group 〈x, y〉.



Chapter 6

Characterizations

By now we have presented several characterizations of Christoffel words—
discretization of line segments, Cayley graphs of cyclic groups, palindromiza-
tion and the positive primitive elements of F2. In this chapter we present a
few more, beginning with one that we have already met in passing.

If w is a (lower) Christoffel word, then by definition it looks like xuy for
some u ∈ {x, y}∗. After Lemma 2.7 and Proposition 4.2, we moreover know
that w is a conjugate of the word yux. The converse also holds.

Theorem 6.1 (Pirillo [Pir1999]). Given u ∈ {x, y}∗, xuy is a Christoffel
word if and only if xuy and yux are conjugate.

x u y x u y

y u x

Figure 6.1: The word yux is a conjugate of xuy if and only if xuy
is a Christoffel word.

6.1 The Burrows–Wheeler transform

Suppose w is a word over an ordered alphabet1 A. For example, take w to
be the Christoffel word xxyxy or the word abraca. Write w and all of its
distinct conjugates as rows in a matrix, listed in lexicographic order.2 The

1We use the inherited ordering for all subsets A of {a < b < c < · · · < z}. In particular,
x precedes y in our favourite alphabet {x, y}.

2The usual dictionary ordering, where aardvark comes before ant comes before anthill.
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Burrows–Wheeler transform BWT (w) of w is the last column of this
matrix. See Figure 6.2.

xx y x y

7→

x x y x y

x y x x y

x y x y x

y x x y x

y x y x x

a b r a c a

7→
a a b r a c

a b r a c a

a c a a b r

b r a c a a

c a a b r a

r a c a a b

Figure 6.2: Instances of the Burrows–Wheeler transform. The
transforms xxyxy 7→ yyxxx and abraca 7→ caraab are obtained by
reading the last columns of the matrices above.

This is not quite the map introduced by Michael Burrows and David
J. Wheeler [BW1994]. Their map, call it BWT+, maps a word w to the
pair (BWT (w), k), whenever w appears as the k-th row of the Burrows–
Wheeler matrix. For example, BWT+(bracaa) = (caraab, 4) (see Figure
6.2). This augmented map turns out to be injective on A∗ (Exercise 6.2). It
was introduced as a scheme for lossless data compression, and as Giovanni
Manzini shows, BWT+ is very effective at its intended purpose [Man2001].

Alternative to introducing BWT+, we could restrict our attention to
those words that are lexicographically least among their conjugates. These
are the so-called Lyndon words. Evidently, BWT becomes injective under
this restriction. More interestingly, it becomes a special case of a mapping
introduced by Ira M. Gessel and Christophe Reutenauer in the study of
descent sets of permutations [GR1993]. See also [CDP2005].

When w = xuy is a (lower) Christoffel word, it happens that w appears
as the first row of its Burrows–Wheeler matrix (i.e., Christoffel words are
Lyndon words). This and other interesting properties are illustrated in Fig-
ure 6.3. The first two are explained in Exercise 6.3. The third is explained
by our next characterization of Christoffel words.

Theorem 6.2 (Mantaci, Restivo, Sciortino [MRS2003]). A word w ∈ {x, y}∗
is a conjugate of a Christoffel word if and only if BWT (w) takes the form
yqxp, where p ⊥ q.

Exercise 6.1. Prove Theorem 6.1. (Hint: This is a consequence of the Fine-
Wilf Theorem; see Exercise 4.13.)
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x x y x y
x y x x y
x y x y x
y x x y x
y x y x x

Figure 6.3: The Burrows–Wheeler matrix for the Christoffel word
of slope q

p possesses three interesting properties: (i) the lower- and
upper-Christoffel words comprise the first and last rows, respec-
tively; (ii) any two consecutive rows differ in two consecutive po-
sitions; (iii) the last column takes the form yqxp

Exercise 6.2. The Burrows–Wheeler transform BWT is injective on Lyn-
don words (cf. [CDP2005] for more details):

Given a Lyndon word w = a1a2 · · · an, let b1b2 · · · bn and c1c2 · · · cn denote
the first and last columns, respectively, of the Burrows–Wheeler matrix.

(a) Define a permutation σ ∈ Sn by putting σ(i) = j if the j-th row of
the Burrows–Wheeler matrix is aiai+1 · · · ai−1. Verify that ai = bσ(i).

(b) Define a permutation π ∈ Sn by the n-cycle π = (σ(1)σ(2) . . . σ(n)).
Verify that bi = cπ(i).

(c) Let w′ be a Lyndon word with BWT (w′) = BWT (w) = c1c2 · · · cn.
Deduce that w = w′.

Exercise 6.3 (Property (ii) of Figure 6.3). Given the Christoffel word w
of slope q

p , let wt denote the conjugate of w obtained by reading |w| letters
along the Christoffel path of ww, starting at the lattice point C labelled t

p .
For example, w0 = w and wp+q−1 is the upper Christoffel word of slope q

p

(see the proof of Lemma 2.7). Let nt(k) denote the numerator of the label
k steps after C along the Christoffel path for wt. That is, nt(k) = t + kq
mod (p + q).

(a) If two successive conjugates wt−1 and wt have longest common prefix
u, then wt−1 = uxyv and wt = uyxv′. In particular, nt(0)−nt−1(0) =
1 and nt(|u| + 2) − nt−1(|u| + 2) = 1.

(b) In general, one has nt−1(k) mod (p+ q) < nt(k) mod (p+ q). There
is precisely one instance of 0 ≤ k < p + q with nt(k) mod (p + q) <
nt−1(k) mod (p + q).

(c) In the factorizations uxyv and uyxv′ of part (a), one has v = v′.

(d) The (t + 1)-st row of the Burrows–Wheeler matrix for w is wt.
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6.2 Balanced1 Lyndon words

We next introduce an important class of words first defined by Marston
Morse and Gustav A. Hedlund in 1940. A word w ∈ {x, y}∗ is balanced1 if
for each pair u, v of factors of w of equal length, one has

∣∣∣ |u|x − |v|x
∣∣∣ ≤ 1, or equivalently

∣∣∣ |u|y − |v|y
∣∣∣ ≤ 1.

Serge Dulucq and Dominique Gouyou-Beauchamps [DGB1990] have shown
that the set of balanced1 words is exactly the set of factors of Christoffel
words, or equivalently of Sturmian words (cf. [Lot2002, Chapter 2]). The
characterization we seek is the following.

Theorem 6.3 (de Luca, Mignosi [dLM1994]). A word xuy is a Christoffel
word if and only if xux, xuy, yux, and yuy are balanced1.

Alternatively, one may replace the extra “balanced1” checks with a single
“Lyndon” check.

Theorem 6.4 (Berstel, de Luca [BdL1997]). A word w is a Christoffel word
if and only if it is a balanced1 Lyndon word.

6.3 Balanced2 Lyndon words

There is another notion of “balanced” that may be given to Lyndon words.
Before defining it, we need to introduce a fundamental result about Lyndon
words. Recall that

a word w is a Lyndon word if and only if for all nontrivial
factorizations w = (u, v), w < vu in the lexicographic order.

Note that we did not allow w ≤ vu. Otherwise stated, we demand that
Lyndon words are primitive. We thus have an equivalent definition: w is a
Lyndon word if w < v for all proper suffixes v of w. If we choose v to
be the lexicographically least suffix of w, a surprising thing happens (cf.
[Lot1997, Chapter 5]).

Proposition 6.5 (Chen, Fox, Lyndon [CFL1958], Duval [Duv1983]). If w =
uv is a Lyndon word with v its lexicographically least proper suffix, then u
and v are also Lyndon words and u < v.

This is the standard factorization of a Lyndon word, which we call the
right factorization in what follows. It happens that v is simultaneously the



6.4. CIRCULAR WORDS 51

longest proper suffix that is Lyndon, which brings us to an alternative left
factorization due to Anatolii I. Shirshov [Shi1962] and Xavier G. Viennot
[Vie1978].

Proposition 6.6. If w = uv is a Lyndon word with u a proper Lyndon
prefix of maximal length, then v is also a Lyndon word and u < v.

The left factorization and right factorization of a Lyndon word sometimes
coincide. This led Guy Melançon [Mel1999] to introduce a second, recursive,
notion of balanced: call a Lyndon word w balanced2 if w is a letter or there
is a factorization w = (u, v) that is both a left and right factorization with
the further property that u and v are balanced2.

Example. The reader may check that aabaacab, xxyy, and xxyxxyxy are
Lyndon words. Among these, only xxyxxyxy is balanced2. See Figure 6.4.

left factorizations

right factorizations

a a b a a c a b x x y y xx y xx y x y

Figure 6.4: The left and right factorizations of three Lyndon
words. Only xxyxxyxy, the Christoffel word of slope 3

5 , is seen to
be a balanced2 Lyndon word.

Theorem 6.7 (Melançon [Mel1999]). A word w ∈ {x, y}∗ is a Christoffel
word if and only if it is a balanced2 Lyndon word.

6.4 Circular words

Many of the results in this and the preceding chapters deal with conjugates
of Christoffel words, but do not distinguish one conjugate from another.
Such results are perhaps better described in terms of circular words: the
conjugacy class of a word w is called a circular word and is denoted by
(w). Our next characterization makes explicit mention of these words.

Theorem 6.8 (Borel, Reutenauer [BR2006]). The following are equivalent
for a word w ∈ {x, y}∗ of length n ≥ 2:
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(i) w is a conjugate of a Christoffel word;

(ii) the circular word (w) has k+1 factors of length k for k = 0, 1, . . . , n−1;

(iii) w is a primitive word and (w) has n − 1 factors of length n − 2.

Example. Take w = yxxxyxx, which is a conjugate of the Christoffel word
of slope 2

5 . We list the distinct factors of each length in Figure 6.5.

x
x

x

yx

x

y

ℓ distinct factors of length ℓ

1 y x
2 yx xx xy
3 yxx xxx xxy xyx
4 yxxx xxxy xxyx xyxx yxxy
5 yxxxy xxxyx xxyxx xyxxy yxxxy xyxxx
6 yxxxyx xxxyxx xxyxxy xyxxyx yxxyxx xxyxxx xyxxxy

Figure 6.5: For Christoffel words w, there are ℓ+1 distinct factors
of length ℓ = 1, 2, . . . in the circular words (w).

A brief proof of Theorem 6.8 affords us the opportunity to introduce
several additional results from the theory of Sturmian words.

Theorem 6.9 (folklore). A word w ∈ {x, y}∗ is a conjugate of a Christoffel
word if and only if w and all of its conjugates are primitive and balanced1.

Remarks. 1. The requirement that all conjugates be balanced1 is essential
here. For example, xyyx is balanced1 but is certainly not conjugate to a
Christoffel word.

2. Antonio Restivo attributes this theorem to Oliver Jenkinson and Luca Q.
Zamboni [JZ2004] when he speaks about the Burrows–Wheeler transform.
He calls a word strongly balanced if it satisfies the conditions of the theorem.
We indicate below a proof suggested by Geneviève Paquin.

Proof. The forward direction is essentially [Lot2002, Proposition 2.1.10].
First, conjugates of primitive words are primitive, so we need only analyze
the balanced1 implication. This follows from a geometric argument. Suppose
w is a conjugate of the Christoffel word of slope b

a . If some conjugate of w is
not balanced1, then there are two factors u and v of ww of the same length
with |u|y and |v|y differing by at least 2. On the other hand, u and v follow
the line of slope b

a , so the quantities |u|y and |v|y can differ by at most 1.

The reverse direction follows from Theorem 6.4. Indeed, if w and all of
its conjugates are primitive and balanced1, then the lexicographically least
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conjugate w′ is a Lyndon word (since it is primitive). Hence w′ is a Christoffel
word and w is a conjugate of a Christoffel word.

A sequence (infinite word) w = a0a1a2 · · · over an alphabet A is called
ultimately periodic if w can be factored as w = uv∞ for some finite words
u, v ∈ A∗. We do not assume u 6= ǫ so periodic words are ultimately periodic.
If w is not ultimately periodic, we say that w is aperiodic.

Theorem 6.10 (Morse, Hedlund [MH1940]). If a sequence in {x, y}N is
aperiodic, then it is balanced1 if and only if it has exactly k + 1 factors of
length k for all k ≥ 0.

Remark. The factor complexity described above is often taken as the def-
inition of Sturmian word. In the proof sketch below, we will only need
the trivial part of the forward direction, cf. [Lot2002, Proposition 2.1.2]: a
balanced1 sequence in {x, y}N has at most k + 1 factors of length k for all
k ≥ 0.

Theorem 6.11 (Coven, Hedlund [CH1973]). A sequence in {x, y}N is ape-
riodic if and only if it has at least k + 1 factors of length k for all k ≥ 0.

Remark. Periodic sequences with balanced1 factors are sometimes excluded
from the definition of Sturmian words in the literature. Ultimately periodic
(but not periodic) sequences are called “skew-words” by Morse and Hedlund
[MH1940]. In the sketch below, we will actually use a “circular” version of
this theorem, cf. [BR2006, Lemma 4.1]: a word w is primitive if and only if
(w) has at least k + 1 factors of length k for all 0 ≤ k < |w|.

Proof of Theorem 6.8. (i) ⇒ (ii) ⇒ (iii): Suppose w is a conjugate of a
Christoffel word of length n. Then w and its conjugates are primitive and
balanced1 (Theorem 6.9). Hence, (w) has at most k + 1 factors of length k
and at least k + 1 factors of length k for all 0 ≤ k < n (by the two remarks
above). In particular, w is primitive and (w) has exactly n − 1 factors of
length n − 2.

(iii) ⇒ (i): Suppose w is primitive and (w) has exactly n − 1 factors of
length n−2. Then (w) has at least k+1 factors of length k for all 0 ≤ k < n
(by the remark following Theorem 6.11). This implies the existence of a
special factor u of length n − 2 with (w) = (xuy) = (yux) (Exercise 6.4).
But then either xuy or yux is a Christoffel word (Theorem 6.1). That is, w
is a conjugate of a Christoffel word.
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Exercise 6.4. If w is a word of length n and (w) has at least n factors
of length n − 1, then there is a factor u of (w) of length n − 2 so that
(w) = (xuy) = (yux). In particular, w is a conjugate of a Christoffel word,
by Theorem 6.1. (Hint: The u that you seek is the unique factor of length
n− 2 that may be extended to the left in two ways (and to the right in two
ways) to a factor of length n − 1.)

6.5 Periodic phenomena

Our final characterization of Christoffel words is another folklore result that
says that the superposition of two periodic phenomena gives rise to all the
Christoffel words. It is anticipated in the original papers on the subject
[Chr1875,Smi1876].

Theorem 6.12 (Superposition of two periodic phenomena). Suppose p and
q are positive integers and p ⊥ q. Set P = {ip : 0 < i < q} and Q = {jq :
0 < j < p}. Write P ∪ Q as {a1, a2, . . . , an}, where a1 < a2 < · · · < an and
n = p + q − 2. Then the word xw1w2 . . . wny, where wi = x if ai ∈ P and
wi = y if ai ∈ Q, is the Christoffel word of slope p

q .

The proof is left as an exercise.

Examples. 1. Let p = 4 and q = 7. Then p and q are relatively prime,
P = {4, 8, 12, 16, 20, 24} and Q = {7, 14, 21}. The superposition of P and Q
is given below with the elements of Q in boldface.

4 7 8 12 14 16 20 21 24
x x y x x y x x y x y

Thus we obtain the Christoffel word xxyxxyxxyxy of slope 4
7 .

2. Another example (of length 99) appears implicitly in the following pas-
sage from The Brooklyn Follies by Paul Auster:

This was the truth of the world, she told her father at breakfast
that morning, and in order to get a grip on that truth, she had
decided to spend the day sitting in the rocking chair in her room,
shouting out the word rejoice every forty-one seconds and the
word grieve every fifty-eight seconds . . . [Aus2006, page 50].

3. Our final example is arguably one of the very first examples. Caroline
Series suggests [Ser1985], tongue-in-cheek, that the earliest astronomers were
acquainted with Theorem 6.12. Indeed, in Babylonian calendars from 490
B.C., one finds extremely accurate approximations such as, “19 years = 235
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lunar months.” Surely the original calculation was written down in tally
form, “month, month, . . . , month, year, month, month, . . . , month, year,
. . . ,” forming one of the first recorded Christoffel words.
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Chapter 7

Continued Fractions

This chapter exhibits relationships between the Christoffel tree, contin-
ued fractions and the Stern–Brocot tree of positive rational numbers. See
[BL1993, GKP1994, BdL1997] for further information, and for a geometric
approach to continued fractions, see [Dav1992].

7.1 Continued fractions

Suppose α ∈ R. The (simple) continued fraction representation of α is
the sequence of integers a0, a1, a2, . . . constructed recursively as follows: let

β0 = α and a0 = ⌊β0⌋;

if i > 0 and ai−1 6= βi−1, then let

βi =
1

βi−1 − ai−1
and ai = ⌊βi⌋;

if i > 0 and ai−1 = βi−1, then the recursion terminates. The continued
fraction representation of α is commonly denoted by

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

or more compactly by α = [a0, a1, a2, a3, . . .].

57
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Example. Let α = 10
23 . Then

β0 = 10
23 , a0 = ⌊β0⌋ = 0;

β1 = 1
β0−a0

,= 23
10 a1 = ⌊β1⌋ = 2;

β2 = 1
β1−a1

= 10
3 , a2 = ⌊β2⌋ = 3;

β3 = 1
β2−a2

= 3, a3 = ⌊β3⌋ = 3.

Since β3 = a3, the process ends and the continued fraction representation of
10
23 is [0,2,3,3], or

10

23
= 0 +

1

2 +
1

3 +
1

3

.

Note that, by construction, the integers a1, a2, . . . are positive. The con-
tinued fraction representation of α ∈ R is finite (that is, the above process
terminates) if and only if α is a rational number.

If [a0, a1, a2, . . . , ai, . . .] is the continued fraction representation of α, then
the i-th continuant of α, for i > 0, is the rational number with continued
fraction representation [a0, a1, . . . , ai−1, ai].

Example. From the previous example, the continued fraction representation
of 10

23 is given by the sequence [0, 2, 3, 3]. Therefore, the continuants of 10
23 are

0 +
1

2
=

1

2
, 0 +

1

2 +
1

3

=
3

7
, 0 +

1

2 +
1

3 +
1

3

=
10

23
. (7.1)

7.2 Continued fractions and Christoffel words

In his 1876 note [Smi1876], Henry J. Smith showed that the sequences ob-
tained from periodic phenomena in Chapter 6.5 can be obtained from the
continued fraction representation of the associated rational number, and
vice versa. He effectively proved the following characterization of Christoffel
words.

Theorem 7.2 (Smith [Smi1876]). A word w = xuy is a Christoffel word
if and only if uyx or uxy is equal to sn, where sn is defined recursively by
s−1 = x, s0 = y, and sn+1 = scn

n sn−1 for n ≥ 0, where [c0, c1, . . .] is the

continued fraction representation of
|w|y
|w|x .
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Examples. 1. The continued fraction representation of 4
7 is [0, 1, 1, 3]. Thus,

s1 = s0
0s−1 = x,

s2 = s1
1s0 = xy,

s3 = s1
2s1 = xyx,

s4 = s3
3s2 = (xyxxyxxyx)xy,

and indeed, x(xyxxyxxyx)y is the the Christoffel word of slope 4
7 .

2. The continued fraction representation of 2
5 is [0, 2, 2]. Hence,

s1 = s0
0s−1 = x,

s2 = s2
1s0 = xxy,

s3 = s2
2s1 = (xxyxx)yx,

and x(xxyxx)y is the Christoffel word of slope 2
5 .

Smith’s theorem gives a method to obtain the continued fraction repre-
sentation [c0, c1, c2, . . .] of any positive rational number α by considering the
Christoffel word xuy of slope α. Let v be uxy (or uyx if uxy does not work).
The integers ci are determined inductively as follows. Let c0 be the highest
power of y that is a prefix of v. Suppose that c0, c1, . . . , ci and s0, s1, . . . , si+1

have been constructed. Then ci+1 is the largest integer n such that sn
i+1si is

a prefix of v. We illustrate this procedure with the following example.

Example. The Christoffel word of slope 4
7 is x(xyxxyxxyx)y. Let v be the

word xyxxyxxyxxy. Then c0 = 0 since v does not begin with y. Since
s1s0 = xy is a prefix of v, but s2

1s0 = x2y is not, we have c1 = 1. Since
s2s1 = xyx is a prefix of v while s2

2s1 = (xy)2x is not, we have c2 = 1.
Finally, c3 = 3 since v = (xyx)3xy = (s3)

3s2.

In [Smi1876], one also finds a geometric method of obtaining the contin-
uants of real numbers (see Section 20, loc. cit.). We now explain this method
for rational numbers b

a > 0. To find the continuants for an irrational number
α, simply replace the line segment from (0, 0) to (a, b) in what follows by
the ray of slope α.

Consider the subpath of the lower Christoffel path from (0, 0) to (a, b)
beginning at (1, 0) and ending at (a, b). For example, if (a, b) = (23, 10),
then this subpath is the lower path depicted in Figure 7.1. The convex hull
of this subpath determines a sequence of integer points beginning with (1, 0)
and ending with (a, b) by following the upper boundary from left to right.
For (a, b) = (23, 10), we have the sequence (1, 0), (3, 1), (5, 2), (7, 3), (23, 10);
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again see Figure 7.1. Similarly, the upper Christoffel path determines a se-
quence of integer points (following the lower boundary of its convex hull)
beginning at (0, 1) and ending at (a, b). Let σ(a, b) denote the sequence ob-
tained from these two sets of integer points by deleting (1, 0) and (0, 1) and
ordering the remaining points using the natural (lexicographic) ordering of
N2. Let ext(a, b) denote the subsequence of σ(a, b) consisting of the points
that are extreme points of either of the convex hulls defined above. Recall
that an extreme point of a convex set S in the plane is a point in S that
does not lie in any open line segment joining two points of S.

Example. Let b
a = 10

23 . Then the lower Christoffel path determines the se-
quence of points (1, 0), (3, 1), (5, 2), (7, 3), (23, 10); and the upper Christof-
fel path determines the sequence of points (0, 1), (1, 1), (2, 1), (9, 4), (16, 7),
(23, 10). See Figure 7.1. The sequences σ(23, 10) and ext(23, 10) are

b

b

b

b b

b

b

b

Figure 7.1: The convex hulls of the lower Christoffel path from
(0, 1) to (23, 10) and the upper Christoffel path from (1, 0) to
(23, 10).

σ(23, 10) : (1, 1), (2, 1), (3, 1), (5, 2), (7, 3), (9, 4), (16, 7), (23, 10)

and

ext(23, 10) : (2, 1), (7, 3), (23, 10).

Proposition 7.3. Suppose a and b are positive integers and a ⊥ b. Let
(p1, q1), (p2, q2), . . . , (ps, qs) denote the sequence ext(a, b). Then the i-th con-
tinuant of b

a , for 1 ≤ i ≤ s, is qi

pi
.
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Example. Let b
a = 10

23 . In the previous example, we found that ext(23, 10)
comprises the integer points (2, 1), (7, 3) and (23, 10). The proposition thus
implies that 1

2 , 3
7 and 10

23 are the continuants of 10
23 , in agreement with the

computation in (7.1).

We now describe how to obtain the sequences σ(a, b) and ext(a, b) from
the Christoffel tree. We begin with σ(a, b).

Proposition 7.4. Suppose a and b are positive integers and a ⊥ b. Let
(x, y) = (u0, v0), (u1, v1), . . . , (ur, vr) = (u, v) denote the unique path in the
Christoffel tree from (x, y) to (u, v) where uv is the Christoffel word of slope
b
a . Then σ(a, b) is the sequence of integer points

(1, 1), (|u1v1|x, |u1v1|y), (|u2v2|x, |u2v2|y), . . . , (|uv|x, |uv|y) = (a, b).

Example. Continuing with the above example ( b
a = 10

23), Figure 7.2 illustrates
the unique path from the root (x, y) to the vertex labelled

(x3yx2yx2y, x3yx2yx2yx3yx2yx2yx2y)

and the corresponding sequence of integer points.

The sequence ext(a, b) can also be obtained from the Christoffel tree. Be-
gin with the unique path (x, y) = (u0, v0), (u1, v1), . . . , (ur, vr) = (u, v) from
(x, y) to (u, v), where uv is the Christoffel word of slope b

a . Let (ui1 , vi1),
(ui2 , vi2), . . ., (uik , vik) denote the set of points immediately preceding a
“bend” in the path, i.e., the points (uj , vj) for which the subpath from
(uj , vj) to (uj+2, vj+2) is one of the paths in Figure 7.3.

Proposition 7.5. Suppose a ⊥ b and let (ui1 , vi1), (ui2 , vi2), . . ., (uik , vik)
denote the points constructed above. Then ext(a, b) is the sequence

(|ui1vi1 |x, |ui1vi1 |y), (|ui2vi2 |x, |ui2vi2 |y), . . . , (|uikvik |x, |uikvik |y), (a, b).

Example. In Figure 7.2 we see that the vertices (x, xy) and (x3yx2y, x2y)
are the only vertices in the path that satisfy the conditions in Figure 7.3.
Therefore, ext(23, 10) is obtained from the three points (x, xy), (x3yx2y, x2y)
and (x3yx2yx2y, x3yx2yx2yx3yx2yx2yx2y) by counting the number of oc-
currences of the letters x and y in these pairs of words: ext(23, 10) is the
sequence (2, 1), (7, 3), (23, 10).

Exercise 7.1. Find the continued fraction representations of the golden

ratio φ = 1+
√

5
2 and its negated conjugate −φ∨ =

√
5−1
2 . Show that the n-

th continuant of φ is Fn+1/Fn, where Fn is the n-th Fibonacci number
defined recursively by F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 2.

Exercise 7.2. Rework Exercise 1.5 using Exercise 7.1 and Theorem 7.2.
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(x, y)
(1, 1)

(x, xy)
(2, 1)

(x, x2y)
(3, 1)

(x3y, x2y)
(5, 2)

(x3yx2y, x2y)
(7, 3)

(x3yx2yx2y, x2y)
(9, 4)

(x3yx2yx2y, x3yx2yx2yx2y)
(16, 7)

(x3yx2yx2y, x3yx2yx2yx3yx2yx2yx2y)
(23, 10)

Figure 7.2: The sequences σ(23, 10) and ext(23, 10) can be ob-
tained from the Christoffel tree by counting the number of occur-
rences of the letters x and y along the path from the root (x, y) to
(u, v), where uv is the Christoffel word of slope of 10

23 .

7.3 The Stern–Brocot tree

The mediant of two fractions a
b and c

d is a+c
b+d . This operation gives rise to

the Stern–Brocot tree, constructed recursively as follows. Let s0 denote the
sequence 0

1 , 1
0 , where 1

0 is viewed as a formal fraction. For i > 0, let si denote
the sequence obtained from si−1 by inserting between consecutive elements
of the sequence their mediant. The first few iterations of this process yields
the following sequences.

0

1
,
1

0
(s0)
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(uj , vj)

ooooooooo

(uj+1, vj+1)

OOOOOOOOO

(uj+2, vj+2)

(uj , vj)

OOOOOOOOO

(uj+1, vj+1)

ooooooooo

(uj+2, vj+2)

Figure 7.3: The points (|ujvj |x, |ujvj |y) are in the sequence
ext(a, b).

0

1
,
1

1
,
1

0
(s1)

0

1
,
1

2
,
1

1
,
2

1
,
1

0
(s2)

0

1
,
1

3
,
1

2
,
2

3
,
1

1
,
3

2
,
2

1
,
3

1
,
1

0
(s3)

0

1
,
1

4
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The mediants constructed in the i-th iteration of the above process, for i > 0,
are the vertices in the i-th level of the Stern–Brocot tree; there is an edge
in the Stern–Brocot tree between a vertex a

b in level i and a vertex c
d in level

i− 1 if and only if a
b and c

d are consecutive elements of the sequence si. For
example, there is an edge between 2

1 and 3
2 since 3

2 and 2
1 are consecutive

elements of the sequence s3:

0

1
,
1

3
,
1

2
,
2

3
,
1

1
,
3

2
,
2

1
,
3

1
,
1

0

Figure 7.4 shows the top 5 levels of the Stern–Brocot tree. Each fraction in
the tree is of the form a+c

b+d , where a
b is the nearest ancestor above and to the

right of a+c
b+d and c

d is the nearest ancestor above and to the left of a+c
b+d .

Proposition 7.6. The Christoffel tree is isomorphic to the Stern–Brocot
tree via the map that associates to a vertex (u, v) of the Christoffel tree the

fraction
|uv|y
|uv|x . The inverse map associates to a fraction b

a the pair (u, v),

where (u, v) is the standard factorization of the Christoffel word of slope b
a .
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Figure 7.4: The first five levels of the Stern–Brocot tree

By Theorem 3.6, if a ⊥ b and a, b > 0, then the standard factoriza-
tion (u, v) of the Christoffel word of slope b

a appears exactly once in the
Christoffel tree. Together with the above isomorphism, this implies the fol-
lowing classical result about the Stern–Brocot tree.

Corollary 7.7. Every positive rational number appears in the Stern–Brocot
tree exactly once.

Moreover, Propositions 7.3 and 7.4 combine with Proposition 7.6 to give
a method for determining the continuants of a real number from the Stern–
Brocot tree. We leave the details to the interested reader.

The following exercises outline a proof of the fact that the Stern–Brocot
tree contains each positive rational number exactly once without mention of
Christoffel words. See [GKP1994, Chapter 4.5].

Exercise 7.3. Suppose a
b and c

d are connected by an edge of the Stern–
Brocot tree. Then (a+c) ⊥ (b+d). (Hint: Proceed by induction on the level
of the fractions in the tree, and use Bézout’s Lemma from Exercise 3.3.)

Exercise 7.4. If a ⊥ b and c ⊥ d and a
b < c

d , then a
b < a+c

b+d < c
d . Hence,

each level of the Stern–Brocot tree preserves the natural order of the rational
numbers.

Exercise 7.5. Suppose a ⊥ b. Then a
b is contained in the Stern–Brocot

tree exactly once. (Hint: Use the previous exercise to show that a
b can occur
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at most once. To show that a
b occurs in the tree, begin with the sequence

0
1 < a

b < 1
0 and take mediants. Argue that a

b is eventually the mediant of
two fractions.)
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Chapter 8

The Theory of

Markoff Numbers

In 1879 and 1880, Andrey A. Markoff (later and better known as Markov)
published two memoirs on the minima of indefinite binary quadratic forms
[Mar1879,Mar1880]. He later used the results to answer a longstanding ques-
tion of Bernoulli [Ber1771,Mar1881]. In this chapter, we reformulate some
of the results from these memoirs in terms of Christoffel words.

8.1 Minima of binary quadratic forms

Let f(x, y) = ax2 +bxy+cy2 be a real binary quadratic form. The discrim-
inant of f is d(f) = b2−4ac, and the minimum of f is m(f) = inf |f(x, y)|,
where x and y range over all pairs of integers that are not both zero. Two
binary forms f and g are equivalent if there exist r, s, t, u ∈ R such that
ru − st = ±1 and f(x, y) = g(rx + sy, tx + uy). If f and g are equivalent
binary quadratic forms, then d(f) = d(g) (Exercise 8.1).

Markoff’s work was motivated by the following result of Alexander Ko-
rkine and Grigorii Zolotareff [KZ1873]. For any binary quadratic form f with
d(f) > 0,

m(f) ≤
√

d(f)√
5

, (8.1)

with equality if and only if f is equivalent to a scalar multiple of

f0(x, y) = x2 − xy − y2,

67
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and if f is not equivalent to a scalar multiple of f0, then m(f) ≤
√

d(f)/
√

8,
with equality if and only if f is equivalent to a scalar multiple of

f1(x, y) = x2 − 2xy − y2.

After learning of these results, Markoff set himself the task of finding the
quantity that should replace

√
5 in (8.1) for forms that are not equivalent to

scalar multiples of f0 or f1 [Mar1879]. He concluded that if f is such a form,
then m(f) ≤

√
d(f)/

√
221/25, with equality if and only if f is equivalent

to a scalar multiple of

f2(x, y) = 5x2 − 11xy − 5y2.

Furthermore, he showed that this sequence of exceptions (f0, f1, f2, . . . ) and
better approximations (

√
5,
√

8,
√

221/25, . . . ) may be extended indefinitely.
Markoff’s idea was to study a bi-infinite sequence of positive integers

associated to a binary quadratic form g with positive discriminant. We
briefly describe how he obtained this sequence. It is a well-known result
(see, for example, Carl F. Gauss’s Disquisitiones Arithmeticae [Gau1986] or
[Dic1930, Chapter VII]) that any binary quadratic form g is equivalent to a
reduced form f(x, y) = ax2 + bxy + cy2: the form f is said to be reduced
if f(x, 1) = ax2 + bx + c has a positive root ξ and a negative root η satis-
fying |η| < 1 < ξ. Writing ξ = [a0, a1, a2, . . .] and −η = [0, a−1, a−2, . . .] for
the continued fraction representations of ξ and −η, we obtain a bi-infinite
sequence

A = (. . . , a−2, a−1, a0, a1, a2, . . .).

Then
√

d(f)/m(f) is equal to supi∈Z λi(A), where

λi(A) = ai + [0, ai+1, ai+2 . . .] + [0, ai−1, ai−2 . . .]. (8.2)

Conversely, if A = (. . . , a−1, a0, a1, . . .) is a bi-infinite sequence of positive
integers, then there exists a form f such that

√
d(f)/m(f) = supi∈Z λi(A).

In the following we present results from [Mar1879, Mar1880] concern-
ing the bi-infinite sequences of positive integers A such that supi λi(A) <
3. As revealed in the work of Thomas W. Cusick and Mary E. Flahive
[CF1989] and Christophe Reutenauer [Reu2005,Reu2006], Christoffel words
make an unexpected appearance here. We recast Markoff’s results in these
terms. As a hint of what is to come, we rewrite the Markoff numbers
(
√

5,
√

8,
√

221/25, . . .) in the form predicted by the general theory:
√

9 − 4

12
<

√
9 − 4

22
<

√
9 − 4

52
< · · · < 3.
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The “squared” integers appearing above are explicitly computable and we
find them below. Additional information on the Markoff theory may be found
in [Fro1913], [Dic1930] and [Cas1957].

Exercise 8.1. Show that if f and g are equivalent binary quadratic forms,
then they have the same discriminant.

8.2 Markoff numbers

We are interested in the bi-infinite sequences A = (. . . , a−1, a0, a1, . . .) where
the ai belong to the positive integers P (in what follows, we write A ∈ PZ).
Again, to such a sequence A we define positive real numbers λi(A) ∈ R>0

by

λi(A) = ai + [0, ai+1, ai+2, . . .] + [0, ai−1, ai−2, . . .],

where following Chapter 7, [a0, a1, a2, . . .] denotes the limit as i goes to
infinity of the i-th continuant

[a0, a1, . . . , ai] := a0 +
1

a1 +
1

a2 +
1

· · · + 1

ai−1 +
1

ai
.

Given A as above, denote the supremum of the λi(A) by M(A):

M(A) = sup
i∈Z

{
λi(A)

}
∈ R>0 ∪ {∞}. (8.3)

We will frequently view sequences A ∈ PZ or B ∈ PN as (infinite) words
in what follows, e.g., B = b0b1b2 · · · . In such a case, we denote by [B] the
continued fraction [b0, b1, b2, . . .].

Examples. 1. Take A = · · · 111 · · · . Then λi(A) = 1+ [0, 1, . . .]+ [0, 1, 1 . . .]

for each i, so we have M(A) =
√

5+1
2 +

√
5−1
2 =

√
5. See Exercise 7.1.

2. Take A = · · · 222 · · · . Then M(A) is computed to be
√

8.

Before stating our next two examples, we introduce some additional no-
tation. If w is a finite word, let

∞w∞ = · · ·www · · ·
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denote the periodic bi-infinite word obtained by repeating w infinitely often
in each direction. Also, let ϕ denote the morphism ϕ : {x, y}∗ → {1, 2}∗
defined by

ϕ(x) = 11 and ϕ(y) = 22.

Finally, given any A ∈ PZ, we define the reversal map A 7→ Ã by ai 7→ a−i.

Examples. 3. Take A = ∞ϕ(xy)∞ = ∞(1122)∞. Since A is periodic, one
need only compute λi(A) for four consecutive values of i in order to deter-
mine M(A). The result is computed to be

√
221/25.

4. Let w denote the bi-infinite (nonperiodic) discretization of the line

ℓ(x) =
√

5−1
2 x (see Exercise 1.5). Taking A = ϕ(w), one finds that M(A) is

approximately 3.2268.

5. Given any A ∈ PZ, we consider Ã. It is immediate that λi(Ã) = λ−i(A)
for all i ∈ Z and M(Ã) = M(A).

As observed above, M(A) may be computed in a finite number of steps
when A is periodic. This will always be the case if M(A) < 3, as the next
theorem states. We need one more morphism in order to state it. Define
η : {x, y}∗ → N2×2 to be the monoid morphism given by

η(x) =

(
1 1
1 0

)2

=

(
2 1
1 1

)
and η(y) =

(
2 1
1 0

)2

=

(
5 2
2 1

)
.

Theorem 8.4 (Markoff [Mar1879, Mar1880]). Let A ∈ PZ be a bi-infinite
sequence of positive integers. Then M(A) < 3 if and only if there ex-
ists a Christoffel word w such that A = ∞ϕ(w)∞. In this case, M(A) =√

9 − 4/c2, where c is the (1, 2)-coordinate of the matrix η(w).

Remark. The numbers c obtained in the theorem are the so-called Markoff
numbers It happens that c is also equal to 1

3 trace(η(w)); the interested
reader may try to prove this now or wait for the hint in Lemma 8.7.

Examples. 1. Take w = x (i.e., A = · · · 111 · · · ). Then η(w) =
(

2 1
1 1

)
,

c = 1 and
√

9 − 4/12 =
√

5 agrees with the value for M(A) computed in
the preceding example.

2. Taking w = y, we find c = 2 and M(· · · 222 · · · ) =
√

9 − 4/22 =
√

8, as
computed in the preceding example.

3. Suppose w is the Christoffel word xy. Then A = ∞(1122)∞ and

η(w) =

(
2 1
1 1

)(
5 2
2 1

)
=

(
12 5
7 3

)
,
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giving c = 5 and M(A) =
√

221
25 .

Before proceeding to the proof of Theorem 8.4 (section 8.4), we raise a
long-standing open question. Implicit in the theorem is a mapping w 7→ c(w)
of Christoffel words to Markoff numbers. As c(w) is somewhat correlated to
|w|, it is plausible (indeed, provable) that the image of c in P is not surjective.
The complimentary question remains open.

Open Question (Frobenius [Fro1913]). Is the mapping w 7→ c(w) injective?

Exercise 8.2. The map from words w to Markoff numbers c(w) = (η(w))12
may be injective on Christoffel words, but it is not injective on all of {x, y}∗.
(Hint: Use the word w = xxyy.)

Exercise 8.3. Given fixed morphisms α, β ∈ End({x, y}∗), define a repre-
sentation ρ : {x, y}∗ → End({x, y}∗) of the monoid {x, y}∗ by sending x
to α, y to β and concatenation to composition. For example, ρxyy is the
morphism

w 7→
(
α ◦ β ◦ β

)
(w).

Show that there are Christoffel morphisms α and β so that
∣∣ ρw(y)

∣∣
x

equals
the Markoff number c(w) for all words w ∈ {x, y}∗. (Hint: Try to mimic
the action of the map η above; as a further hint, α and β both belong to
{G, D̃}∗.)

8.3 Markoff’s condition

Lemma 8.5. Suppose β and γ are two real numbers with continued fraction
representations [b1, b2, b3, . . .] and [c1, c2, c3, . . .], respectively. Determining
whether β ≤ γ amounts to comparing finite prefixes b1b2 · · · bi and c1c2 · · · ci

with the following rules:

β < γ ⇐⇒





b1 < c1,
or b1 = c1 and b2 > c2,
or b1 = c1 and b2 = c2 and b3 < c3,
and so on.

Proof. Exercise 8.4.

Given two (possibly infinite) words B = b1b2 · · · and C = c1c2 · · · , we say
that B precedes C in the alternating lexicographic order if the prefixes
b1b2 · · · bi and c1c2 · · · ci satisfy the conditions of the lemma for some i > 0.
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Given a word w over an alphabet X, a letter x ∈ X and any p ∈ P, the
word xp is called a block of w if there is a factorization w = uxpv such that
u ∈ X∗ does not end by x and v ∈ X∗ does not begin by x.

Lemma 8.6 (Markoff). Given A ∈ PZ, if M(A) ≤ 3 then ai ∈ {1, 2} for all
i ∈ Z and the blocks of 1s and 2s are of even length.

Note that the converse is false, as evidenced by the “Fibonacci line”
constructed in Example 4.

Proof. First note that λi(A) is equal to ai plus a positive number. This
forces ai < 3, i.e., ai ∈ {1, 2} for all i ∈ Z. We show that 12n1 and 21n2 are
not factors of A for odd numbers n by induction on n. The case n = 1 is a
simple calculation:

If 121 is a factor of A, choose i to be the position of this 2. Then

λi(A) = 2 +
1

1 +
1

∗1

+
1

1 +
1

∗2

.

Since each ∗i > 1, we have 1 +
1

∗i
< 1 +

1

1
, or

1

1 + 1
∗i

>
1

1 + 1
. But then

λi(A) > 2 +
1

2
+

1

2
= 3,

contradicting the hypothesis M(A) ≤ 3. If 212 is a factor of A, choose i to
be the position of the second 2 and write

λi(A) = 2 +
1

∗1
+

1

1 +
1

2 +
1

∗2

.

Since ∗1 < 3, the second summand is bounded below by
1

3
. Turning to the

final summand, we use the inequality 1
∗2 > 0. This yields

1

1 +
1

2 +
1

∗2

>
1

1 +
1

2 + 0

=
2

3
,
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or λi(A) > 2 + 1
3 + 2

3 = 3, again contradicting the hypothesis M(A) ≤ 3.

To rule out factors 21n2 and 12n1 for odd n > 1, we observe the following
useful fact (see Exercise 8.5):

If A ∈ PZ has a factorization B̃ 2211 C with B and C right-
infinite words, then M(A) ≤ 3 implies [B] ≤ [C].

(⋆)

From this fact we deduce that A cannot be factored as · · · 2(2211)1 · · · ,
because the integral part of [B] = [2, . . .] would be greater than that of
[C] = [1, . . .] (a contradiction after Lemma 8.5).

Case 1: there is a factor 21n2 in A with n > 1 and n odd.

We analyze the slightly longer factor 1r2s1n2 with s ≥ 1 and r maximal
(possibly infinite). We know that 212, 121 and 222111 are not factors of A.
These exclude, respectively, the possibilities r = 1, s = 1 or s ≥ 3. We are
left with s = 2 and the two possibilities: (i) 21r(2211)1n−22, with r < n− 1,
is a factor of A; or (ii) 1r(2211)1n−22, with r ≥ n − 1, is a factor of A. We
may apply induction in the first possibility to further assume that n is even
and less than n − 2.

Comparing [B] to [C] using Lemma 8.5, both possibilities yield a con-
tradiction according to (⋆):

(i)
B : 1 1 · · · 1 2

6 > · · · > 66

C : 1 1 · · · 1 1
(ii)

B : 1 1 · · · 1 1

6 > · · · 6 6>

C : 1 1 · · · 1 2

 r, even

            

n − 2, odd

Case 2: there is a factor 12n1 in A with n > 1 and n odd.

The analysis is similar. Assume 12n1s2r is a factor of A (with s ≥ 1 and
r maximal). As above, one easily reduces to the case s = 2. The remaining
possibilities, r < n − 2 and even or r ≥ n − 1, are again handled using (⋆)
and Lemma 8.5.

Lemma 8.7. Fix a 2 × 2 symmetric matrix M and set

N =

(
5 2
2 1

)
M

(
2 1
1 1

)
.

Then N21 = 1
3 trace N .

Proof. Exercise 8.6.
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Corollary 8.8. If w = yux is an upper Christoffel word, then η(u) is sym-
metric and (η(w))21 = 1

3 trace (η(w)).

Markoff introduced the following condition to exploit this property in
his proof of Theorem 8.4.

Definition 8.9. Suppose s ∈ {x, y}Z. We say s satisfies the Markoff con-
dition if for each factorization s = ũabv with {a, b} = {x, y}, one has either
u = v, or u = mbu′ and v = mav′ for some (possibly empty) finite word
m and right-infinite words u′,v′.

Examples. 1. Take s = ∞(xxy)∞. Then the factorization

ũ · ab · v = ∞(xxy)xx · yx · xy(xxy)∞

yields u = m · b · u′ = x · x · (yxx)∞ and v = m · a · v′ = x · y · (xxy)∞. On
the other hand, the factorization

ũ · ab · v = ∞(xxy)xxyx · xy · xxy(xxy)∞

yields u = m · b · u′ = x · y · (xxy)∞ and v = m · a · v′ = x · x · (yxx)∞.

2. Taking s = ∞(xxyxy)∞, the pattern ab appears in two distinct ways as
“xy” and two distinct ways as “yx.” We check one of the four possibilities
and leave the rest for the reader. The factorization

s = ∞(xxyxy)xxyx · yx · xyx y (xxyxy)∞

yields m = xyx, u = xyx · x · (yxyxx)∞ and v = xyx · y · (xxyxy)∞.

3. The bi-infinite word s = ∞(xxyy)∞ does not satisfy the Markoff condi-
tion (both ab = xy and ab = yx fail to give factorizations for s satisfying
the criteria of the definition).

Remarks. 1. Reutenauer has shown that a bi-infinite word s satisfies the
Markoff condition if and only if it is balanced1 (Theorem 3.1 of [Reu2006]).

2. Note that in the first two examples above, m is a palindrome. This is
always the case; a proof is outlined in Exercise 8.8 (see also [GLS2008]).

Exercise 8.4. Prove Lemma 8.5.

Exercise 8.5. Two useful properties of λi:

(a) Suppose A = B̃ 2211C is a factorization with B and C right-infinite
words. If i is the location of the second 2 after B̃, show that λi(A) ≤ 3
if and only if [B] ≤ [C] (with λi(A) = 3 if and only if [B] = [C]).
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(b) Suppose A = B̃ 1122C is a factorization with B and C right-infinite
words. If i is the location of the first 2 after B̃, show that λi(A) ≤ 3
if and only if [B] ≥ [C] (with λi(A) = 3 if and only if [B] = [C]).

Exercise 8.6. Prove Lemma 8.7 and deduce Corollary 8.8. (Hint: If w =
yux is an upper Christoffel word, then u is a palindrome.)

8.4 Proof of Markoff’s theorem

After the preceding lemmas, it will be easier to prove the following equivalent
statement of Theorem 8.4.

Theorem 8.10. A bi-infinite sequence A ∈ PZ satisfies M(A) < 3 if and
only if there exists an upper Christoffel word w such that A = ∞ϕ(w)∞. In
this case, M(A) =

√
9 − 4/c2, where c = (η(w))21 = 1

3 trace(η(w)).

Suppose A ∈ PZ satisfies M(A) < 3. We have seen that A belongs to
{1, 2}Z and moreover its blocks of 1s and 2s have even lengths. We may thus
write A = ϕ(s) for some s ∈ {x, y}Z. We begin by showing that s satisfies
the Markoff condition.

Given a factorization s = (ũ, yx,v), we may write A = B̃ 2211C for
some B = ϕ(u) and C = ϕ(v) in {11, 22}P. From the assumption M(A) ≤ 3
and (⋆) we have [B] ≤ [C], or B ≤ C in the alternating lexicographic
order. Equivalently, since B,C ∈ {11, 22}P, we have u ≤ v in the natural
lexicographic order on {x, y}∗. If u = v, then [B] = [C] and M(A) = 3 (see
Exercise 8.5), which was excluded in the hypotheses of the theorem. Thus
u < v. Letting m = u1u2 · · · ur be the longest common prefix of u and v,
we have ur+1 = x and vr+1 = y (since u < v). Analysis of the factorization
s = (ũ, xy,v) is similar (see Exercise 8.5).

We conclude that s satisfies the Markoff condition, but in fact more is
true. Namely, the m’s occuring in instances of the Markoff condition have
bounded length N = N(s) (depending only on s). Otherwise, we may find an
infinite sequence of factors xm̃n yxmny of s (or s̃) satisfying mn is a proper
prefix of mn+1 for all n. One uses these factors and the ideas in Exercise
8.5 to show that M(A) = supλi(A) = 3, contradicting the hypotheses of the
theorem.

Lemma 8.11 (Reutenauer [Reu2006, Lemma 3.1]). If s ∈ {x, y}Z satisfies
the Markoff condition, then xx and yy are not simultaneously factors of s.

Proof. Suppose xx and yy are both factors of s. Then s = u′xxwyyv′ or
u′yywxxv′ for some finite word w and some infinite words u′ and v′. Pick w
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to be of minimal length among all such finite words. Suppose s = u′xxwyyv′;
the other case is dealt with in a similar manner. By the minimality of w, we
have that w = (yx)p for some p ∈ N. If p = 0, then s = u′xxyyv′, which
contradicts the hypothesis that s satisfies the Markoff condition. So suppose
p ≥ 1. Let u = xũ′ and v = (xy)pyv′. Then s = ũxyv. Since s satisfies the
Markoff condition, there are two cases.

Case 1: the words u and v are equal.

Then s = ṽxyv = ṽ′y(yx)pxyv = ṽ′yy(xy)p−1xxyv, contradicting the
minimality of w.

Case 2: there exist right-infinite words u′′ and v′′ and a finite word m such
that u = myu′′ and v = mxv′′.

Since u = xũ′ and v = (xy)pyv′, we have that m is nonempty. If |m| ≥
2p+1, then m begins with (xy)py. So we have s = ũxyv = · · · y(yx)pxyv =
· · · yy(xy)p−1xxxyv, contradicting the minimality of w. If |m| < 2p+1, then
m is a prefix of (xy)py. Therefore, m = (xy)i for some 1 < i < p − 1. This
implies s = ũxyv = ũ′′y(yx)ixyv = ũ′′yy(xy)i−1xxyv, again contradicting
the minimality of w.

Next, we lift sequences s satisfying the Markoff condition via the mor-
phisms G = (x, xy) and D̃ = (xy, y). We claim there exists a sequence
s′ ∈ {x, y}Z such that s = G(s′) or s = D̃(s′) (apply G−1 if yy is not a fac-
tor of s and D̃−1 otherwise). It is straightforward (though tedious) to verify
that s′ also satisfies the Markoff condition (Exercise 8.8) and moreover that
the bounds on the |m|’s satisfy N(s′) < N(s), cf. [Reu2006, Section 3]. An
induction on N(s) allows us to write s′ as ∞(w′)∞ for some upper Christof-
fel word w′ (note that s = ∞(yx)∞ when N(s) = 0). Thus A = ∞ϕ(w)∞

for some upper Christoffel word w, as desired.

To prove the converse, we write A = ∞ϕ(w)∞ for some upper Christoffel
word w and compute M(A) explicitly.

Example. Suppose A = ∞ϕ(yxyxx)∞. In Figure 8.1, we compute the first
few λi(A).

Returning to the proof, there are evidently only 2|w| distinct λi(A) to
compute, but we can do better. Since w̃ is a conjugate of w (Proposition
4.2), we have Ã = ∞ϕ(w̃)∞ = ∞ϕ(w)∞ = A. Consequently, we need only
consider those i corresponding to 1s and 2s in odd positions within their
corresponding blocks in ϕ(w).

We introduce some notation to make things simpler. Index the sequence
A = (an)n∈Z by setting n = 1 to be the location of the start of some copy of
ϕ(w) (in particular, a1 = 2, see Figure 8.1). We have seen that it is enough
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A = · · · 1 2 2 1 1 2 · · ·
··· 0 1 2 3 4 5 ···

i λi

1 2
97

√
21170 ≈ 2.999982286

2 2.969370222

3 2.124075049

4 2.124075049

5 2.969370224
...

Figure 8.1: The upper Christoffel word yxyxx and some of the
10 possible λi(A) values. They were computed using the technique
indicated in the proof of Lemma 8.14.

to compute λi for i corresponding to odd integers. We claim it is enough
to compute λ1. Indeed, we now show that λ1 > λj when j 6≡ 1 mod 2|w|
corresponds to any other odd integer, i.e., M(A) = λ1(A).

Our proof uses the fact that upper and lower Christoffel words are the
least and greatest lexicographically among the conjugates of either (see Ex-
ercise 6.3). We compare w (an upper Christoffel word), w̃ (the corresponding
lower Christoffel word) and some other conjugate u of w. We have w > u
(lexicographically), which implies w∞ > u∞ and ϕ(w)∞ > ϕ(u)∞ (in the
alternating lexicographic order). By Lemma 8.5, this in turn implies that
[ϕ(w)∞] > [ϕ(u)∞] (as real numbers). Similarly, [∞ϕ(w̃)] < [∞ϕ(u)]. In
terms of our sequence, we have

[a1, a2, . . .] > [aj , aj+1, . . .]

[a0, a−1, . . .] < [aj−1, aj−2, . . .],

or equivalently

[a1, a2, . . .] > [aj , aj+1, . . .]

[0, a0, a−1, . . .] > [0, aj−1, aj−2, . . .].

Thus λ1(A) > λj(A), proving our assertion that M(A) = λ1(A).

To understand the Markoff numbers c = 1, 2, 5, . . . we need three classical
facts about the continued fraction representations of quadratic numbers:
α ∈ R is a quadratic number if it is a solution to a monic, quadratic
polynomial over Q. In what follows, we use the notation c1, c2, . . . , cp to
represent the periodic, right-infinite sequence c1, c2, . . . , cp, c1, c2, . . . , cp, . . ..

Also, given a quadratic number α = a±
√

b
c , we write α∨ for its conjugate

root, i.e., α∨ = a∓
√

b
c .
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Theorem 8.12 (Lagrange). A number α ∈ R is quadratic if and only if
its continued fraction representation is ultimately periodic. That is, α =
[c0, c1, . . . , cr−1, cr, cr+1, . . . , cr+p−1] (with period p).

Theorem 8.13 (Galois). If a real number α = [c0, c1, c2, . . .] is quadratic,
then the sequence (cn) is purely periodic with period p if and only if α > 1 and

−α∨ ∈ (0, 1). In this case, α = [c0, c1, . . . , cp−1] and
−1

α∨ = [cp−1, . . . , c1, c0].

Lemma 8.14. If α = [c0, c1, . . . , cp−1], then

α =
aα + b

cα + d
, where

(
a b
c d

)
=

(
c0 1
1 0

)
· · · · ·

(
cp−1 1

1 0

)
.

Sketch of Proof. We illustrate the key idea for p = 2 and leave the proof as
an exercise. Suppose α = [ a, b ] = [a, b, a, b, a, b, · · · ]. Then

α = a +
1

b +
1

a +
1

.. .

= a +
1

b +
1

α

.

That is, α = a+
α

bα + 1
=

(ab + 1)α + a

bα + 1
. Compare with

(
a 1
1 0

)(
b 1
1 0

)
.

From the above facts we deduce that M(A) = λ1(A) = a1 + [0, a2, . . .] +
[0, a0, a−1, . . .] = α − α∨, where α = [ϕ(w)∞]. Moreover, the matrix in
Lemma 8.14 for our α is precisely η(w). Now let’s find a, b, c, d explicitly.
From

cα2 + dα = aα + b,

we deduce

α − α∨ =
1

c

√
(d − a)2 + 4bc

=
1

c

√
(d + a)2 − 4

(this last step because det η(w) = 1, by definition of η(x) and η(y), so
bc = ad − 1). Finally, we know from Lemma 8.7 that 3c = a + d, i.e.,

M(A) = λ1(A) =
1

c

√
9c2 − 4 =

√
9 − 4

c2
,
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concluding the proof of Markoff’s theorem.

In closing, we mention that the values M(A) computed above are part
of a larger story. The set of values M(A) for all bi-infinite sequences A, not
only those obeying Markoff’s restrictions, is called the Markoff spectrum.
Further results on this spectrum may be found in [CF1989].

Exercise 8.7. Prove Lemma 8.14.

The following exercise shows that any m from Definition 8.9 is a palin-
drome and that xmy is a lower Christoffel word or yux is an upper Christoffel
word. (The proof in [GLS2008] uses more balanced1 results than we have
set down in Chapter 6.)

Exercise 8.8 ([GLS2008]). Let s be an infinite word in the letters x and y
satisfying the Markoff condition.

(a) Prove that if yy is not a factor of s, then G−1(s) satisfies the Markoff
condition; likewise for D̃−1(s) when xx is not a factor of s. (See
[Reu2006].)

(b) Prove that if two (maximal) blocks xa and xb are factors of s, then
|a − b| ≤ 1; likewise for blocks consisting of the letter y.

(c) Consider a factor ym̃xymx of s. If m starts with an x, conclude
that m takes the form xayxbyxcy · · · yxa (including the possibility
m = xa). Moreover, xa is the smallest block of x that is a factor of
s.

(d) If u is a palindrome, then (G(u))axa is a palindrome for all a ≥ 1.

(e) Prove that m is a palindrome. (Hint: Proceed by induction on the
number of x-blocks in m. Consider the preimage of s under G or D̃.)
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Part II

Repetitions in Words

The goal of Part II is to present an introduction to some of the recent re-
search on the combinatorics on words that deals with repetitions in words.
The discipline originated in a series of papers by the Norwegian mathemati-
cian Axel Thue (1863–1922). Chief among them, we count [Thu1906] and
[Thu1912]. Thue’s work, recollected in the volume [Thu1977], has inspired
several directions of modern research, so we have chosen to use his results
as a point of departure for the results presented here.
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Chapter 1

The Thue–Morse Word

This chapter introduces the Thue-Morse word and presents several equiva-
lent characterizations. We end with a novel application of the Thue-Morse
word to construct magic squares.

1.1 The Thue–Morse word

Recall that a binary word is a word over the alphabet {0, 1}.

Definition 1.1. The Thue-Morse word t = t0t1t2 · · · is the binary word
t : N → {0, 1} defined recursively by: t0 = 0; and for n ≥ 0, t2n = tn and
t2n+1 = t̄n, where ā = 1 − a for a ∈ {0, 1}. (See Figure 1.1.)

t = t0 t1 t2 t3 · · · tm · · · t2m t2m+1 · · ·
= 0 1 1 0 · · · a · · · a ā · · · .

Figure 1.1: The Thue-Morse word t. Here a ∈ {0, 1}.

Example. Here are the first forty letters of the Thue–Morse word,

t = 0110100110010110100101100110100110010110 · · ·

Our first characterization of the Thue-Morse word is in terms of binary
expansions of nonnegative integers. For every n ∈ N, let d2(n) denote the
sum of the digits in the binary expansion of n.

Proposition 1.2. For all n ∈ N, we have tn = d2(n) mod 2.

83
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Proof. Note that d2 satisfies the following recurrence relations: d2(0) = 0;
d2(2n) = d2(n); and d2(2n + 1) = d2(n) + 1. Since d2(n) mod 2 satisfies the
same recurrences defining tn, we have tn = d2(n) mod 2.

Exercise 1.1. If t = t0t1t2 · · · is the Thue-Morse word, show that

∑

n≥0

(−1)tnxn = (1 − x)(1 − x2)(1 − x4)(1 − x8) · · · .

Exercise 1.2 ([AS1999]). Let t = t0t1t2 · · · be the Thue-Morse word and
let sn = (−1)tn for n ≥ 0. Compute the following.

(
1

2

)s0
(

3

4

)s1
(

5

6

)s2

· · ·
(

2i + 1

2i + 2

)si

· · · .

(Hint: Let P =
∏

n≥0

(
2n+1
2n+2

)sn

, Q =
∏

n≥1

(
2n

2n+1

)sn

. Show that PQ = Q
2P .)

1.2 The Thue–Morse morphism

Definition 1.3. The Thue-Morse morphism is the map µ : {0, 1}∗ →
{0, 1}∗ defined by µ(0) = 01 and µ(1) = 10.

The Thue-Morse morphism µ is an example of a 2-uniform morphism:
a morphism ξ of words over an alphabet A is a k-uniform morphism if
ξ(a) is a word of length k for all a ∈ A. Chapter 2.1 will have more to say
about k-uniform morphisms.

If s is an infinite word over the alphabet {0, 1}, then let s̄ be the image
of s under the endomorphism defined by 0 7→ 1 and 1 7→ 0. This morphism
is often called the exchange morphism. Note that µ(s̄) = µ(s) for any
finite or infinite word s over {0, 1}.

Proposition 1.4. The Thue-Morse word t is a fixed point of the Thue-
Morse morphism µ, i.e., µ(t) = t. Moreover, t and t̄ are the only fixed
points of µ.

Proof. Suppose s is a binary word. Since µ maps each a ∈ {0, 1} to aā, it
follows that (µ(s))2n = sn and (µ(s))2n+1 = s̄n for all n ≥ 0. So if µ(s) = s,
then s2n = sn and s2n+1 = s̄n. If s0 = 0, then s = t; and if s0 = 1, then
s = t̄. Therefore, t and t̄ are the only fixed points of µ.

The above result characterizes the Thue-Morse word as the infinite bi-
nary word beginning with 0 that is a fixed point of µ. Defining infinite words
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in this fashion, as fixed points of morphisms, is a useful technique that will
be employed often in what follows. Let us underscore the necessary ingredi-
ents. Fix n ∈ N and a monoid endomorphism ϕ : A∗ → A∗. We write ϕn for
the n-fold composition of ϕ with itself, the n-th iterate of ϕ. If a is a prefix
of ϕ(a) for a given a ∈ A, then ϕn(a) is a prefix of ϕn+1(a) for all positive
integers n: indeed, writing ϕ(a) = au, we have

ϕn+1(a) = ϕn(ϕ(a)) = ϕn(au) = ϕn(a)ϕn(u).

Therefore, the sequence ϕ1(a), ϕ2(a), ϕ3(a), . . . has a (unique) well-defined
limit, which we denote by

ϕ∞(a) = lim
n→∞

ϕn(a).

Not surprisingly, the Thue-Morse word is a limit of the morphism µ.

Proposition 1.5. The Thue-Morse word t is the limit µ∞(0) = lim
n→∞

µn(0)

of the Thue-Morse morphism µ. Moreover, t̄ = µ∞(1).

Proof. Note that µ(µ∞(0)) = µ∞(0). Therefore, µ∞(0) is a fixed point of µ
beginning with 0. So t = µ∞(0) by Proposition 1.4.

By formalizing the properties of the iterates µn of µ, we arrive at an-
other recursive construction of the Thue-Morse word that is independent
of the Thue-Morse morphism. This characterization has many interesting
consequences, several of which are explored in the exercises.

Proposition 1.6. Fix u0 = 0 and v0 = 1, and let un+1 = unvn and vn+1 =
vnun for n ≥ 0. Then for all n ≥ 0, one has:

(i) un = µn(0) and vn = µn(1);

(ii) vn = ūn and un = v̄n;

(iii) for n even, un and vn are palindromes;

(iv) for n odd, ũn = vn.

Proof. Exercise 1.5.

Exercise 1.3. If t is the Thue-Morse word and µ the Thue-Morse morphism,
then µ(tn) = t2nt2n+1 for all n ≥ 0.

Exercise 1.4. For any finite binary word w, µ(w) = µ(w) and µ(w̃) = µ̃(w).

Exercise 1.5. Prove Proposition 1.6. (Hint: Proceed by induction on n.)
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Exercise 1.6. Show that the Thue-Morse word is a word over the alphabet
{0110, 1001}.

Exercise 1.7. The set of finite factors of t is equal to the set of finite factors
of t̄.

Exercise 1.8. If s is a finite factor of t, then s̃ is also a factor of t.

Exercise 1.9 (Characterization of the blocks of t, [AAB+1995]). Let A =
(an)n≥0 = 0, 1, 3, 4, 5, 7, 9, 11, 12, 13, . . . denote the lexicographically least
subsequence of nonnegative integers satisfying, for all m ≥ 1, if m ∈ A, then
2m /∈ A. Show that

t = 0a1−a01a2−a10a3−a21a4−a3 · · · .

Exercise 1.10 ([Pro1851]). Define an infinite word a by letting ai (for i ≥ 1)
denote the biggest integer j such that 2j−1 divides i without remainder. The
first few letters of a are 1213121412131215 · · · . Define another infinite word
b to be the word obtained from (01)∞ = 010101 · · · by deleting ai letters
after skipping two letters. That is, keep 2 letters, delete a1 = 1 letter, keep
2 letters, delete a2 = 2 letters, keep 2 letters, delete a3 = 1 letter, and so
on. So b begins as 01101001 · · · . Show that b is the Thue-Morse word.

Exercise 1.11 ([AS2003, Theorem 1.7.7]). Let t be the Thue-Morse word
and µ the Thue-Morse morphism. Show that if φ : {0, 1}∗ → {0, 1}∗ is a
morphism such that φ(t) = t, then φ = µn for some n ≥ 0.

1.3 The Tarry-Escott problem

We next highlight a connection between the Thue-Morse word and a clas-
sical problem in number theory named after Gaston Tarry and Edward B.
Escott in recognition of their contributions to the problem around 1910.
Early results and references appear in [DB1937] and [Wri1959].

Definition 1.7 (The Tarry-Escott problem). For m ∈ N find a positive
integer r and two sequences (a1, . . . , ar) and (b1, . . . , br) of integers such
that

a1 + a2 + · · · + ar = b1 + b2 + · · · + br,

a2
1 + a2

2 + · · · + a2
r = b2

1 + b2
2 + · · · + b2

r ,...
am

1 + am
2 + · · · + am

r = bm
1 + bm

2 + · · · + bm
r .
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If (a1, . . . , ar) and (b1, . . . , br) form a solution to the Tarry-Escott prob-
lem for m ∈ N, then we say r is the size of the solution, m is the degree of
the solution and we write (a1, . . . , ar)

m
= (b1, . . . , br).

Example. The sequences (0, 3, 5, 6) and (1, 2, 4, 7) satisfy

01 + 31 + 51 + 61 = 11 + 21 + 41 + 71 = 14,

02 + 32 + 52 + 62 = 12 + 22 + 42 + 72 = 70.

Therefore, (0, 3, 5, 6)
2
= (1, 2, 4, 7). This solution has size 4 and degree 2.

Eugène Prouhet was the first to provide a general-form solution to the
Tarry-Escott problem (in fact, he did it 60 years prior to the work of Tarry
and Escott). He solved the Tarry-Escott problem of size 2m and degree m
for every m > 1 by partitioning the set of integers from 0 through 2m+1 − 1
into two sets using the Thue-Morse word.

Theorem 1.8 (Prouhet [Pro1851]). For every m > 0, there exists a solution
of size 2m to the Tarry-Escott problem of degree m.

Proof. Let t be the Thue-Morse word and suppose m > 1. For 1 ≤ i ≤ 2m+1,
let ai denote the index of the i-th 0 in the Thue-Morse word t and let bi

denote the index of the i-th 1 in t. Then the sequences (a1, . . . , a2m) and
(b1, . . . , b2m) form a solution to the Tarry-Escott problem of degree m. The
verification of this last statement constitutes Exercise 1.12. (Alternatively,
see [Wri1959].)

Example. From the table below, we see that the indices for the first eight 0s
and 1s of t are (0, 3, 5, 6, 9, 10, 12, 15) and (1, 2, 4, 7, 8, 11, 13, 14), respectively.

tn : 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We leave it to the reader to verify that

(0, 3, 5, 6, 9, 10, 12, 15)
3
= (1, 2, 4, 7, 8, 11, 13, 14).

Prouhet was in fact interested in the more general problem of partitioning
the set {0, 1, . . . , nm+1 − 1} into n sets such that each pair of sets form a
solution to the Tarry-Escott problem of degree m. We briefly describe the
partitioning; the construction is illustrated in Figure 1.2.

Fix positive integers n and m and consider a circle with n marked spots.
Write 0 next to the first spot, then write 1 next to the second spot, and
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a

bc

0

1
2

5

3

4

7

8

6

11

9

10

13

14

12

15

16

17

19

20

18

21

22

23

26

24

25

Figure 1.2: Prouhet’s partitioning of {0, 1, . . . , 33 − 1}.

so on, except that you skip one spot for every multiple of n, two spots for
every multiple of n2, etc. until nm+1 − 1 is reached. We get a partition of
{0, 1, . . . , nm+1−1} into n sets by considering where each integer lies on the
circle.

Example. Take n = 3 and m = 2. Figure 1.2 illustrates Prouhet’s decompo-
sition of {0, 1, . . . , 26} into the three sets

a = (0, 5, 7, 11, 13, 15, 19, 21, 26),

b = (1, 3, 8, 9, 14, 16, 20, 22, 24),

c = (2, 4, 6, 10, 12, 17, 18, 23, 25).

We leave it to the reader to verify that a
2
= b, a

2
= c and b

2
= c.

Remark. Prouhet’s construction defines a generalization of the Thue-Morse
word to an n-letter alphabet: use the construction to partition N into n sets,
P1, . . . , Pn; associate to each Pj a unique letter aj; and define a word w by
wi = aj if i ∈ Pj . The word w is called the generalized Thue-Morse
word over the alphabet {a0, a1, . . . , an−1}. For example, the generalized
Thue-Morse word over {0, 1, 2} begins as 012120201120201 · · · (see Figure
1.2).

As with the Thue-Morse word t, there are several equivalent characteriza-
tions of the generalized Thue-Morse word w. It can also be constructed using



1.3. THE TARRY-ESCOTT PROBLEM 89

n-uniform morphisms: if γ(ai) = aiai+1 · · · ana0 · · · ai−1 for all 1 ≤ i ≤ n,
then w = γ∞(a0). And if ai = i for all 0 ≤ i ≤ n− 1, then wm is the sum of
the digits in the base n expansion of m modulo n.

Recent research surrounding the Tarry-Escott problem includes studying
the structure of solutions of minimal size and also multi-dimensional gener-
alizations. We describe each briefly. A solution to the Tarry-Escott problem
of degree m is said to be ideal if its size is m + 1. Ideal solutions are known
to exist for sizes 1, 2, . . . , 10 and 12; see [BI1994,BLP2003].

Example. The first ideal solution of degree greater than 10 was found by
Nuutti Kuosa, Jean-Charles Meyrignac and Chen Shuwen [BLP2003]:

(
0, 11, 24, 65, 90,129, 173, 212, 237, 278, 291, 302

)

11
=
(
3, 5, 30, 57, 104, 116, 186, 198, 245, 272, 297, 299

)
.

A multi-dimensional generalization of the Tarry-Escott problem was re-
cently introduced by Andreas Alpers and Rob Tijdeman [AT2007]. Their
results include the following generalization of Prouhet’s result.

Theorem 1.9. For every k ∈ N, there exist different multisets

{
(a1, b1), . . . , (a2k , b2k)

}
⊆ Z2 and

{
(c1, d1), . . . , (c2k , d2k )

}
⊆ Z2,

with ai 6= bi for at least one i ∈ {1, 2, . . . , 2k}, such that

2k∑

i=1

aε1
i bε2

i =
2k∑

i=1

cε1
i dε2

i

for all nonnegative integers ε1 and ε2 with ε1 + ε2 ≤ k.

Exercise 1.12. Prove Theorem 1.8; that is, show that Prouhet’s solution
satisfies the Tarry-Escott problem.

Exercise 1.13. If (a1, a2, . . . , ar) and (b1, b2, . . . , br) form an ideal solution
to the Tarry-Escott problem, then the polynomials (x−a1)(x−a2) · · · (x−ar)
and (x − b1)(x − b2) · · · (x − br) differ only in their constant terms.

Exercise 1.14. Suppose {a1, . . . , ar} and {b1, . . . , br} are distinct sets of
integers. The following are equivalent.

(a)
∑r

i=1 aj
i =

∑r
i=1 bj

i for j = 1, . . . , k.

(b) (x − 1)k+1 divides the polynomial
∑r

i=1

(
xai − xbi

)
.
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(c) The degree of the polynomial (x−a1) · · · (x−ar)−(x−b1) · · · (x−br)
is at most r − (k + 1).

Exercise 1.15. Suppose (a1, . . . , ar) and (b1, . . . , br) form a solution to the
Tarry-Escott problem of degree m. If λ and ν are positive integers, then

(λa1 + ν, . . . , λar + ν) and (λb1 + ν, . . . , λbr + ν)

also form a solution of size r and degree m. (Hint: Use the previous exercise.)

1.4 Magic squares

A magic square of order m ∈ N is an m × m matrix whose entries are
distinct elements of {1, 2, . . . ,m2} such that the sum of the entries in every
row, column and diagonal is the same. In Exercise 1.16, it is shown that
this sum must be 1

2m(m2 + 1). In what follows we outline, without proof,
a method to construct a magic square of order 2m for all m ≥ 2 using the
Thue-Morse word t. The reader is referred to [AL1977] for a proof.

To construct a magic square M of order 2m for m ≥ 2, first number the
entries of M from left to right, top to bottom, beginning with 1. Let the
n-th entry of M be n if tn−1 = 1. Finally, arrange the unused numbers in
decreasing order to fill the remaining entries of M from left to right and top
to bottom.

Example. We use the above method to construct a magic square of order
22 = 4. Consider the first 42 = 16 letters of the Thue-Morse word.

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tn−1 : 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

From the above table, we see that tn−1 = 1 if n ∈ {2, 3, 5, 8, 9, 12, 14, 15},
so we obtain the partially-completed magic square at the left in Figure 1.3.
The unused numbers, in decreasing order, are 16, 13, 11, 10, 7, 6, 4, 1. These
are used to fill in the empty entries, preserving the order. The resulting
magic square is shown at the right in Figure 1.3.

Remark. The magic square in Figure 1.3, with the central columns inter-
changed, appears in the engraving Melencolia I (Figure 1.5) by the German
Renaissance artist and mathematician Albrecht Dürer. A similar “magic
square”, depicted in Figure 1.4, appears on a façade of La Sagrada Famı́lia,
a basilica in Barcelona, Spain. It is obtained from Dürer’s magic square by
subtracting 1 from four cells so that the sum of the rows, columns and di-
agonals is 33. Strictly speaking, it is not a magic square because there are
two occurrences of 10 and 14 and it does not include 12 or 16.
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2 3

5 8

9 12

14 15

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Figure 1.3: Left: the n-th box of the magic square is n if tn−1 = 1.
Right: the unused numbers (in boldface) are inserted in decreasing
order into the empty boxes.

1 14 14 4

11 7 6 9

8 10 10 5

13 2 3 15

Figure 1.4: This “magic square” appears on the Passion façade
of La Sagrada Famı́lia, a basilica in Barcelona, Spain. The basilica
was originally designed by the architect Antoni Gaud́ı (1852–1926).

Exercise 1.16. If M is a magic square of order m, prove that the sum of
every column, row and diagonal is equal to 1

2m(m2 + 1).

Exercise 1.17. Construct a magic square of order 8.
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Figure 1.5: Melencolia I by Albrecht Dürer.



Chapter 2

Combinatorics of the

Thue–Morse Word

This chapter uses the Thue-Morse word to shed light on several classical and
modern results on the combinatorics of words.

2.1 Automatic sequences

We begin by presenting a characterization of the Thue-Morse word using
automata. Briefly, an automaton is a model of computation; it accepts as
input a finite word and uses the letters of the word to transition from state
to state. Automata are used in this section to construct a class of infinite
words called automatic sequences and in Section 2.5.1 to construct certain
languages.

Definition 2.1. A finite deterministic automaton A = 〈A,Q, q0, F, ·〉
consists of an alphabet A, a finite set Q of states, an initial state q0, a
set F ⊆ Q of final states, and a next state function · : Q × A → Q.

For the empty word ǫ and each state q ∈ Q, we define q · ǫ = q. For any
u ∈ A∗ and a ∈ A, we define q · ua = (q · u) · a. This extends the domain of
the next state function to Q × A∗.

A finite deterministic automaton A = 〈A,Q, q0, F, ·〉 can be represented
as an adorned directed graph as follows (see Figure 2.1 and Figure 2.2 for
examples): the vertex set of the graph corresponds to the set of states Q,
with each vertex labelled by the corresponding state; there is a labelled
arrow q

a−→ p if and only if q · a = p, where a ∈ A and q, p ∈ Q; there is an
(unlabelled) arrow pointing at the initial state q0; and the final states are

93
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represented by a double circle. Note that if q ∈ Q and a1, . . . , ai ∈ A, then

a0 b 0

1

1

Figure 2.1: An automaton with states Q = {a, b}, alphabet A =
{0, 1} and initial state q0 = a. There are no final states.

computing q · (a1 · · · ai) amounts to starting at the vertex q and following

the unique edge q
a1−→ q1 starting at q and labelled a1, then following the

unique edge q1
a2−→ q2, and so on. The last vertex of this path is the state

q · (a1 · · · ai).
The Thue-Morse word t is obtained from the automaton of Figure 2.1

as follows. For each n ∈ N, let bin(n) ∈ {0, 1}∗ denote the binary expansion
of n and consider the state sn = a · bin(n). If bin(n) has an even number
of 1s, then sn = a; otherwise sn = b. Since tn = d2(n) mod 2, where d2(n)
denotes the number of 1s occurring in bin(n) (Proposition 1.2), it follows
that φ(sn) = tn, where φ is the morphism defined by φ(a) = 0 and φ(b) = 1.
This construction is a realization of t as an automatic sequence.

Definition 2.2. Let 〈Σk, Q, q0, F, ·〉 be a finite deterministic automaton over
the alphabet Σk = {0, 1, . . . , k−1} for some k ∈ N and let φ : Q → X denote
a function from the set of states into some alphabet X. A k-automatic
sequence over X is the infinite word x0x1x2 · · · over the alphabet X given
by defining xn = φ(q0 · a0a1 · · · ai), where a0a1 · · · ai ∈ Σ∗k is the base-k
expansion of n ∈ N.

Proposition 2.3. The Thue-Morse word is a 2-automatic sequence.

Recall that a morphism ξ : A∗ → A∗ is k-uniform for some k ∈ N
if the word ξ(a) has length k for all a ∈ A. Alan Cobham proved that k-
automatic sequences correspond to 1-uniform morphic images of fixed points
of k-uniform morphisms [Cob1972]. The following theorem is one half of Cob-
ham’s result; see [Cob1972] or Theorem 6.3.2 of [AS2003] for the complete
statement.

Theorem 2.4 (Cobham). If an infinite word w is the fixed point of a k-
uniform morphism for some k ≥ 2, then w is a k-automatic sequence.

Proof. Suppose w is a word over A and let ξ denote a k-uniform morphism
with ξ(w) = w. Define an automaton over the alphabet {0, 1, . . . , k − 1}
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with state set A, initial state w0 and next state function given by defining,
for 0 ≤ i < k, q · i to be the letter in position i of ξ(q). Then induction on n
establishes that w0 · (a0 · · · ai) = wn, where a0 · · · ai is the base-k expansion
of n (Exercise 2.1).

By Proposition 1.4, the Thue-Morse word is the fixed point of the 2-
uniform Thue-Morse morphism µ. Accordingly, this result gives a second
proof that the Thue-Morse word is 2-automatic (in fact, it rebuilds the
automaton in Figure 2.1).

There are several interesting connections between automatic sequences
and other areas of mathematics and the physical sciences; for example, sev-
eral important sequences occurring in number theory are k-automatic se-
quences. These connections are described in the book by Jean-Paul Allouche
and Jeffrey Shallit [AS2003].

Remark. Evidently, the automata formalism allows one to succinctly de-
scribe words with complicated factor-behaviour. But it has many “practi-
cal” applications as well. The reader is invited to reflect on the following
question before returning to our discussion on the Thue-Morse word.

Is it possible, given two positive integers k and n, to build a word
w over an n-element alphabet A such that every word of length
k over A occurs in w exactly once?

For example, 10011 possesses 00, 01, 10 and 11 as factors, each occurring
exactly once. Such words, when they exist, are called linear de Bruijn
words. See Exercise 2.3 for more details on their construction. Also, see
[LZ1970] and [Men2003] for applications to shift registers and fractal ren-
dering, respectively, and [Mor2004] for connections to Part I of this book
(specifically, to Lyndon words).

Exercise 2.1. Complete the proof of Theorem 2.4.

Exercise 2.2. A (circular) de Bruijn word w(k,n) is a word over an n
element alphabet A such that every length k word over A appears as a factor
of the circular word

(
w(k,n)

)
exactly once.

(a) Use the automaton pictured in Figure 2.2 to prove that there exists
a de Bruijn word w(3,2).

(b) Prove that de Bruijn words w(k,2) exist for all positive integers k.

(Hint: The states in Figure 2.2 are members of {a, b}3−1 and the
edges are of the form yu

x→ ux for x, y ∈ {a, b}.)
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aa ab

bbba

b

b

a

a

a

b

a

b

Figure 2.2: An automaton building a de Bruijn word w3,2.

(c) Prove that de Bruijn words exist for all positive integers k and n.
(Hint: The algorithm you will give should construct a word of length
nk. The minimum possible length is achieved.)

Exercise 2.3. A linear de Bruijn word w[k,n] is a word over an n element
alphabet A such that every length k word over A is a factor of w[k,n] exactly
once. Use Exercise 2.2 to prove that linear de Bruijn words w[k,n] exist for
all positive integers k and n. (Hint: The minimum-length linear de Bruijn
words have length nk + (k − 1).)

2.2 Generating series

We next present a characterization of the Thue-Morse word t in terms of a
generating series over Z/2Z for the elements of t. We begin by recalling the
relevant notions; see also Chapters 4 and 6 of [Sta1999] or [AS2003].

A generating series of a sequence (sn)n∈N of elements of a field k is the
formal power series

∑
n∈N

snxn in one variable x. The ring of all formal power
series in the variable x and with coefficients in k is denoted by kJxK. A series
f(x) ∈ kJxK is said to be rational if there exist polynomials p(x), q(x) ∈ k[x]
such that f(x) = p(x)/q(x). An element f(x) ∈ kJxK is said to be algebraic
over the quotient field k(x) of the polynomial ring k[x] if there exist p0(x),
p1(x), . . . , pn(x) ∈ k(x), not all 0, such that

p0(x) + p1(x)f(x) + · · · + pn(x)(f(x))n = 0.

If f(x) ∈ kJxK is not algebraic over k(x), then f(x) is transcendental over
k(x). Note that if f(x) ∈ kJxK is rational, then it is algebraic over k(x).

Example. The prototypical example of a rational generating series is the
series F (x) =

∑
n≥0 Fnxn built from the Fibonacci numbers (F0 = 1, F1 =
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1;Fn = Fn−1 + Fn−2 for n ≥ 2). One has

1 + (x2 + x − 1)F (x) = 0.

Let t(x) denote the generating series for the letters of the Thue-Morse
word t over the finite field Z/2Z of two elements. That is,

t(x) =
∑

n≥0

tnxn ∈ (Z/2Z)JxK.

Also let t̄(x) ∈ (Z/2Z)JxK denote the generating series for the letters of t̄.
The next result shows that t(x) and t̄(x) are algebraic over (Z/2Z)(x).

Proposition 2.5 ([CKMFR1980]). The generating series t(x) and t̄(x) are
the two solutions to the equation

x + (1 + x)2Z + (1 + x)3Z2 = 0.

Proof. We prove only that t(x) is a solution. Observe that f(x)2 = f(x2)
for any formal power series f ∈ (Z/2Z)JxK. Thus,

t(x) =
∑

n≥0

t2nx2n +
∑

n≥0

t2n+1x
2n+1

=
∑

n≥0

tnx2n +
∑

n≥0

(1 + tn)x2n+1

=
∑

n≥0

tnx2n +
∑

n≥0

x2n+1 +
∑

n≥0

tnx2n+1

= t(x2) +
x

1 + x2
+ xt(x2)

= (1 + x)t(x)2 +
x

1 + x2
.

Therefore, (1 + x)2t(x) = (1 + x)3t(x)2 + x.

Let Fq denote the finite field with q elements, q a power of a prime.
A theorem of Harry Furstenberg [Fur1967] states that over Fq, every al-
gebraic series in one variable is the diagonal of a rational series in two
variables, where the diagonal of a series

∑
n,m∈N

a(n,m)xnym is defined to
be
∑

n∈N
a(n, n)xn (see also [AS2003, Theorem 12.7.3]). Jean-Paul Allouche

noticed that the Thue-Morse series t(x) is the diagonal of the following
rational series in F2(x) (see Exercise 2.4):

R(x, y) =
y

1 + y(1 + xy) +
x

(1 + xy)2

.
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Open Question. Find a combinatorial reason for this identity.

In [CKMFR1980], Gilles Christol, Teturo Kamae, Michel Mendès France,
and Gérard Rauzy classify automatic sequences consisting of elements from a
finite field in terms of the algebraicity of their generating series. Explicitly,
they show that a sequence (sn)n∈N over Fq is q-automatic if and only if∑

n∈N
snxn is algebraic over Fq(x). Together with the above computation,

this gives another proof that the Thue-Morse word is a 2-automatic sequence.

Exercise 2.4. Show that the diagonal D(x) ∈ (Z/2Z)JxK of the series

R(x, y) =
y

1 + y(1 + xy) +
x

(1 + xy)2

.

satisfies (1 + x)3D(x)2 + (1 + x)2D(x) + x = 0. Conclude that D(x) = t(x).

2.3 Overlaps

An overlap is a word of the form auaua, where a is a letter and u is a
(possibly empty) word. A word w is said to be overlap-free if no overlap is
a factor of w. The following result was first proved by Axel Thue [Thu1912].

Theorem 2.6. The Thue-Morse word t is overlap-free.

We need the following two lemmas.

Lemma 2.7. Let C = {01, 10}. If x ∈ C∗, then 0x0 /∈ C∗ and 1x1 /∈ C∗.

Proof (Robert Cori). If w ∈ C∗, then |w|0 = |w|1. Since x ∈ C∗, we have
|0x0|0 = |x|0 + 2 = |x|1 + 2 > |x|1 = |0x0|1. Thus 0x0 /∈ C∗.

Lemma 2.8. Fix w ∈ {0, 1}∗ and let µ denote the Thue-Morse morphism.
If w is overlap-free, then µ(w) is overlap-free.

Proof. Let w be a shortest word such that µ(w) is not overlap-free. So
there exist words x, y, u ∈ {0, 1}∗ and a letter a ∈ {0, 1} such that µ(w) =
xauauay. Since µ is 2-uniform, the minimality of w implies that |x|, |y| ≤ 1.
We consider two cases.

Case |x| = 1. Here |y| = 0, since |auaua| is odd. Also, x 6= a since aa
is not in the image of µ. Hence, µ(w) = āauaua. If |u| is even then both u
and aua are in {01, 10}∗, contradicting the previous lemma. So |u| is odd.
Hence, ua is in the image of µ; that is, there exists some v ∈ {0, 1}∗ such
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that ua = µ(vā). Since µ(w) = āaµ(vā)µ(vā) = µ(āvāvā) and µ is injective,
we have w = āvāvā. So w is not overlap-free.

Case |x| = 0. Here y = ā, and the preceding argument again shows that
w is not overlap-free.

Proof of Theorem 2.6. By Lemma 2.8, µn(0) is overlap-free, so the prefixes
of µ∞(0) are overlap-free. Hence, t is overlap-free by Proposition 1.5.

Remark. Since the Thue-Morse word t is overlap-free and a fixed point of
a nonidentity morphism (Proposition 1.4), it is natural ask which infinite
binary words have these properties. This was answered by Patrice Séébold
in [Séé1982]. (See also [BS1993] and [AS2003, Corollary 1.7.9].) Remarkably,
t and t̄ are the only infinite binary words with these properties.

Exercise 2.5. Show that arbitrarily long squares can be found as factors
of the Thue–Morse word t.

Exercise 2.6 ([Brl1989]). Let t be the Thue-Morse word, and consider a
factorization t = xs, where x is a nonempty finite word and s is an infinite
word. Then either x ends with a square or s starts with a square.

Exercise 2.7 ([Ber1995]). The Thue-Morse word is the lexicographically
greatest infinite overlap-free binary word beginning with 0.

2.4 Complexity

The complexity function cw(n) of a word w is the function that counts the
number of distinct factors of length n in the word w. Closed-form expressions
for the complexity function of the Thue-Morse word were first discovered in
1989 independently by Srečko Brlek [Brl1989] and Aldo de Luca and Stefano
Varricchio [dLV1989]. In 1995, John Tromp and Jeffrey Shallit provided a
new approach [TS1995] that recovers the earlier results. Our presentation is
based on the work of de Luca and Varricchio [dLV1989].

n : 0 1 2 3 4 5 6 7 8 9 10 11
ct(n) : 1 2 4 6 10 12 16 20 22 24 28 32

Figure 2.3: The first 12 values of ct(n).

Lemma 2.9. Let u be a factor of the Thue-Morse word t of length at least
four. Then the starting position of two occurrences of u have the same parity.
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Proof. Suppose u begins by tntn+1tn+2tn+3 = tmtm+1tm+2tm+3 with n even
and m odd. Since n is even, u must begin by aā for some a ∈ {0, 1} (e.g., by
Definition 1.1). Thus tm+1 = tn+1 = ā. Since m + 1 is even and t is a word
over the alphabet {01, 10} (Exercise 1.6), we have tn+2 = tm+2 = a. Since
n + 2 is even, tm+3 = tn+3 = ā. Since m + 3 is even, tm+4 = a. Therefore,
tm · · · tm+4 = aāaāa is an overlap as well as a factor of t, contradicting the
fact that t is overlap-free.

As a consequence we obtain a recursive definition of the complexity func-
tion ct(n) of the Thue-Morse word t.

Proposition 2.10. ct(0) = 1, ct(1) = 2, ct(2) = 4, ct(3) = 6, and for
m ≥ 2,

ct(2m + 1) = 2ct(m + 1) and ct(2m) = ct(m + 1) + ct(m).

Proof. We prove only ct(2m + 1) = 2ct(m + 1), the argument for the other
identity being similar. Let u be a factor of t of length 2m + 1 with m ≥ 1.
We consider two cases.

If u begins at an even position, then the letter following u in t is deter-
mined by the last letter of u since t is a word over the alphabet {01, 10}.
Therefore, there is a bijection between the factors of length 2m + 1 that
begin at an even position and the factors of length 2m + 2 that begin at an
even position. The latter are in bijection with factors of length m + 1 since
t2n = tn and t2n+1 = t̄n for all n ≥ 0. Therefore, there are ct(m + 1) factors
of t of length 2m + 1 that begin at an even position.

Similarly, if u begins at an odd position then the letter preceding u in t

is determined by the first letter of u, so there is a bijection between factors
of length 2m + 1 beginning in an odd position and factors of length m + 1.
Therefore, there are ct(m + 1) factors of t of length 2m + 1 that begin at an
odd position.

By Lemma 2.9, no factor of t of length at least 4 can begin at both an
odd position and an even position, so ct(2m + 1) = 2ct(m + 1).

Our next aim is a closed-form expression for the complexity function
ct(n) of the Thue-Morse word. A (finite) factor u of the Thue-Morse word t

is said to be right special if both u0 and u1 are also factors of t. (The left
special factors of t are defined analogously.) Let st(n) denote the number of
right special factors of t of length n. There is a strong connection between
the factors of t and its right special factors, which we exploit to develop
a closed-form expression for ct(n). Each right special factor of length n
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n : 0 1 2 3 4 5 6 7 8 9 10 11
ct(n) : 1 2 4 6 10 12 16 20 22 24 28 32
st(n) : 1 2 2 4 2 4 4 2 2 4 4 4

Figure 2.4: The first 12 values of ct(n) and st(n).

determines two distinct factors of length n + 1 while any factor that is not
right special determines only one factor of length n + 1. Thus, ct and st are
related by

ct(n + 1) = 2st(n) + (ct(n) − st(n)) = st(n) + ct(n). (2.11)

Proposition 2.12. st(1) = 2, st(2) = 2, st(3) = 4 and for all m ≥ 2,

st(2m + 1) = st(m + 1) and st(2m) = st(m).

Proof. This follows from (2.11) and the recursion for ct(n) developed in
Proposition 2.10: if m ≥ 2, then

st(2m + 1) = ct(2m + 2) − ct(2m + 1)

= (ct(m + 2) + ct(m + 1)) − 2ct(m + 1)

= ct(m + 2) − ct(m + 1)

= st(m + 1),

and

st(2m) = ct(2m + 1) − ct(2m)

= 2ct(m + 1) − (ct(m + 1) + ct(m))

= ct(m + 1) − ct(m)

= st(m).

It follows immediately that st(n) ∈ {2, 4} for all n > 0. But we can be
much more precise: for all n ≥ 3,

st(n) =





4, if n ∈ ⋃ k∈N

k≥1

(
2k, 2k + 2k−1

]
,

2, if n ∈ ⋃ k∈N

k≥1

(
2k + 2k−1, 2k+1

]
.

(2.13)

This follows from the above recurrences for st(n). See Exercise 2.11.
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Proposition 2.14. For all n ≥ 3,

ct(n) =

{
3 · 2k + 4(r − 1), if 1 ≤ r ≤ 2k−1,

4 · 2k + 2(r − 1), if 2k−1 < r ≤ 2k,

where k and r are uniquely determined by n = 2k + r with 1 ≤ r ≤ 2k.

Proof. Fix n ≥ 3. Suppose first that n ∈ (2k, 2k + 2k−1] for some positive
integer k ≥ 1. Since ct(n) = 2 +

∑n−1
i=1 st(i) and st(i) ∈ {2, 4} for all i ≥ 1

(see (2.11) and (2.13), respectively), it follows that ct(n) = 2+4(n−1)−2m,
where m is the number of elements i in {1, 2, . . . , n− 1} such that st(i) = 2.
By (2.13), m is the cardinality of the set {1, 2} ∪ ⋃k−1

j=1

(
2j + 2j−1, 2j+1

]
.

Thus m = 2 + (1 + 2 + · · ·+ 2k−2) = 2k−1 + 1, and so ct(n) = 4(n− 1)− 2k.
If n ∈ (2k + 2k−1, 2k+1] for some positive integer k ≥ 1, then a similar

argument shows that ct(n) = 2(n − 1) + 2k+1. We conclude that

ct(n) =

{
4(n − 1) − 2k, if 2k + 1 ≤ n ≤ 2k + 2k−1,

2(n − 1) + 2k+1, if 2k + 2k−1 < n ≤ 2k+1,

for all n ≥ 3, where k is a positive integer such that 2k + 1 ≤ n ≤ 2k+1.
Replacing n by 2k + r, where r = n − 2k, establishes the proposition.

Remarks. 1. A word s is said to be recurrent if every finite factor of s

occurs infinitely often in s. Exercise 2.8 establishes that the Thue-Morse
word t is recurrent. This implies that t and every suffix of t have the same
complexity function, and so too does any infinite word with the same set
of factors as t. Surprisingly, if a recurrent infinite word s has the same
complexity function as t, then the set of factors of s is either the set of factors
of t or the set of factors of δ(t), where δ is the letter-doubling morphism
defined by δ(0) = 00 and δ(1) = 11 [ABG2007].

2. A word s is said to be uniformly recurrent if for every n ∈ N, there
exists a smallest integer Rs(n) such that any factor of s of length n is a
factor of any factor of s of length Rs(n). The function Rs : N → N is called
the recurrence index of s. The Thue–Morse word t is uniformly recurrent
with Rt(1) = 3 because t is overlap-free and Rt(2) = 7 because 00 is not a
factor of t0 · · · t5 = 011010 (Exercise 2.10).

The notion of special factors has come to play an important role in the
theory of words. We close this section with two results concerning the left
special factors of the Thue-Morse word t. (Recall that u is a left special
factor of t if 0u and 1u are factors of t.)
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Proposition 2.15. A word u starting with 0 is a left special factor of the
Thue–Morse word t if and only if it is a prefix of µn(010) for some n ∈ N.

Proof. Suppose u is a prefix of µn(010) for some n ∈ N. We use Exercise
2.13: the image under µ of a left special factor of t is a left special factor of
t. Since 010 is a left special factor of t, we infer that µn(010) is a left special
factor of t for all n ≥ 0. Finally, u is a left special factor of t since it is a
prefix of a left special factor of t.

We show that the prefixes of µn(010) exhaust all the left special factors of
t that begin with 0. Since the set of finite factors of t is closed under reversal
(Exercise 1.8), any left special factor determines a right special factor, and
conversely. Thus, the number of left special factors of t having length ℓ is
equal to st(ℓ). And since u is a left special factor if and only if ū is a left
special factor (Exercise 2.12), the number of left special factors of length ℓ
that begin with 0 is equal to 1

2st(ℓ) ∈ {1, 2}. Since the prefixes of µn(010)
are left special factors, we need only show that if st(ℓ) = 4, then there are
two distinct words that appear as length ℓ prefixes of the words µn(010).

If st(ℓ) = 4, then 2k < ℓ ≤ 2k + 2k−1 for some positive integer k. The
length ℓ prefix of µk−1(010) is µk−1(01)v for some nonempty prefix v of
µk−1(0). The length ℓ prefix of µk(010) = µk−1(011001) is µk−1(01)u for
some nonempty prefix u of µk−1(1). Since the first letters of u and v are
different, we have at least two distinct prefixes of the words µn(010) (n ≥ 0)
that have length ℓ.

Figure 2.5 depicts the tree of all the left special factors of the Thue-
Morse word that begin with 0. It is obtained by considering the prefixes of
the iterates µn(010) for n ∈ N. Since every prefix of the Thue-Morse word is
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b

0

b

0

b
1

b

0

b
1

b
1

b
0

Figure 2.5: The tree of left special factors beginning with 0 of
the Thue-Morse word.

a prefix of µn(010) for sufficiently large n, we obtain the following immediate
corollary.

Corollary 2.16. Every prefix of the Thue-Morse word is a left special factor.

Let t denote the Thue-Morse word and µ the Thue-Morse morphism.
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Exercise 2.8. Prove that every factor of t occurs infinitely often in t (that
is, prove that t is recurrent) and conclude that if s is a suffix of t, then
cs(n) = ct(n) for all n ∈ N.

Exercise 2.9 ([CH1973]). Prove that a word s is uniformly recurrent if
and only if every factor w of s occurs in s infinitely often and the distances
between consecutive occurrences of w in s are bounded.

Exercise 2.10. Show that t is uniformly recurrent and the recurrence index
Rt of t satisfies Rt(1) = 3 and Rt(2) = 7. (Hint: Use the previous exercise.)

Exercise 2.11. Suppose n ≥ 3 and k is a positive integer such that 2k +1 ≤
n ≤ 2k+1. Then

st(n) =

{
4, if n ∈

(
2k, 2k + 2k−1

]
,

2, if n ∈
(
2k + 2k−1, 2k+1

]
.

(Hint: Proceed by induction on k using Proposition 2.12.)

Exercise 2.12. If s is a right special factor of t, then s̄ is also a right
special factor of t. Prove this also holds for left special factors of t. (Hint:
Use Exercise 1.7.)

Exercise 2.13. Prove that if s is a right special factor of t, then µ(s) is a
right special factor of t. Prove this also holds for left special factors.

Exercise 2.14. Find another proof of Corollary 2.16 using Proposition 1.6,
Exercise 1.8 and the previous exercise.

2.5 Formal languages

The goal of this section is to give a brief introduction to an aspect of formal
language theory that involves the generation of languages.

A language over an alphabet A is a set of words over A. Several lan-
guages have a natural method for their generation. This has lead to the
Chomsky hierarchy of classes of languages, with each class of languages
in the hierarchy strictly containing the previous one. These are the regu-
lar languages, the context-free languages, the context-sensitive languages
and the recursively enumerable languages. In what follows we will briefly
illustrate the theory of regular and context-free languages using languages
constructed from the Thue-Morse word. In particular, we prove that the lan-
guage of factors of the Thue-Morse word is neither regular nor context-free,
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and the language of binary words that are not prefixes of the Thue-Morse
word is context-free, but not regular. We also consider the language of binary
words that are not factors of the Thue-Morse word.

2.5.1 Regular languages

Recall from Definition 2.1 that a finite deterministic automaton A over an
alphabet A consists of a finite set of states Q, an initial state q0, a set of
final states F and a next state function, denoted by · : Q × A → Q, that
extends to Q × A∗ multiplicatively.

A word u ∈ A∗ is accepted by the automaton if the state q0 · u is a
final state and rejected otherwise. For example, abbbaaab is accepted by
the automaton in Figure 2.2 while abbbaaaba is rejected. The language of
words accepted by an automaton A is denoted by L(A).

L(A) = {w ∈ A∗ : q0 · w ∈ F}.

Definition 2.17. A language L ⊆ A∗ is regular if there exists a finite
deterministic automaton A over A such that L = L(A).

Let A = 〈A,Q, q0, F, ·〉 be a finite deterministic automaton and L the
regular language accepted by A. If a1, a2, . . . , ap ∈ A with a1a2 · · · ap ∈ L,
then q0, q0 · a1, q0 · (a1a2), . . . , q0 · (a1 · · · ap) describes a sequence of states
of the automaton. If two of these states are the same (e.g., if p ≥ |Q|), then
there exist integers 0 ≤ i < j ≤ p such that q0 · (a1 · · · ai) = q0 · (a1 · · · aj).
So, for all n ∈ N,

q0 · (a1 · · · ai)(ai+1 · · · aj)
n = q0 · (a1 · · · ai).

In particular, q0 ·(a1 · · · ai)(ai+1 · · · aj)
n(aj+1 · · · ap) is a final state for all n ∈

N. This observation is known as the pumping lemma for regular languages.

Lemma 2.18 (Pumping lemma for regular languages). Suppose L ⊆ A∗ is
a regular language. There exists an integer p ≥ 1 such that for every word
w ∈ L with |w| ≥ p, there is a factorization w = (x, y, z) in A∗ satisfying
y 6= ǫ, |xy| ≤ p and xynz ∈ L for all n ∈ N.

The integer p in the statement of the lemma is called the pumping
length of L. The terminology reflects the observation that a word w ∈ L can
be “pumped up” by repeating y an arbitrary number of times. The primary
use of the pumping lemma is to prove that languages are not regular.
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Proposition 2.19. The set of factors of the Thue-Morse word t and the
set of prefixes of t are not regular languages.

Proof. Let L denote the set of factors (respectively, prefixes) of the Thue-
Morse word t and suppose that L is a regular language. Let p denote the
pumping length of L and let w denote a factor (prefix) of t of length at
least p. The pumping lemma for regular languages implies that there is a
factorization w = xyz such that y 6= ǫ and xynz ∈ L for all n ∈ N. Thus
xy3z is a factor of t for some nonempty word y, which contradicts the fact
that t is overlap-free (Theorem 2.6).

The fact that the set of prefixes of t is not a regular language also follows
from Exercise 2.18, which characterizes the infinite words whose prefixes
form a regular language as those words that are ultimately periodic. (An
infinite word w is ultimately periodic if there exist finite words x and y
such that w = xyyy · · · .)

It happens that regular languages are closed under complementation
(Exercise 2.16), thus the following result is immediate from Proposition 2.19.

Corollary 2.20. The set of binary words that are not factors of the Thue-
Morse word t is not a regular language, nor is the language consisting of the
binary words that are not prefixes of t.

Below we will see that one of these languages is context-free while the
same question for the other language remains open.

Exercise 2.15. Let A denote the automaton defined by A = {a, b}, Q =
{1, 2, 3, 4}, q0 = 1, F = {4} and next state function given by the following
table.

· 1 2 3 4

a 2 2 4 2
b 1 3 1 3

Draw the graph of A and describe the language L(A) accepted by A.

Exercise 2.16. The complement of a regular language is a regular language.

Exercise 2.17. Let L =
{
w ∈ {0, 1}∗ : |w|0 = |w|1

}
. Show that L is not a

regular language.

Exercise 2.18. Let w be an infinite word over an alphabet A and let L ⊆ A∗

be the language consisting of the prefixes of w. Then L is regular if and only
if there exist finite words x and y such that w = xyyy · · · . Conclude that
the language of prefixes of the Thue-Morse word is not regular.
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2.5.2 Context-free languages

Informally, a grammar provides a set of recursive rules for rewriting words
over an alphabet A as words over a subset T of A. We will be concerned
with the so-called context-free grammars.

Definition 2.21. A context-free grammar G = 〈V, T, P 〉 consists of an
alphabet V of variables, an alphabet T of terminal letters, which is
disjoint from V , and a finite set P ⊆ V × (V ∪ T )∗ of productions.

Suppose (v, u) is a production in a context-free grammar G. The ter-
minology “context-free” comes from the fact that v can be replaced by
u regardless of the context in which v occurs. So if w = xvy is a word
in (V ∪ T )∗, then the application of the rule (v, u) produces the new word
w′ = xuy. Often, letters from V will still occur in the word u of a production
(v, u), so other productions can be used to replace these letters.

If (v, u) is a production and w = xvy and w′ = xuy, then we write
w → w′. Note that v → u for (v, u) ∈ P . More generally, given a sequence
w0, . . . , wn of words over V ∪ T such that w0 → w1, w1 → w2, . . . , wn−1 →
wn, we write w0 → w1 → · · · → wn or w0

∗→ wn. Such a sequence is called a
derivation from w0 to wn of length n, and we say that wn is derived from
w0.

A context-free grammar G = 〈V, T, P 〉 generates a language L(G, v) by
considering all the words over T that can be derived from a particular vari-
able v ∈ V . Such languages are the context-free languages.

Definition 2.22. A language L ⊆ T ∗ is a context-free language if there
exists a context-free grammar G = 〈V, T, P 〉 and a variable v ∈ V such that

L = L(G, v) = {w ∈ T ∗ : v
∗→ w}.

It happens that the class of context-free languages coincides with the
class of languages accepted by pushdown automata, which will not be defined
here. As in the case of regular languages, there exists a pumping lemma for
context-free languages (see Exercise 2.22), whose primary use is to prove
that a language is not context-free. In light of this, the proof of Proposition
2.19 also proves the following.

Proposition 2.23. The set of factors of the Thue-Morse word and the set
of prefixes of the Thue-Morse word are not context-free languages.

Unlike for regular languages, context-free languages are not closed under
complementation. Therefore, one can ask whether the complements of the
languages of the above proposition form context-free languages.
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Theorem 2.24. The set of binary words that are not prefixes of the Thue-
Morse word t is a context-free language.

Proof. If w = w0w1 · · ·wr is a prefix of t, then w0 = 0, w2n = wn and
w2m+1 = wm for all n,m ∈ N with 2n ≤ |w| and 2m+1 ≤ |w|. Consequently,
a word w is not a prefix of t if and only if w begins with 1, or w = xayāz
with |y| = |x|−1 and a ∈ {0, 1}, or w = xayaz with |x| = |y| and a ∈ {0, 1}.
Since the class of context-free languages is closed under finite union (Exercise
2.21), we need only provide context-free grammars that generate each of
these three languages. We call the languages A, B and C below. To simplify
notation, we write v → {u1, u2, . . . , un} to denote the set of productions
v → u1, v → u2, . . . , v → un.

Consider the context-free grammar A with variables α and β, terminals
{0, 1}, and productions α → 1β and β → {ǫ, 0β, 1β}. Beginning with α,
these productions generate all binary words beginning with 1: if w is a binary
word beginning with 1, then

α → 1β → 1(w1β) → 1w1(w2β) → 1w1w2(w3β) → · · · → w;

and every word in L(A,α) begins with 1. Hence, A = L(A,α) is context-
free.

Next consider the grammar B with variables {α,β,γ}, terminals {0, 1}
and productions

α → γ1β, β → {ǫ, 0β, 1β}, γ → {0γ0, 0γ1, 1γ0, 1γ1, 00, 10}.

We will show that L(B,α) is the language of binary words x0y1z, where
x, y, z ∈ {0, 1}∗ with |y| = |x| − 1. Suppose w = x′(a0)y1z with a ∈ {0, 1}
and |y| = |x′|. By arguing as in the previous paragraph, we can show that

1β
∗→ 1z for any z ∈ {0, 1}∗. Therefore, α → γ1β

∗→ γ1z. So if l = |y| − 1,

α
∗→ γ1z →

(
x′0γyl

)
1z → x′0

(
x′1γyl−1

)
yl1z → · · · → x′γy1z → w.

Thus w ∈ L(B,α). The reverse containment is straightforward to prove.
Similarly, {x1y0z : x, y, z ∈ {0, 1}∗, |y| = |x| − 1} is a context-free language,
so B is as well.

Finally, consider the grammar C with variables {α,β, ξ}, terminals {0, 1}
and productions α → ξ0β, β → {ǫ, 0β, 1β} and ξ → {0ξ0, 0ξ1, 1ξ0, 1ξ1, 0}.
Arguing as in the previous paragraph, it follows that L(C,α) is the context-
free language of all binary words x0y0z, where x, y, z ∈ {0, 1}∗ and |x| = |y|.
Similarly, {x1y1z : x, y, z ∈ {0, 1}∗, |x| = |y|} is a context-free language and
so is C.
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So the complement of the prefixes of the Thue-Morse word t is a context-
free language. The analogous question for all factors of t remains open.

Open Question. Is the set of binary words that are not factors of the
Thue-Morse word a context-free language?

Towards answering this question, Narad Rampersad has recently shown
that the language is not an unambiguous context-free language [Ram2007].
We outline the argument below.

There are, in a typical grammar, many ways to derive a word from a
variable, as is illustrated in the following example.

Example. Consider the context-free grammar G with variable A, terminal a,
and productions A → AA and A → a. There are two distinct paths to aa:

A → AA → aA → aa,

A → AA → Aa → aa.

By taking the convention to always apply a production to the leftmost
remaining variable, we obtained the so-called leftmost derivations. As the
reader might imagine, this need not remove all the ambiguity.

Example. In the previous example there is exactly one leftmost derivation
of aa. However, there are two leftmost derivations of aaa:

A → AA → aA → aAA → aaA → aaa,

A → AA → AAA → aAA → aaA → aaa.

Definition 2.25. A context-free language L is unambiguous if there exists
a context-free grammar G generating L such that every w ∈ L has exactly
one leftmost derivation in G.

Example. Let L be the context-free language generated by the context-free
grammar G of the previous two examples. Then L = {an : n ≥ 1}. This
language is unambiguous because it can be generated by the context-free
grammar with variable A, terminal a, and productions A → Aa and A → a.

The following result of Noam Chomsky and Marcel-Paul Schützenberger
is useful in proving that a given language is not unambiguous context-free.

Proposition 2.26 (Chomsky, Schützenberger [CS1963]). If L ⊆ A∗ is
an unambiguous context-free language, then the generating series FL(x) =∑

n≥0 |L ∩ An|xn is algebraic over Q(x).
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See Section 2.2 for the necessary notions regarding generating series. We
apply this result with L equal to the language of binary words that are not
factors of the Thue-Morse word t. So L ∩ {0, 1}n is the set of binary words
of length n that are not factors of t. If ct(n) is the number of factors of t

of length n, then |L ∩ {0, 1}n| = 2n − ct(n). It follows that the series FL(x)
is algebraic if and only if the series Ct(x) =

∑
n≥0 ct(n)xn is algebraic. And

Ct(x) is algebraic if and only if St(x) =
∑

n≥0 st(n)xn is algebraic, where
st(n) = ct(n + 1) − ct(n) for all n ∈ N.

Lemma 2.27 (Carlson [Car1921]). A power series with integer coefficients
and radius of convergence 1 is either rational or transcendental.

We know from Section 2.4 that the sequence (st(n))n≥0 is bounded be-
tween 2 and 4, so the series St(x) is either rational or transcendental by
the above lemma. If the series St(x) is rational, then the sequence st(n) is
ultimately periodic (Exercise 2.24). But this is not possible by (2.13). So the
series St(x) is not algebraic and L is not unambiguous context-free.

Theorem 2.28 (Rampersad [Ram2007]). The set of binary words that are
not factors of the Thue-Morse word t is not unambiguous context-free.

Exercise 2.19. Let L = {0n1n : n ∈ N}. Show that L is a context-free
language, but not a regular language.

Exercise 2.20. Define a context-free grammar G = 〈{α, β, γ, δ}, {0, 1}, P 〉
with productions P given by

α → β, α → γ, β → δ0β, β → δ0δ,
γ → δ1γ, γ → δ1δ, δ → 0δ1δ, δ → 1δ0δ, δ → ǫ.

Show that L(G, α) is the language of binary words with a different number
of occurrences of 0s and 1s.

Exercise 2.21. If L and L′ are context-free languages, then L ∪ L′ is a
context-free language.

Exercise 2.22 (Pumping Lemma for Context-Free Languages). Let L be a
context-free language. There exists p ∈ N such that if w ∈ L and |w| ≥ p,
then there exists a factorization w = (u, v, x, y, z) satisfying |v|, |y| > 0,
|vxy| ≤ p, and uvixyiz ∈ L for each i ≥ 0. (Hint: Argue that if |w| ≥ b|V |+1,
where b is the maximum number of variables in the right-hand side of a
production, then there is a derivation of the form ξ → vξy with v, y 6= ǫ.)
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Exercise 2.23. Prove that the language L = {anbncn : n ∈ N} ⊆ {a, b, c}∗
is neither regular nor context-free.

Exercise 2.24. If {a0, a1, a2, . . .} is a sequence in R taking only finitely
many values and satisfying a linear recurrence relation (i.e.,

an = γ1an−1 + · · · γkan−k (∀n ≫ 0)

for fixed γi ∈ R and k ∈ N), then {a0, a1, a2, . . .} is ultimately periodic.

2.6 The Tower of Hanoi

In the following we will use the Thue-Morse word to construct a solution to
the Tower of Hanoi puzzle. Our exposition is based on an article by Jean-
Paul Allouche, Dan Astoorian, Jim Randall and Jeffrey Shallit [AARS1994].

The Tower of Hanoi is a puzzle that appears to have been invented
by the French number theorist François Édouard Anatole Lucas (1842-1891)
under the pseudonym “N. Claus (of Siam)”. It consists of a fixed number of
disks, no two of which have the same radius, placed on top of each other in
order of size with the largest disk on the bottom. See Figure 2.6. There are
two other piles, which initially contain no disks. The goal of the puzzle is to
move all the disks to one of the other piles according to the following rule:
exactly one disk can be moved from one pile to another as long as the disk
will not cover a smaller disk.

The Tower of Hanoi puzzle may be modelled by the directed graph in
Figure 2.7. The three nodes each represent one of the piles, and the arrows
represent moving a disk from one pile to another. A word over the alpha-
bet {a, b, c, ā, b̄, c̄} encodes a sequence of disk movements. For example, acb
encodes the following sequence of disk movements: move a disk from Pile
1 onto Pile 2; move a disk from Pile 1 onto Pile 3; move a disk from Pile
2 onto Pile 3. A solution to the problem of moving n disks from Pile i to
Pile j amounts to constructing a word Han(n, i, j) over {a, b, c, ā, b̄, c̄}. We
do this recursively in n.

If n = 0, then there are no disks to move, so the empty word provides a
solution. Thus, let

Han(0, i, j) = ǫ.

The solution is nearly as simple for n = 1: a single letter chosen from
{a, b, c, ā, b̄, c̄} depending on the particular values of i and j.
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Figure 2.6: The Tower of Hanoi puzzle, reprinted with permis-
sion from Ed. Lucas, Récréations Mathématiques, Editions Albert
Blanchard, Paris [Luc1893].

Otherwise, suppose the solution Han(n − 1, k, ℓ) has been constructed
for all {k, ℓ} ⊆ {1, 2, 3}. To move n disks from Pile i to Pile j, we may move
the top n− 1 disks to an intermediate pile k, move the remaining disk from
i to j, then move the n − 1 disks from k to j. That is, we define

Han(n, i, j) = Han(n − 1, i, k)Han(1, i, j)Han(n − 1, k, j).

Examples. (Refer to Figure 2.7.)

Han(1, 1, 2) = a,
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1

2

3

a

ā

b

b̄
c c̄

Figure 2.7: A model for the Tower of Hanoi puzzle.

Han(2, 1, 3) = Han(1, 1, 2)Han(1, 1, 3)Han(1, 2, 3)

= ac̄b,

Han(3, 1, 2) = Han(2, 1, 3)Han(1, 1, 2)Han(2, 3, 2)

= (ac̄b)(a)Han(2, 3, 2)

= (ac̄b)(a)Han(1, 3, 1)Han(1, 3, 2)Han(1, 1, 2)

= (ac̄b)(a)(cb̄a).

Remark. This solution is optimal in the sense that it constructs a word of
minimal length that solves the Tower of Hanoi puzzle. See Exercise 2.25.

In the above examples, Han(1, 1, 2) is a prefix of Han(2, 1, 3) and Han(2, 1, 3)
is a prefix of Han(3, 1, 2). This generalizes as follows: for n even, Han(n, 1, 3)
is a prefix of Han(n + 1, 1, 2); for n odd, Han(n, 1, 2) is a prefix of Han(n +
1, 1, 3). The limit of this sequence is the Hanoi word.

Definition 2.29. The Hanoi word h is lim
n→∞

Hn, where

Hn =

{
Han(n, 1, 3), if n is even,

Han(n, 1, 2), if n is odd.

Example. From the previous example: H1 = a, H2 = ac̄b and H3 = ac̄bacb̄a.
Here are the first forty letters of the Hanoi word,

h = ac̄bacb̄ac̄bācbac̄bacb̄acbācb̄ac̄bacb̄ac̄bācbac̄bā · · · .

Note that by cyclically permuting the letters a, b, c and ā, b̄, c̄ simultane-
ously, the word Han(n, 1, 2) becomes Han(n, 2, 3). This observation allows
for a recursive construction of the words Hn.
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Lemma 2.30. For all n ≥ 1,

Hn =

{
Hn−1 c̄ σ(Hn−1), for n even,

Hn−1 aσ2(Hn−1), for n odd,

where σ is the permutation of {a, b, c, ā, b̄, c̄} defined by

σ(a) = b, σ(b) = c, σ(c) = a, σ(ā) = b̄, σ(b̄) = c̄, σ(c̄) = ā.

To study the structure of the Hanoi word h, it is useful to introduce two
other infinite words g and b that encode the structure of h. The word g is
obtained from h by removing the bars from the barred letters of h, and b

is the binary word that records the location in h of the barred letters. We
make this explicit.

For each n ∈ N, let Gn denote the finite word over the alphabet {a, b, c}
that is the image of Hn under the morphism defined by x 7→ x and x̄ 7→ x
for x ∈ {a, b, c}, and let Bn denote the binary word that is the image of
Hn under the morphism defined by x 7→ 0 and x̄ 7→ 1 for x ∈ {a, b, c}. Let
g = limn→∞Gn and let b = limn→∞Bn.

Example. The table below lists the first four words of the sequences (Hn)n≥1,
(Gn)n≥1 and (Bn)n≥1.

n 1 2 3 4

Hn a ac̄b ac̄b acb̄ a ac̄b acb̄ ac̄b ācb ac̄b
Gn a acb acb acb a acb acb acb acb acb
Bn 0 010 010 001 0 010 001 010 100 010

The table suggests that g = limn→∞Gn has a rather simple structure.

Proposition 2.31. The word g is the periodic word (acb)∞.

Proof. From Lemma 2.30 we derive the following identity for Gn (n ≥ 1).

Gn =

{
Gn−1 c σ(Gn−1), if n is even,

Gn−1 aσ2(Gn−1), if n is odd.

Induction on n establishes that Gn is of the form (acb)ia for n odd and of
the form (acb)j for n even.

Next is a characterization of b = limn→∞Bn using the endomorphism
ν : {0, 1}∗ → {0, 1}∗ defined by ν(0) = 01 and ν(1) = 00. This morphism is
known as the period-doubling morphism.
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Proposition 2.32. The word b is ν∞(0). That is, b is the fixed point of ν
beginning with 0.

Proof. From Lemma 2.30 we derive the following identity for Bn (n ≥ 1).

Bn =

{
Bn−11Bn−1, if n is even,

Bn−10Bn−1, if n is odd.

Define a sequence vn by

vn =

{
Bn0, for n even,

Bn1, for n odd,

so that Bn+1 = vnBn for all n ≥ 0. Then vn and vn+2 end in the same letter
and it follows that vn+2 = vn+1vnvn.

We also have νn+2(0) = νn+1(0)νn+1(1) = νn+1(0)νn(0)νn(0) for all
n ≥ 0. We conclude that vn = νn(0) for all n ≥ 0 since they satisfy the same
recurrence and the same initial condition (v0 = B00 = ν0(0)).

Finally, for i ∈ N fixed, choose n ∈ N such that |Bn| > i. Then bi is the
letter in position i of Bn, hence it is the letter in position i of vn = νn(0).
It follows that b = limn→∞ νn(0).

It is perhaps not surprising to learn that h, g and b are k-automatic
sequences (indeed, for g and b this follows from Theorem 2.4). We leave the
verification to the exercises, but display an automaton for b in Figure 2.8.
We conclude, as promised, with a link between the Hanoi and Thue-Morse

0 1

0

1

0

1

Figure 2.8: The automaton for b.

words.

Since b is a fixed point of the morphism ν, it immediately follows that

b2n = 0 and b2n+1 = b̄n (2.33)
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for all n ≥ 0. Comparing the Thue-Morse word t and the word b,

t = 0110100110010110100101100110100110010110 · · ·
b = 0100010101000100010001010100010101000101 · · ·

we make the following observation.

Proposition 2.34. If t is the Thue-Morse word and b = limn→∞Bn, then

bn =

{
1, if tn+1 = tn,

0, otherwise.

Proof. We prove the equivalent statement that bn = (tn+1 + tn + 1) mod 2.
Let sn = (tn+1 + tn + 1) mod 2 for all n ≥ 0. Then working modulo 2,

s0 = t1 + t0 + 1 = 1 + 0 + 1 = 0,

s2n = t2n+1 + t2n + 1 = t̄n + tn + 1 = 0,

s2n+1 = t2n+2 + t2n+1 + 1 = tn+1 + t̄n + 1

= tn+1 + tn = sn − 1 = s̄n.

Comparing with (2.33), we see bn and sn satisfy the same recurrences.

Since the Hanoi word h can be reconstructed from the words g and b, it
follows from Proposition 2.31 and Proposition 2.34 that h can be constructed
directly from the Thue-Morse word.

Theorem 2.35. The Hanoi word h is obtained from the Thue-Morse word
t by placing a bar over the n-th letter of (acb)∞ if and only if tn = tn+1.

Exercise 2.25 ([AARS1994]). This aim of this exercise is to prove that the
Hanoi word provides an optimal solution to the Tower of Hanoi problem.

(a) Let Tn = |Han(n, i, j)| for i 6= j and n ≥ 0. Argue that Tn = 2Tn−1+1
for all n ≥ 0.

(b) Show that Tn = 2n − 1 for all n ≥ 0.

(c) Prove that Han(n, i, j) provides an optimal solution to the Tower of
Hanoi problem containing n disks. (Hint: Argue that any optimal
solution requires at least Tn disk movements.)

Exercise 2.26. Let ν(0) = 01 and ν(1) = 00, and let b = limn→∞ νn(0).
Then b satisfies the following for all n ≥ 0.

(a) b4n+1 = 1.
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(b) b4n+3 = bn.

(c) bn = 1 if and only if the binary expansion of n ends with an odd
number of 1s.

(Hint: To prove (c), show that the automaton in Figure 2.8 outputs b. Al-
ternatively, use Propositions 1.2 and 2.34.)

Exercise 2.27. The bar-free Hanoi word g = (acb)∞ is 3-automatic.

Exercise 2.28 ([AARS1994]). The Hanoi word h is a fixed point of the
morphism ϕ : {a, b, c, ā, b̄, c̄}∗ → {a, b, c, ā, b̄, c̄}∗ defined by

ϕ(a) = ac̄, ϕ(b) = cb̄, ϕ(c) = bā,
ϕ(ā) = ac, ϕ(b̄) = cb, ϕ(c̄) = ba.

Exercise 2.29. The Hanoi word h is a 2-automatic sequence. Find a finite
deterministic automaton that outputs h.

Exercise 2.30 ([AB1992, AAB+1995]). Let s denote the word obtained
from the periodic word (101◦)∞ = 101 ◦ 101 ◦ 101 ◦ · · · over the alphabet
{0, 1, ◦} by replacing the symbols ◦ with successive terms of the word s.
Thus s begins as

s = 101110101011101110111010101 · · · .

Prove that s = b̄. (Hint: Show that sn = 0 if tn = tn+1 and sn = 1 otherwise.
Alternatively, note that, by construction, s4n+3 = sn, s4n = 1, s2n+2 = 1
and s4n+1 = 0 for all n ≥ 0 and use Exercise 2.26.)

(This construction is an example of a Toeplitz word or a Toeplitz sequence.
For more information see [AB1992].)
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Chapter 3

Square-Free Words

A finite or infinite word m is called k-th-power-free if there is no word
u 6= ǫ such that uk is a factor of m. The special case of square-free words
has been studied at least since [Thu1906], where Thue used the notion in
his study of patterns in infinite words (see Chapter 5.3). We indicate some
elements of the theory below.

3.1 One example, three constructions

There are only 6 nonempty square-free words on two letters, namely

0, 1, 01, 10, 010, 101.

By contrast, there are infinitely many square-free words on three letters.
Indeed, even infinite ones (see Exercises 3.1 and 3.2). Below, we look at an
infinite square-free word m on three letters related to the Thue-Morse word.

Construction I. (Braunholtz [Bra1963]) Starting to the right of the initial 0
in the Thue-Morse word t, record the lengths of blocks of 1s in t:

t : 011 01 0 011 0 01 011 0 · · ·
m : 2 1 0 2 0 1 2 · · ·

The word m thus constructed is square-free. Indeed, suppose u = a1 · · · an

is a word such that uu is a factor of m. Then

(0 1a1 · · · 0 1an ) (0 1a1 · · · 0 1an)0

is a factor of t, providing t with an overlap and contradicting Theorem 2.6.

119
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Construction II. (Thue [Thu1906]) It is clear from Theorem 2.6 that the
Thue-Morse word t does not have 111 as a factor. This allows us to define
m above as the (unique) preimage of t under the morphism γ : (0, 1, 2) 7→
(0, 01, 011).

Our final construction of m is based on two auxillary words t′ and t′′

derived from t.
Construction III. (Morse, Hedlund [MH1944]) Construct the word t′ by
reading the letters of t two at a time and converting from base 2 to base 4:
(00, 01, 10, 11) 7→ (0, 1, 2, 3). That is, t′n = 2tn + tn+1.

t : 0 1 1 0 1 0 0 1 1 0 0 1 0 · · ·
t′ : 1 3 2 1 2 0 1 3 2 0 1 2 · · · (3.1)

Next, construct t′′ by reducing the letters of t′ modulo 3.

t′ : 1 3 2 1 2 0 1 3 2 0 1 2 · · ·
t′′ : 1 0 2 1 2 0 1 0 2 0 1 2 · · ·

Finally, let t′′+1∞ denote the word on {0, 1, 2} defined by (t′′+1∞)n ≡ t′′n+1
mod 3.

Proposition 3.2. The words m and t′′ + 1∞ coincide.

Proof. Note that t′′n ≡ tn+1 − tn mod 3. We claim that this expression also
equals mn − 1 mod 3, from which the desired result follows.

To prove the claim, we consider the auxiliary word p defined by recording
the position of the n-th occurrence of 0 in t. That is, pn = N if tN = 0 and
|t0t1 · · · tN−1|0 = n − 1:

t : 0 1 1 0 1 0 0 1 1 0 · · ·
p : 0 3 5 6 9 · · ·

From the definition of the Thue-Morse word, we know that

pn =

{
2n, if tn = 0

2n + 1, otherwise.
(3.3)

In other words, pn = 2n + tn. Evidently, mn equals 0, 1 or 2 according
to whether pn+1 − pn − 1 equals 0, 1 or 2 (see Figure 3.1). But this last
expression is also equal to the value of tn+1 − tn + 1, proving the claim.

We conclude with alternative constructions of t′ and t′′, in the spirit of
Proposition 1.5.
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t : 0 1 1 0 1 0 0 1 1 0 · · ·
p : 0 3 5 6 9 · · ·
m : 2 1 0 2

Figure 3.1: Defining p by pn = 2n+ tn, the relationship between
t, p and m is uncovered.

Proposition 3.4 (Morse, Hedlund [MH1944]). The endomorphism α of
words over the alphabet {0, 1, 2, 3} defined by α : (0, 1, 2, 3) 7→ (12, 13, 20, 21)
satisfies t′ = α∞(1).

Proof. The proof rests on the following identity (see Exercise 3.5):

[
µn(0)1

]′
= αn(1) for all n ≥ 0,

where µ is the Thue-Morse morphism and
[
µn(0)1]′ denotes the word con-

structed from µn(0)1 in the same manner that t′ is constructed from t (read-
ing two letters at a time and converting from base 2 to base 4).

Example. Taking n = 2, we have µ2(0)1 = 01101,
[
01101

]′
= 1321 and

α2(1) = α(13) = 1321.

Continuing with the proof, we prove that µn(0)1 is a prefix of t for all n.
Indeed, we have seen that t = µ∞(0) and moreover µn+1(0) = µn(0)µn(1),
since µ is a morphism. Since µn(1) begins in 1, the result follows. Using
the identity above, we conclude that αn(1) is a prefix of t′, finishing the
proof.

Let β be the endomorphism of {0, 1, 2, 3}∗ defined by β : (0, 1, 2, 3) 7→
(0, 1, 2, 0). An immediate corollary of Proposition 3.4 is that t′′ = β

(
α∞(1)

)
.

We use this fact to prove a different characterization of t′′ due to Marshall
Hall [Hal1964]. We call the endomorphism σ that he uses the morphism
of Hall in what follows.

Proposition 3.5 (Hall [Hal1964]). Let σ denote the morphism on {0, 1, 2}∗
defined by σ : (0, 1, 2) 7→ (12, 102, 0). Then t′′ = σ∞(1).

Proof. The proof rests on the altogether not obvious identities of Exercise
3.6, which may be proved by parallel induction on n:

σn+1(0) = β
(
αn(12)

)
,
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σn+1(1) = β
(
αn(132)

)
,

σn+1(2) = β
(
αn(0)

)
.

The proof is now immediate, for we have

σn+2(1) = σn+1(102) = βαn(132120)

= βαn+1(132) = βαn+2(1)βαn+1(2).

In particular, σn and βαn have common prefixes of strictly increasing lengths
for all n ≥ 2.

Remark. The Thue-Morse word and its derivatives are not the only infinite
words the reader has seen that can be described as the fixed point of a
morphism. See Exercise 3.7 for a Fibonacci example.

Exercise 3.1 ([Lot1997, Lemma 2.1.2]). Fix an alphabet A and let P be a
property of elements of A∗ which is closed under taking factors. Show that
the following two statements are equivalent if and only if A is finite.

(a) The set LP of words w ∈ A∗ having propery P is infinite.

(b) There exists an infinite word w on A whose (finite) factors all have
property P.

Exercise 3.2 ([MH1944]). For each infinite word a = a0a1 · · · on A =
{a, b}, define an infinite word b = b0b1 · · · on B = {a, b, c} by

bn =





a, if anan+1 ∈ {aa, bb},
b, if anan+1 = ab,

c, if anan+1 = ba.

Prove that if a is overlap-free, then b is square-free.

Exercise 3.3. Show that t′ and t′′ are square-free. (Hint: Use Exercise 3.2
with a = t.)

Exercise 3.4 ([AARS1994]). Show that the Hanoi word h (Definition 2.29)
is square-free.

Exercise 3.5. Complete the proof of Proposition 3.4. That is, verify the
identity

[
µn(0)1

]′
= αn(1). (Hint: A proof by induction seems natural. You

may want to simultaneously verify
[
µn(0)0

]′
= αn(0),

[
µn(1)0

]′
= αn(2),

[
µn(1)1

]′
= αn(3),

where given a word w, the word w′ is built as in (3.1) by reading the letters
of w two at a time and converting from binary.)
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Exercise 3.6. Given α, β and σ as in Proposition 3.5, verify that the
identities below hold for all n:

σn+1(0) = β
(
αn(12)

)
, σn+1(1) = β

(
αn(132)

)
, σn+1(2) = β

(
αn(0)

)
.

Exercise 3.7. Let Φ denote the composition E◦D of Christoffel morphisms

from Chapter 2 of Part I, i.e., (x, y)
Φ7→ (xy, x). Prove that Φ∞(x) is the

Fibonacci word f defined in Exercise 1.5 of Part I.

Exercise 3.8. An automaton for t′.

(a) Prove that the automaton in Figure 3.2 outputs the word t′. (Hint:
Use the argument in the proof of Theorem 2.4 and Proposition 3.4.)

0 1

2 3

0

0

11 11

0

0

Figure 3.2: An automaton that outputs t′.

(b) Develop a combinatorial characterization of t′n based on the binary
expansion of n. (Hint: By definition, t′n = 2tn + tn+1, so t′n is either
0 or 1 if tn = 0 and is either 2 or 3 if tn = 1.)

3.2 Square-free morphisms and codes

A morphism h : A∗ → B∗ is a square-free morphism, or more simply
h is square-free, if for every square-free word w over A, the image h(w)
is square-free over B. Exercise 3.10 indicates a strong connection between
square-free morphisms and the more general notion of k-th power–free mor-
phisms.

Evidently, the trivial morphism h : A∗ → {ǫ} is square-free. We rule out
this case in what follows; by “morphism” we shall always mean “nontrivial
morphism.”

A complete characterization of square-free morphisms does not exist,
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though Maxime Crochemore [Cro1983b] showed that the monoid of square-
free morphisms is not finitely generated.1 One evident fact is the following.

Proposition 3.6. If h : A∗ → B∗ is a square-free morphism and if h∞(a)
exists for some a ∈ A, then h∞(a) is a square-free word.

Remark. The converse to this proposition is false, as verified by the mor-
phism of Hall: we have seen that σ∞(1) = t′′ is square-free, and clearly 101
is square-free, but σ(101) = 1 0 2 1 2 1 0 2 is not.

Short of demanding square-freeness, one might ask if h is at least k-
square-free: a morphism h is called k-square-free if it preserves the square-
free property of words of length at most k. This notion was introduced in
developing criteria to test whether or not h is square-free. Early results in
this direction include the following.

Proposition 3.7 (Crochemore [Cro1982]). If |A| = 3, a morphism h : A∗ →
B∗ is square-free if and only if h is 5-square-free.

This leads naturally to the notion of test sets: a set T ⊆ A∗ is a test
set for the square-freeness of h if one may deduce that h is square-free by
checking that h(t) is square-free for all t ∈ T . The proposition states that a
test set for “ternary morphisms” is the set of all square-free words on three
letters of length at most five. Fortunately, each such word is a factor of a
square-free word of length equal to five, so a minimal test set contains a
quite manageable thirty elements. (See Exercise 3.9.)

Theorem 3.8 (Crochemore [Cro1982]). A morphism h : A∗ → B∗ is square-
free if and only if it is k-square-free for

k = max

{
3, 1 +

⌈
M(h) − 3

m(h)

⌉}
,

where ⌈-⌉ is the ceiling function, M(h) = max{|h(a)| : a ∈ A} and m(h) =
min{|h(a)| : a ∈ A}.

Example. If h is a uniform morphism, then M(h) = m(h) and k = 3. The
theorem then reads, “3-square-free uniform morphisms are square-free,” a
statement which also follows from Theorem 3.11 below.

1More generally, the monoid of k-th-power-free morphisms (k ≥ 3) and overlap-free
morphisms are also not finitely generated. (See [RW2002] and [Ric2003].)



3.2. SQUARE-FREE MORPHISMS AND CODES 125

Crochemore’s theorem gives an upper bound on the size of test sets in
the general case. See also [HYY2003], where Hung-Kuei Hsiao, Yow-Tzong
Yeh and Shyr-Shen Yu give a similar test set involving

max
{

k : h(a) ∩ B∗h(Ak)B∗ 6= ∅
}

.

A more precise description of test sets, at least in the setting of k-th-power-
free morphisms (k ≥ 3), has been undertaken by Gwénaël Richomme and
Francis Wlazinski [RW2004,RW2007].

The balance of this chapter is devoted to two important k-square-free
tests for a morphism to be square-free. We begin with some elementary
properties of square-free morphisms.

Lemma 3.9. Let h : A∗ → B∗ be a (nontrivial) morphism, and let C denote
the set of images {h(a) : a ∈ A}. If h is square-free, then:

(i) h is nonerasing,

(ii) h is injective on its alphabet,

(iii) no element c ∈ C is the prefix of another element c′ ∈ C,

(iv) no element c ∈ C is the suffix of another element c′ ∈ C.

Proof. (i): Suppose that h is erasing (i.e., there is a letter a ∈ A with
h(a) = ǫ). Since h is not the trivial morphism, there is some b ∈ A such
that h(b) 6= ǫ. But then, bab is square-free while h(bab) = h(b)h(b) is not
square-free.

(iii): Suppose a, b ∈ A and x ∈ B∗ are such that h(b) = h(a)x. Then
h(ab) = h(a)h(a)x fails to be square-free.

(ii) & (iv): Follow the proof of (iii).

After the lemma, we may restrict our search for square-free morphisms
to nonerasing injective morphisms h. If, moreover, h is 2-square-free, then
the proof of the lemma realizes h(A) as a code in B∗.

Definition 3.10. A code over an alphabet B is a set of words C ⊆ B∗

such that every w ∈ C∗ has a unique factorization w = (c1, c2, · · · , cr) with
cj ∈ C.

In the context of codes, Properties (iii) and (iv) of the above lemma
are the definitions of prefix code and suffix code: we say that a code C is
a prefix code (respectively, suffix code) if no element of C is the prefix
(respectively, suffix) of another element of C. A code C that is both a prefix
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code and a suffix code is called a bifix code. If, moreover, no element of
C is a factor of another element of C, then C is called an infix code. An
important class of infix codes are uniform codes, that is, codes C whose
elements have a common length.

Examples. The (nonuniform) code {01, 12, 0210} is infix while the code
{0, 101} is not. The code {01, 02, 12} is uniform, while {10, 01, 11, 00, 10011}
is not even a code.

As we will focus our attention on (nonerasing, injective) 2-square-free
morphisms, we freely use the language of codes in what follows. Moreover,
if h : A∗ → B∗ is a morphism giving rise to a code (that is, C(h) := h(A)
is a code in B∗), then we transport properties naturally defined for C to h
and vice versa. For example, we speak freely below of “k-square-free codes”
(a code coming from a k-square-free morphism) and “infix morphisms” (a
morphism whose associated code is infix).

Exercise 3.9. A few square-free facts about ternary alphabets A:

(a) Every square-free word over A of length less than five appears as a
prefix of some square-free word over A of length five.

(b) There are 30 square-free word of length five.

(c) There are square-free words in A7 which cannot be extended to longer
square-free words. Seven is the minimal integer with this property.

Exercise 3.10 ([BEM1979]). A nonerasing morphism h : A∗ → B∗ is said
to be k-th-power-free if h(w) is k-th-power-free for each k-th-power-free word
w. Show that if h is a square-free morphism such that

(a) h(A) is infix, and

(b) if |h(a)| > 1 then h(a) does not begin and end in the same letter,

then h is k-th-power-free for all k ≥ 2.

3.3 A 3-square-free test for square-freeness

Our first theorem goes back to Axel Thue’s work. It has also been given
in the paper by Dwight Bean, Andrzej Ehrenfeucht and George McNulty
[BEM1979].

Theorem 3.11. A 3-square-free infix morphism is square-free.

In particular, infix morphisms have a test set composed of square-free
words of length at most 3. Before starting the proof, we consider a notion
closely related to infix.
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Definition 3.12. A code C is comma-free if for all ucv ∈ C∗, with c ∈ C,
one has u, v ∈ C∗.

Example. The code {0121, 01021, 20102} is comma-free. (This is more easily
seen after the forthcoming lemma.) The Thue-Morse morphism µ : (0, 1) 7→
(01, 10) is not comma-free because µ(00) = 0101 = 0µ(1)1.

Lemma 3.13. A comma-free code is infix. Conversely, a 2-square-free infix
code is comma-free.

Proof. Let C = C(h) be a comma-free code associated to some morphism
h : A∗ → B∗. Assume that ucv ∈ C for some c ∈ C. Since C is comma-free,
this implies u, v ∈ C∗, and since C is a code, this forces u = v = ǫ.

Conversely, suppose C is 2-square-free and infix. Consider a word ucv ∈
C∗ with c ∈ C and u, v ∈ B∗. Then ucv = c0 · · · cn for unique c0, . . . , cn ∈ C.
First, we establish the factorization in Figure 3.3 for some 0 ≤ j < n and
c′, v′ 6= ǫ.

c0 · · · cj cj+1 · · · cn

u c v

u′′ c′ c′′ v′

Figure 3.3: A factorization as ucv of a word c0 · · · cn in C∗ for a
2-square-free infix code C.

The index j is chosen so that |c0 · · · cj−1| ≤ |u| < |c0 · · · cj|. By the infix
property of C, c cannot be a factor of cj , so there are two cases: (i) c and
cj begin and end at the same point within ucv, or (ii) the prefix uc eclipses
the right edge of cj. In the latter case, again because C is infix, cj+1 cannot
end before (or at) the end of c. So we have factorizations

cj = u′′c′ c = c′c′′ cj+1 = c′′v′

for some words u′′, c′, c′′, v′ ∈ B∗, with c′, v′ 6= ǫ.
Noting that cjc contains a square, we deduce by the 2-square-free prop-

erty of C that cj = c. The first case above then satisfies u, v ∈ C∗ and we
are done.

In the remaining case (u′′ and c′′ are both nonempty), we see that ccj+1

also contains a square (forcing cj = c = cj+1). We further suppose that |c′| >
|c′′| (assuming |c′| ≤ |c′′| instead, one reaches the same conclusion). Since c′

is a suffix of cj = c, we see that c′′ is a suffix of c′. Thus c = c′c′′ = xc′′c′′

(for some x ∈ B∗) contains a square and C is not even 1-square-free.
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Proof of Theorem 3.11. Suppose h : A∗ → B∗ is a 3-square-free infix mor-
phism and set C = C(h). Assume the result is false and let w = a0a1 · · · an

(ai ∈ A) be a shortest square-free word such that h(w) contains a square uu
(u ∈ B∗ \ {ǫ}). We have n ≥ 3 by hypothesis.

Writing h(ai) = ci, we may assume that the product uu starts at the
beginning of or within c0 and ends within or at the end of cn (otherwise
we could have chosen a shorter word w). We claim that the factorization in
Figure 3.4(a) cannot happen and that the true picture is Figure 3.4(b) for
some 0 < j < n.

c0 · · · cn

u u

(a) u is a factor of c0.

c0 · · · cj · · · cn

u u

(b) cj straddles the factorization uu.

Figure 3.4: Potential instances of the square uu within h(w).

Indeed, if the first picture holds true, one would have c1 as a factor of
u (since n > 1), and hence as a factor of c0, violating the infix property of
C. Turning to the second picture, we refine it by introducing factorizations
cj = ps, c0 = p′s′ and cn = p′′s′′ as in Figure 3.5 (with s′, p, p′′ 6= ǫ).

p′
s′ p s p′′

s′′

c0 · · · cj · · · cn

u u

Figure 3.5: An instance of the square uu within h(w).

Note that either c1 or cn−1 is a factor of u (since n ≥ 3). Say we are in
the first case (the other one being symmetric). Then

cj · · · cn = pus′′ = ps′c1 · · · cj−1ps′′.

Moreover, since C is a comma-free code by Lemma 3.13, the factoriza-
tion (ps′)c1(c2 · · · cj−1ps′′) ∈ C∗ means that ps′ ∈ C∗ \ {ǫ}. Writing ps′ =
c′c′′ · · · c(r), there are four cases to consider. See Figure 3.6.

p s′

c′

(a) ps′ ∈ C.

p s′

c′ c′′

(b) p, s′ ∈ C.

p s′

c′ · · ·
(c) p begins in c′.

p s′

· · · c(r)

(d) s′ ends in c(r).

Figure 3.6: Possible factorizations of ps′ inside C∗.
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Cases (c) and (d) of Figure 3.6 are excluded because C is bifix. that is,
because c′ is a prefix of cj and c(r) is a suffix of c0, respectively.

In Case (b), one has p = c′ = cj and s′ = c′′ = c0 (since C is bifix).
Moreover, p′ = ǫ and s = ǫ. We now have the factorizations

u = c0c1 · · · cj = cj+1 · · · cn−1p
′′,

or c0c1 · · · cjs
′′ = cj+1 · · · cn. The prefix property of C then gives us that

s′′ = ǫ and p′′ = cn. Indeed, c0 is a prefix of cj+1 (or vice versa) and hence
they are equal. Continuing this line of reasoning, peeling off the left-most ci

at each step, we are left with one of three possibilities depending on whether
n − j is less than, equal to or greater than j + 1:

cℓ · · · cjs
′′ = ǫ s′′ = ǫ ǫ = cℓ · · · cn−1p

′′.

Since h is nonerasing, the only allowable result above is the middle one. So
we conclude that p′′ = cn, n = 2j + 1 and ck = cj+1+k for 0 ≤ k ≤ j, i.e., w
is a square.

In Case (a) of Figure 3.6, we have c′ = ps′ = cj (C is prefix) and s = s′.
It follows that

c1 · · · cj−1p = cj+1 · · · cn−1p
′′,

or c1 · · · cj−1 = cj+1 · · · cn−1 and p = p′′, because C is prefix. Moreover, since
h(ai) = ci and h is injective on its alphabet, we have

a1 · · · aj−1 = aj+1 · · · an−1.

We use this equality to show that w contains a square. Towards this end,
notice that h(a0ajan) = c0cjcn = p′spsps′′ contains a square. It follows from
the 3-square-free property of h that a0ajan contains a square, thus a0 = aj

or aj = an. In both cases, the word

w = a0 · · · an = a0

(
a1 · · · aj−1

)
aj

(
a1 · · · aj−1

)
an

contains a square, contradicting our assumptions on w.

3.4 A 2-square-free test for square-freeness

Our next theorem is due to Pavel Goralč́ık and Tomas Vanicek. Before stat-
ing it, we need to introduce two more properties of codes in the spirit of
infix.
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Definition 3.14. A code C ⊆ B∗ is a prefix-suffix code, or a ps-code,
if for every c ∈ C and every factorization c = ps in B∗, either c is the only
word in C starting in p or c is the only word in C ending in s. That is,

ps, p′s, ps′ ∈ C =⇒ p′ = p or s′ = s .

Note that we have allowed for trivial factorizations ps = pǫ or ps = ǫs
above. In particular, ps-codes are bifix. The term ps-code was introduced in
the thesis of Veikko Keränen. See also [Ker1986,Ker1987]. The notion has
also been used by Michel Leconte (e.g., [Lec1985]), who calls such a code
faithful.

Example. The codes {012, 120, 201} and {012, 02122, 021102} are ps-codes,
while {0, 12, 102} and {112, 0120, 012012} are not.

Given a code C ⊆ B∗ and an element w ∈ B∗ (not necessarily in C), we
say w is left synchronizing (in C) if for every u, v ∈ B∗ with uwv ∈ C∗,
one has u ∈ C∗. The right synchronizing property is analogously defined.
The property of codes we need is that of strongly synchronizing: a code C is
called strongly synchronizing if for every c ∈ C and every factorization
c = ps ∈ B∗, p is left synchronizing or s is right synchronizing.

Remark. This may be compared to the more prevalent notion of synchro-
nizing codes C: for all c ∈ C and ucv ∈ C∗, one has uc, cv ∈ C∗. See
[BP1985, Chapter VII.2] for more details. A strongly synchronizing code is
comma-free and so synchronizing (Exercise 3.11). It is also infix (Lemma
3.13).

The condition of being strongly synchonizing seems rather difficult to
check. Goralč́ık and Vanicek [GV1991] call a code bissective if it is a
strongly synchronizing ps-code.

Theorem 3.15. If a strongly synchronizing ps-morphism is 2-square-free,
then it is square-free.

Proof. A strongly synchronizing morphism h : A∗ → B∗ is infix (Exercise
3.11 and Lemma 3.13). If we can show that h is also 3-square-free, then
Theorem 3.11 finishes the proof for us. Let C denote the code C(h) and
suppose we are given a word w = a1a2a3 (ai ∈ A) such that h(w) contains
the square uu for some u ∈ B∗ \ {ǫ}. We argue that w contains a square.
Write x = h(a1), y = h(a2) and z = h(a3). We begin by reducing the
problem to the situation illustrated in Figure 3.7.

If uu is a factor of xy, then h(a1a2) = xy contains a square. Since h is
2-square-free, a1 must equal a2 and w contains a square. Similarly, if uu is
a factor of yz, then w contains a square.
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p′ s′ p s p′′ s′′

x y z

u u

Figure 3.7: Factorizations of the code words x, y, z ∈ C and the
square uu ∈ B∗ inside the product xyz.

Suppose uu is neither a factor of xy nor of yz. If u is a factor of x, then
y is a factor of the second u, which implies y is a factor of x. Since C is infix,
x = y, and w contains a square because h is 2-square-free. Similarly, if u is
a factor of z, then w contains a square.

We thus have the situation depicted in Figure 3.7, with s′, p, s, p′′ 6= ǫ.
In particular, we learn that

xy = p′s′ps = p′sp′′s, (3.16)

yz = psp′′s′′ = ps′ps′′. (3.17)

As h is strongly synchronizing and y = ps ∈ C, there are two cases to
consider: p is left synchronizing or s is right synchronizing.

In the first case, (3.17) gives ps′ ∈ C∗. So we have ps ∈ C and ps′ =
c1 · · · cr ∈ C∗ (ci ∈ C). Since psp′′ = ps′p, either c1 is a prefix of ps or vice
versa, both possibilities forcing s′ = s by the prefix property of C. Then
(3.17) shows that p′′ = p. In the second case, (3.16) gives p′′s ∈ C∗, from
which one also learns that p′′ = p and s = s′.

We now have
y = ps, x = p′s, z = ps′′ ∈ C,

which in turn implies either p′ = p or s′′ = s (as C is a ps-code). In other
words x = y or z = y, which shows that w = xyz contains a square.

Exercise 3.11. Prove that a strongly synchronizing code C ⊆ B∗ is both
synchronizing and comma-free. (Hint: There are two cases to consider: either
C is the entire alphabet B or it is not.)
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Chapter 4

Squares in Words

This chapter deals with occurrences of squares in finite words. We begin by
providing bounds for the number of occurrences of squares of primitive words
and for the number of distinct squares in a fixed finite word. The remain-
der of the chapter is devoted to describing a linear-time algorithm to test
whether a word contains a square. The necessary ingredients include cen-
tered squares, prefix arrays, the Crochemore factorization and suffix trees.

4.1 Counting squares

Here we establish bounds on the number of occurrences of squares of prim-
itive words and the number of distinct squares in a fixed finite word.

Example. The word aaaaaa contains three squares: aa, aaaa, aaaaaa. Only
aa is a square of a primitive word, and it appears 5 times in aaaaaa.

Example. Let w = abaababaabaab. There are eight words whose squares
occur in w: a; ab; ba; aba; baa; aab; abaab; and baaba. They are all primitive.
The squares for a and aba occur thrice and twice, respectively.

Prefixes play an important role in dealing with squares, so we introduce
the prefix poset of an alphabet.

Definition 4.1. Given an alphabet A, the prefix poset PA = (A∗, <) is
the poset defined by the order relation x ≤ y if x is a prefix of y. The poset
contains a unique minimal element ǫ and is ranked by word length.

The explicit poset structure of PA will play a role in Chapter 4.5. Here,
we use only the ordering relation to help establish the desired bounds on
squares in a word. The following result, due to Maxime Crochemore and
Wojciech Rytter [CR1995, Lemma 10], will also be useful.

133
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w w

v v

u u

v u

(a) w is a prefix of vu.

w w

v v

u u

v u

(b) vu is a prefix of w.

Figure 4.1: The Three Squares Lemma says (a) is impossible
when u is primitive.

Lemma 4.2 (Three Squares Lemma). Let u, v and w be words such that
uu < vv < ww. If u is primitive, then |u| + |v| ≤ |w|.

Proof. Suppose u, v and w are three words such that uu < vv < ww with
|w| < |u| + |v|. We will show that u is not primitive. We begin by arguing
for the situation illustrated in Figure 4.2.

w

v t r

u u

Figure 4.2: Proof of the Three Squares Lemma.

Since vv < ww, we must have v < w as well, so write w = vt (t 6= ǫ). Note
that vt is a prefix of vv because both are prefixes of ww and |vt| = |w| < |vv|.
It follows that t is a prefix of v. Since u is also a prefix of v, we have either
u ≤ t or t < u. The first case would imply |w| = |vt| = |t| + |v| ≥ |u| + |v|,
contradicting our hypothesis. Therefore, u = tr for some r 6= ǫ. Finally, r is
also a prefix of w because wr is a prefix of ww (since wr = vtr = vu and vu
is a prefix of vv, which is a prefix of ww).

Case I: |u|+|t| > |v|. Then vv is a prefix of wu, since |wu| = |vtu| > |vv|.
Write v = us for some nonempty word s. We are in the situation illustrated
in Figure 4.3. We show that u is not primitive in 6 steps.

1. u begins with rs and sr. In particular, sr = rs.

Since wrs = vtrs = vus = vv and vv < ww, it follows that wrs is a
prefix of ww of length |vv|. Also, wu is a prefix of ww and |wu| > |vv|.
Hence, wrs is a prefix of wu, which implies that u begins with rs. So write
u = rsu′. Then uu is a prefix of vu (since uu < vv and |u| < |v|) and
vu = usu = usrsu′. Hence, u is a prefix of srsu′, so u also begins with sr.

2. r = zλ and s = zν for some word z and some λ, ν ∈ N.
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w r

v t u

u s u s

t r u

r

Figure 4.3: Case I in the proof of the Three Squares Lemma.

This follows from Step 1 and Exercise 4.3.

3. zu = uz′ for some conjugate z′ of z.

Since v = us, it follows that uu is a prefix of vu = usu. So u is a prefix
of su. Let s′ be the word such that su = us′. Exercise 4.4 and Step 2 imply
zu = uz′.

4. ru = ur′ for some word r′.
This follows from Step 2 and Step 3.

5. rt = tr.

Observe that vu is a prefix of wu since both words are prefixes of ww
(because u < v < w) and |vu| < |vv| < |wu|. Thus vu is a prefix of vtu since
wu = vtu. It follows that u is a prefix of tu. Write tu = ut′ for some word
t′. Combined with Step 4, we have rtu = rut′ = ur′t′ = trr′t′.

6. u is not primitive.

By Step 5 and Exercise 4.3, there exists a nonempty word p and non-
negative integers α and β such that r = pα and t = pβ. Since r and t are
nonempty, α + β ≥ 2. Hence, u = tr = pα+β is not primitive.

Case II: |u|+|t| ≤ |v|. This case is illustrated in Figure 4.4, and is argued
as in Case I. The proof is left to Exercise 4.7.

w r

v t u

u t v

t u

Figure 4.4: Case II in the proof of the Three Squares Lemma.

Remark. The primitive condition in the Three Squares Lemma is necessary:
consider u = a3, v = a4 and w = a5.
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Our first application of the Three Squares Lemma concerns the number
of squares of primitive words occurring in a finite word. This also appears
in [CR1995].

For the convenience of the reader we recall the definition of big-O nota-
tion. Given two functions f, g : N → R>0, write f(n) = O(g(n)) if there
exist a positive integer N and a positive constant c such that f(n) ≤ cg(n)
for every n ≥ N . That is, g(n) is an asymptotic upper bound for f(n).

Theorem 4.3. The number of occurrences of squares of primitive words in
a word of length n is O(n log n).

Proof. We argue that the number of squares of primitive words that start

in position i is always at most logφ(n) + 1, where φ = 1+
√

5
2 is the golden

ratio.
Let w be a word of length n and let y1 < y2 < · · · < yk be the primitive

words such that y2
1 , y

2
2, . . . , y

2
k begin in position i. Repeated application of

the Three Squares Lemma gives that |yj| ≥ |yj−1|+ |yj−2| for all 3 ≤ j ≤ k.
Since |y1| ≥ 1 and |y2| ≥ 2, it follows that n = |w| ≥ |yk| ≥ Fk+1, where
Fk+1 is the (k + 1)-st Fibonacci number. This, in turn, is greater φk−1 (see
Exercise 4.9), thus k ≤ logφ(n) + 1.

Remark. As shown in [Cro1981, Lemma 10], the bound provided in Theorem
4.3 is optimal and obtained by the prefixes of the Fibonacci word f of length
Fk (the so-called “Fibonacci words,” see Exercises 4.12 and 4.13).

Our second application of the Three Squares Lemma concerns the num-
ber of distinct squares in a word. It comes in the proof of the following
theorem due to Aviezri S. Fraenkel and Jamie Simpson [FS1998].

Theorem 4.4. Any word of length n contains at most 2n distinct squares.

Proof. Let m be a word of length n. For 0 ≤ i ≤ n − 2, denote by si

the number of squares in m starting at position i that have no occurrence
starting at a position greater than i. We are interested in the number s0 +
s1 + · · · + sn−2. We will prove that si ≤ 2 for each i.

Suppose on the contrary that si ≥ 3. Then there exist three distinct
words u, v and w with uu < vv < ww such that uu, vv and ww begin at
position i and have no occurrence starting at a position greater than i.

If u is primitive, then the Three Squares Lemma implies |w| ≥ |u|+ |v| >
2|u| = |uu|. Hence uu is a proper prefix of w. This implies that there is an
occurrence of uu beginning at position i + |w|, a contradiction.

If u is not primitive, then u = yk for some primitive word y and some
k ≥ 2. So yy < vv < ww since yy is a proper prefix of uu. By the Three
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Squares Lemma, |w| ≥ |v| + |y|. We may assume that |uu| > |w| because
otherwise there is another occurrence of uu in m at a position greater than
i. Therefore, w is a common prefix of y2k and vv such that |w| ≥ |v|+ |y| >
|v|+ |y|−gcd(|v|, |y|). By the Fine-Wilf Theorem (Exercise 4.5), the words y
and v are integer powers of some nonempty word. Since y is primitive, this
word is y. Thus v = yℓ for some ℓ > k. Therefore, vv = y2ℓ = y2ℓ−2ky2k =
y2ℓ−2kuu. Since vv begins at position i, it follows that uu also begins at
position i + (2ℓ − 2k)|y| > i. This is a contradiction.

Remarks. 1. Lucian Ilie recently proved a three overlap lemma similar in
spirit to the Three Squares Lemma and used it to show that the number
of squares occurring in a word of length n is bounded by 2n − O(log n)
[Ili2007].

2. It has been conjectured that the 2n in the statement of Theorem 4.4 may
be replaced by n [FS1998,Lot2005, Ili2007]. In some sense, this is the best
one can hope for: Fraenkel and Simpson construct a sequence of words—
described in Exercise 4.8—where the number of squares in each word is very
close to the length of the word.

Exercise 4.1 (Levi’s Lemma). Let u, v, x, y ∈ A∗ and suppose uv = xy.

(a) If |u| ≥ |x|, then there exists t ∈ A∗ such that u = xt and y = tv.

(b) If |u| < |x|, then there exists t ∈ A∗\{ǫ} such that x = ut and v = ty.

Exercise 4.2. Let y ∈ A∗ and x, z ∈ A∗ \ {ǫ}. If xy = yz, then there
exist words u, v ∈ A∗ and an integer p ≥ 0 such that x = uv, z = vu
and y = (uv)pu = u(vu)p. (Hint: Proceed by induction on |y| using Levi’s
Lemma above.)

Exercise 4.3. If xy = yx for some words x, y ∈ A∗, then there exists a
word z ∈ A∗ and nonnegative integers k and l such that x = zk and y = zl.
(Hint: Proceed by induction on |xy|.)

Exercise 4.4. Let x, y, z be words over some alphabet A. If zlx = xy for
some positive integer l, then zx = xz′ for some conjugate z′ of z.

Exercise 4.5 (Fine-Wilf Theorem). Let u, v ∈ A∗. There exists w ∈ A∗\{ǫ}
such that u, v are integer powers of w if and only if there exist i, j ≥ 0 so that
ui and vj have a common prefix (or suffix) of length |u|+ |v| − gcd(|u|, |v|).

Exercise 4.6 (Synchronization). If u is a primitive word, then there are
exactly two occurrences of u in the word uu (as a prefix and as a suffix).
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Exercise 4.7. Complete Case II in the proof of Three Squares Lemma by
arguing |u| + |t| ≤ |v| implies u is not primitive. (Hint: The situation is
depicted in Figure 4.4; argue as in Case I.)

Exercise 4.8 ([FS1998]). For each m ∈ N, let Qm denote the concatenation
of 00101001, 00010010001, . . . , and 0m+110m10m+11. For example, Q1 =
00101001 and Q2 = 0010100100010010001. Show that the number of squares
having at least one occurrence in Qm is very close to |Qm| by proving the
following.

(a) The length of Qm is 3m2+13m
2 .

(b) The number of squares in Qm is 3m2+7m−6
2 +

⌊
m+1

2

⌋
.

Exercise 4.9. Recall that the Fibonacci numbers are defined by F0 = 1,
F1 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 2. Prove that Fn > φn−2

for all n ≥ 2, where φ = 1+
√

5
2 . (Hint: Recall that φ satisfies a quadratic

polynomial.)

4.2 Centered squares

The results in this and the next two sections may be found in the book by
Maxime Crochemore, Christophe Hancart and Thierry Lecroq [CHL2001,
CHL2007].

Given a factorization w = (u, v) ∈ A∗, a centered square at (u, v) is
a factor rsrs of w, with rs 6= ǫ, such that either: u = αrsr and v = sβ for
some α, β ∈ A∗; or u = αr and v = srsβ for some α, β ∈ A∗. See Figure
4.5. In the former case we say that rsrs is a left-centered square of w at
(u, v) and in the latter case we say that rsrs is a right-centered square
of w at (u, v).

In developing an algorithm for testing square-freeness, one could start
with a “divide and conquer” method: given a word w, choose a factorization
w = (u, v) and look for centered squares at (u, v), as illustrated in Figure
4.5; if no centered square is found, then repeat the method for the words
u and v. We begin by observing that no cavalier implementation of this
method can possibly run in linear time.

Let TC(|u|, |v|) denote the time it takes to test for a left-centered square
in uv at (u, v). Using the divide and conquer method, the computation time
T (n) for testing square-freeness of a word of length n is

T (n) = T
(⌊n

2

⌋)
+ T

(⌈n

2

⌉)
+ TC

(⌊n

2

⌋
,
⌈n

2

⌉)
.
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u v

α r s r s β

w

Figure 4.5: The divide and conquer method for finding squares.

We show in Section 4.3 that TC(|u|, |v|) is linear in |uv|, meaning that the
divide and conquer algorithm only yields T (n) = O(n · log n). Nevertheless,
the notion of centered squares can be exploited to build a linear-time test
for square-freeness. We establish this in Section 4.4.

Lemma 4.5. A word uv has a left-centered square at (u, v) if and only if
there exists a nontrivial factorization u = (x, y) and words r and s such
that

(i) r is a common suffix of u and x,

(ii) s is a common prefix of y and v,

(iii) |sr| ≥ |y|.
Exercise 4.10 asks the reader to turn Figure 4.6 into a proof of this

lemma. The lemma becomes powerful with the observation that one is not
looking for the beginning of the square.

u v
r s

r s

x y

Figure 4.6: A picture proof of Lemma 4.5.

For a word w = w0w1 · · ·wn−1 of length n, we write w(i, j) for the factor
wi · · ·wj−1. Stopping short of wj allows that w(i, j)w(j, k) = w(i, k) and
that |w(i, j)| = j− i. We abbreviate the prefix w(0, i) of length i by w(i) and

the corresponding suffix (starting at position i) by w(i) so that w = w(i)w
(i).

Finally, we let x 1 y and x

0

y denote, respectively, the longest common
prefix and longest common suffix of x and y.

Corollary 4.6. A word uv has a left-centered square at (u, v) if and only if
there is an integer i (0 ≤ i ≤ |u| − 1) such that

|u 0

u(i)| + |v 1 u
(i)| ≥ |u| − i.
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Exercise 4.10. Turn Figure 4.6 into a proof of Lemma 4.5.

4.3 Prefix arrays

The prefix array of two words x and y is the sequence of lengths of the
longest prefixes common to x and suffixes of y:

prefx,y(i) := |x 1 y
(i)|, for 0 ≤ i ≤ |y|.

Similarly, the suffix array of x and y is the sequence of lengths of the
longest suffixes common to x and prefixes of y:

suffx,y(i) := |x 0

y(i)|, for 0 ≤ i ≤ |y|.
Example. Consider the words u = abacabaabacaa and v = bacaccab. We
record a few prefix and suffix arrays in Figure 4.7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

u a b a c a b a a b a c a a

prefu,u 13 0 1 0 3 0 1 5 0 1 0 1 1 0

suffu,u 0 1 0 1 0 1 0 1 2 0 1 0 1 13

v b a c a c c a b

prefv,u 0 4 0 0 0 2 0 0 4 0 0 0 0 0

Figure 4.7: Assorted prefix and suffix arrays for the words u =
abacabaabacaa and v = bacaccab.

Rephrasing Corollary 4.6 in this language, we see that a word uv has a
left-centered square at (u, v) if and only if there exists 0 ≤ i ≤ |u| − 1 such
that

suffu,u(i) + prefv,u(i) ≥ |u| − i.

It is this formulation of the existence of left-centered squares that gives us
TC(|u|, |v|) = O(|u| + |v|). Indeed, the complexity of computing suffu,u and
prefv,u is linear in |u| (we prove only the first of these facts here); likewise
for right-centered squares and |v|.
Lemma 4.7. Fix d = |x 1 y|. For each 0 < j < d one has

x 1 y
(j) =

{
x 1 x(j) = y 1 x(j) = y 1 y(j), if |x 1 x(j)| < d − j,

x(j, d)
(
x(d−j)

1 y(d)
)
, if |x 1 x(j)| ≥ d − j.



4.3. PREFIX ARRAYS 141

Proof. The case |x 1 x(j)| < d − j is pictured in Figure 4.8 (the common
prefix being r). From the picture, it is clear that the string of given quantities
are all equal whenever s 6= ǫ.

x

y

0 d

x 1 y

x 1 y

0 j d

r
r s

r

Figure 4.8: A proof of the first case of Lemma 4.7.

The argument supporting the other case is similar.

Corollary 4.8. Fix k < |x| and d = prefx,x(k). For each 0 < j < d one has

prefx,x(k + j) =

{
prefx,x(j), if prefx,x(j) < d − j,

d − j + |x(d−j)

1 x(k+d)|, otherwise.

The significance of this result is that one need not perform as many
pref(-) and suff(-) calculations as one might guess. In Figure 4.9, we un-
derline the prefix computations we get for free from the corollary. We leave
it to the reader to develop the analogous suffix corollary and underline the
free suffix computations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x a b a c a b a a b a c a a

prefx,x 13 0 1 0 3 0 1 5 0 1 0 1 1 0

suffx,x 0 1 0 1 0 1 0 1 2 0 1 0 1 13
prefx,x(j) + j 1 3 3 7

k = 4
d = 3

k = 7
d = 5

Figure 4.9: Using Corollary 4.8 to compute the prefix array
prefx,x of a word x. The underlined entries come at no cost.

We codify our findings as Algorithm 1. Note that the inner while-loop
will not define pref[k + j] for values k + j > n = |x| because d cannot be
larger than n − k. In particular, the algorithm always terminates with the
values (k, d) = (n, 0). For the reader unfamiliar with such computations, we
carefully analyze the cost for one pass through Steps 3–11. Suppose the
pair (k, d) at Step 3 becomes (k′, d′) at Step 11. Then k′ − k − 1 entries are
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input : a word x of length n.
output: an array pref[0, n] of length n + 1.

pref[0] := n ; pref[1] := prefx,x(1)1

k := 1 ; d := pref[k]2

while k < n do3

j := 14

while pref[j] < d − j do5

pref[k + j] := pref[j]6

j := j + 17

end8

if d − j < 0 then d = j9

pref[k + j] := (d − j) +
∣∣x(d−j)

1 x(k+d)
∣∣10

k := (k + j) ; d := pref[k]11

end12

Algorithm 1: |||
|

Computing the prefix array prefx,x of a word x.

simply copied from earlier in the array, for a “cost” on the order of k′ − k,
after which a single computation is performed with cost on the order of
|x(d−j)

1 x(k+d)| = d′−d+j = d′−d+k′−k. In total, we get 2(k′−k)+(d′−d)
as the cost for one pass. If in r steps we move from k1 = 1 to kr = n, adding
the cost of successive passes gives a telescoping sum. The total cost is on
the order of 2kr − 2k1 − (dr − d1) = 2n − 2 − 0 +

∣∣x 1 x(1)
∣∣, or O(n).

Corollary 4.9. For a given word x of length n, the prefix and suffix arrays
prefx,x and suffx,x can be constructed in O(n) time.

Exercise 4.11 ([CHL2007, Theorem 2.35]). The complexity of computing
prefv,u is linear in |u|.

4.4 Crochemore factorization

Towards the goal of developing a linear-time test for square-freeness, Maxime
Crochemore [Cro1983a] introduced a factorization of words similar to the
popular Ziv-Lempel factorization.1 His factorization of a word w, which may

1The factorization introduced by Abraham Lempel and Jacob Ziv in [LZ1976] was
later implemented by Terry Welch [Wel1984]. The so-called LZW algorithm is behind
many lossless data compression algorithms (e.g., the TIFF image file format).
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also be found in the literature as the “f -factorization” or “s-factorization,”
will be denoted c(w) in what follows.

Definition 4.10. The Crochemore factorization of a word w is the
unique factorization

c(w) = (x1, x2, . . . , xn)

of w with each xi satisfying either:

(C1) xi is a letter that does not appear in the factor x1 · · · xi−1; or

(C2) xi is the longest prefix of xixi+1 · · · xn that also has an occurrence
beginning within x1 · · · xi−1 (i.e., there is a prefix uxi of w with u
shorter than x1 · · · xi−1).

Example. The Crochemore factorizations of abababb and abaababacabba are

(
a, b, abab, b

)
1 1 2 2

and
(
a, b, a, aba, ba, c, ab, ba

)
,

1 1 2 2 2 1 2 2

where beneath each xi in the factorization (x1, . . . , xn) we have written “1”
or “2” according to whether (C1) or (C2) was used to build the factor.

The following result characterizes words containing squares in terms of
its Crochemore factorization.

Notation. For any factor u of a word w, let πw(u) be the starting index of
the first occurrence of u in w.

Theorem 4.11 (Crochemore [Cro1983a]). Let w be a word with Crochemore
factorization c(w) = (x1, . . . , xk). Then w contains a square if and only if
there exists j ∈ N with 2 ≤ j ≤ k such that

(i) πw(xj) < |x1x2 · · · xj−1| ≤ πw(xj) + |xj|, or

(ii) the pair (xj−1 , xj) has a centered square, or

(iii) j ≥ 3 and the pair (x1 · · · xj−2 , xj−1xj) has a right-centered square.

Proof. Let c(w) = (x1, . . . , xk) be the Crochemore factorization of w. If
(ii) or (iii) holds for some 2 ≤ j ≤ k, then w obviously contains a square.
Suppose (i) holds. This case is illustrated in Figure 4.10. Since πw(xj) <
|x1x2 · · · xj−1|, the first occurrence of xj must begin within x1x2 · · · xj−1.
Option (A) in the figure is ruled out because it violates the condition
|x1x2 · · · xj−1| ≤ πw(xj) + |xj |. Options (B) and (C) provide, respectively,
the squares xjxj and rr within w.
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r s

(C)

x1x2 · · ·xj−1 xj

(A) (B)

Figure 4.10: The possible positions (A)–(C) for the first occur-
rence of the word xj within x1x2 · · ·xj−1xj .

Conversely, suppose that none of (i)–(iii) hold, yet there is a square zz
within w. Letting j be minimal with zz a factor of x1x2 · · · xj, we derive a
contradiction in three steps.

1. zz is not a factor of xj .

Indeed, since (i) does not hold, either xj is a new letter, in which case
zz is clearly not a factor of xj, or πw(xj) + |xj | < |x1x2 · · · xj−1|, meaning
the first occurrence of xj is a proper factor of x1x2 · · · xj−1. Then zz is also
a proper factor of x1x2 · · · xj−1, contradicting the minimality of j.

2. zz is not a factor of xj−1xj.

By Step 1, zz is not a factor of xj . If zz is a factor of xj−1, then we
violate the minimality of j. Finally, if zz straddles the boundary between
xj−1 and xj, then (xj−1, xj) has a centered square, violating the assumption
that (ii) does not hold.

3. zz is not a factor of x1x2 · · · xj .

After Steps 1 and 2, we need only rule out the case that zz is a centered
square for (x1x2 · · · xj−2, xj−1xj). Since (iii) does not hold, we may assume
zz is a left-centered square. We are left with the situation pictured in Figure
4.11 with t 6= ǫ. By the definition of the Crochemore factorization, xj−1

x1 · · ·xj−2 xj−1 xj xj+1 · · ·xk

r s r s
xj−1 t t

Figure 4.11: A left-centered square at (x1 · · ·xj−2 , xj−1xj) that
satisfies none of Conditions (i)–(iii) from Theorem 4.11.

cannot be a single letter (since it occurs before its indicated position as a
prefix of s). On the other hand, (C2) is also violated: xj−1 should be the
longest prefix of xj−1 · · · xk that also has an occurrence within x1 · · · xj−2,
but s is strictly longer than xj−1.
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We have already seen that the prefix (suffix) array for testing for left-
centered (right-centered) squares can be built in linear time. Now, if the
Crochemore factorization can be formed in linear time (and it can, see Sec-
tion 4.5), then we have developed a square-free test that runs in linear time
relative to |w|.

Corollary 4.12 ([CHL2007, Theorem 9.14]). A word may be tested for
square-freeness in linear time.

Proof. Given a word w to test, first compute the Crochemore factorization
of w (which can be done in linear time; see Section 4.5), and then test Cases
(i)–(iii) in Theorem 4.11 for j = 2, . . . , k:

(i): Is πw(xj) < |x1x2 · · · xj−1| ≤ πw(xj) + |xj |? Each test takes O(1)
time.

(ii): Does the pair (xj−1 , xj) have a centered square? Each such test takes
O(|xj−1| + |xj |) = O(|xj−1xj|) time, by Corollaries 4.6 and 4.9.

(iii): Does the pair (x1 · · · xj−2 , xj−1xj) have a right-centered square? Each
such test takes O(|xj−1xj|) time because the cost of testing for a right-
centered square at (u, v) is linear in |v|.
We conclude that test j may be completed in O(|xj−1xj|) time. Summing
this bound for each j = 2, . . . , k, we find the total running time to be on the
order of O(|w|).

Exercise 4.12 ([Smi1876]). Define an infinite word f as the limit of the
iterations f0 = y, f1 = x, and fn = fn−1fn−2 for n ≥ 2. Verify that this is
the Fibonacci word from Exercise 3.7. (The intermediate iterations in the
procedure are often called the “Fibonacci words.”)

Exercise 4.13 ([BS2006]). Compute the first six terms in the Crochemore
factorization (x1, x2, x3, . . .) of f . Posit and prove a peculiar relationship
between the xi’s (i ≥ 4) and the finite Fibonacci words from Exercise 4.12.

4.5 Suffix trees

Given a word w ∈ A∗, the suffix tree T (w) is a data structure that compactly
stores for fast retrieval every factor (in particular, every suffix) of w. Chief
among its applications is a solution to the factor problem.2

2The terminology varies in the literature; this is also known as the substring problem.
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Factor Problem: Given a word w of length n, find all locations
of all occurrences of a factor f within w.

It happens that T (w) can be built in O(n) time (more precisely, O(n log |A|)
time, but one typically assumes a fixed alphabet). Moreover, once this
“preprocessing” is done, using T (w) one can solve the factor problem in
O(|f | + k) time, assuming k instances of the factor f within w. Otherwise
stated, your favourite PDF viewer could find all instances of “Fibonacci”
within the text you are reading faster than you could consult its index.

More information on the construction and applications of this “jewel”
in stringology is readily found in [Gus1997, CR2002]. Here, we are chiefly
concerned with its application to the Crochemore factorization. As such, we
indicate the key ingredients of a linear time construction below but stop
short of a detailed proof.

4.5.1 Definition and examples

The suffix tree may be described using the prefix poset PA introduced in
Definition 4.1. That poset has a meet operation3 that we have already met:
(x, y) 7→ x 1 y, the longest common prefix operation of Section 4.2. To
begin, let Suff(w) denote the sub-poset of PA consisting of the suffixes of w
(including the empty word). The unadorned suffix tree of w, denoted by
Suff(w), is the closure of Suff(w) under 1 in PA.

Example. Figure 4.12 depicts the posets Suff(ababaa) and Suff(ababaa).

ǫ

a

aa

abaa

ababaabaa

babaa

(a) The subposet Suff(ababaa) in PA.

ǫ

a

aa

aba

abaa

ababaa

ba

baa

babaa

(b) The closure Suff(ababaa) in PA.

Figure 4.12: Construction of the unadorned suffix tree Suff(w)
for w = ababaa.

Before defining the suffix tree, we need the notion of covers: if x and y
are elements of a poset P , then we say that y covers x and write x ⋖ y, if
x < y and if there does not exist z ∈ P such that x < z < y.

3of Lattice theory, cf., [Sta1997, Chapter 3.3].
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Definition 4.13. The suffix tree T (w) of a word w is the labelled, rooted,
directed tree with nodes and arrows defined as follows.

Nodes. There is one node U for each u ∈ Suff(w). It carries two labels:
the first occurrence πw(u) of u and “True” or “False” according to
whether or not u is a suffix of w.

Arrows. There is a labelled arrow U
v′−→ V whenever U and V are the

nodes corresponding to suffixes u and v with u ⋖ v ∈ Suff(w) and
v = uv′.

The root node E is the node corresponding to ǫ. It is labelled 0 and True.
A suffix node of T (w) is a node U labelled by True. A leaf node is a suffix
node with no outgoing arrows.

For every node U in T (w), let position(U) be the numerical label at-
tached to U , let suffix(U) denote the Boolean label attached to U and

let path(U) = v1v2 · · · vt, where E
v1−→ · · · vt−→U is the unique path in T (w)

from E to U . Then path(U) is the word u ∈ Suff(w) corresponding to
the node U , suffix(U) is True if and only if path(U) ∈ Suff(w), and
position(U) = πw(path(U)).

Notation. In the interest of legibility, we keep the labelling convention intro-
duced above by representing nodes with capital letters and their associated
paths with the corresponding lowercase letter, e.g., U is the node correspond-
ing to u ∈ Suff(w). In figures, the position property of a node is displayed,
and the node is double-circled if it is a suffix node.

Example. The suffix tree T (ababaa) is pictured in Figure 4.13. (Compare it
with Figure 4.12(b).)

0

0

4

0

2

0

1

3

1

a

a

ba a

baa
ba

a

baa

Figure 4.13: The suffix tree T (ababaa).

Example. The suffix tree T (abacabaabaca) is pictured in Figure 4.14.
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ba
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baabaca
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ca

baabaca

ca

baabaca

Figure 4.14: The suffix tree T (abacabaabaca).

Remarks. 1. In the preceding examples, each factor f appearing in w is a
prefix of path(U) for a unique node U in T (w). This is true in general. See
Exercise 4.14.

2. The above construction is often called the compact suffix tree in the
literature, in which case the name “suffix tree” is reserved for the tree T ♯(w)
that may be recovered from T (w) by adding enough bivalent nodes so that
all arrow labels are letters. The advantage of using T ♯(w) is that it may
be viewed as an automaton whose language is Suff(w). The disadvantage is
that it is too large (in terms of the number of states and arrows).

Proposition 4.14. If a tree T has n nodes and e edges, let n + e be a
measure of the size of T . Given a word w ∈ A∗ of length N , the trees T (w)
and T ♯(w) have sizes O(N) and O

(
N2
)
, respectively.

Proof. Exercise 4.15.

In particular, since the run-time for an algorithm is at least as large as its
output, constructing T ♯(w) in linear time is impossible.4

The suffix tree for w may be built recursively in several different ways.
Peter Weiner [Wei1973] and Edward M. McCreight [McC1976] were the first
to describe algorithms to do this in linear time. Weiner’s method adds longer
and longer suffixes of w to a tree, starting with the last letter of w, whereas
McCreight’s method adds shorter and shorter suffixes, starting with the
entire word w. For more details on their algorithms and how they might be
implemented in linear time, see [Gus1997] and [CHL2007] respectively.

4There does exist a general scheme for building an automaton of smallest size with
language Suff(w). We refer the interested reader to [CHL2007, Chapter 5.5] for details.
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Below, we briefly describe the “on-line” algorithm of Esko Ukkonen
[Ukk1995] for constructing T (w). Ukkonen’s method may also be imple-
mented in O(|w| log |A|) time. It has the novel advantage of not needing
to see the entire word w before beginning the construction of T (w). Our
description largely follows that of [Gus1997].

4.5.2 On-line construction

Recall the notation w(i) and w(j, i) from Section 4.2 for the prefix w0 · · ·wi−1

and the factor wj · · ·wi−1, respectively, of w = w0 · · ·wn−1. The idea driving
Ukkonen’s on-line algorithm is to start by building the suffix tree T

(
w(1)

)
,

then continue recursively, building the tree T
(
w(i+1)

)
from T

(
w(i)

)
for 1 ≤

i < n. The passage from one phase of the construction to the next exploits
a simple relationship between the suffixes of w(i+1) and w(i):

Suff
(
w(i+1)

)
=
{
uwi | u ∈ Suff

(
w(i)

)}
∪
{
ǫ
}

=
{
w(j, i)wi | 0 ≤ j ≤ i

}
∪
{
ǫ
}
.

In order to achieve the O(n) complexity, Ukkonen actually works with
implicit suffix trees at each step, passing to a true suffix tree only at the
last step. The implicit suffix tree T ♭(w) of a word w differs from T (w) in
that the root node and interior suffix nodes are not labelled as suffixes, and
interior bivalent nodes do not appear at all.

Example. Figure 4.15 depicts the implicit version of the tree in Figure 4.14.

0

0

6

0
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0

2

1

5

1

3

a

abaca
ba

abaca

cabaabacacabaabaca

ba abaca

cabaabaca

cabaabaca

Figure 4.15: The implicit suffix tree T ♭(abacabaabaca).

We begin by constructing T ♭(w). As we will see shortly, one easily passes
from T ♭(w) to T (w) by one extra walk through the tree. Let us say that
there are n phases in the construction, with phase i + 1 corresponding to
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adding the letter wi to the tree T ♭
(
w(i)

)
. The reader may find it useful to

look at the elementary examples in Figure 4.16 before reading further. The
first phase is always the same and handled in constant time: make the tree
E

w0−→U with position(E) = 0, suffix(E) = “False”, position(U) = 0 and
suffix(U) = “True”.

Within phase i + 1 (for i > 1), there are i + 1 extensions, one for each
suffix of w(i) (incuding the empty suffix). We order the suffixes from longest
to shortest, so extension j +1 corresponds to processing the factor w(j, i)wi.
Each extension is processed according to rules below.

Rule 1 If v = uv′ is a suffix of w(i) corresponding to a leaf node V , and V

is a leaf node of U with path(U) = u, then replace the arrow U
v′−→V

with U
v′wi−−→V .

Rule 2 If u = w(j, i) is a suffix of w(i) corresponding to a node U of T ♭
(
w(i)

)

and no edge leaving U begins by wi, then add a new node V : set
position(V ) = j, suffix(V ) = True and add the edge U

wi−→V .

Rule 3 If u = w(j, i) is a suffix of w(i) that does not correspond to a node

of T ♭
(
w(i)

)
, i.e., there are nodes V1

v−→ V2 with u = path(V1)u
′ and

v = u′v′, and if v′ does not begin by wi, then add two new nodes U
and V : set suffix(U) = False, suffix(V ) = True, position(V ) = j and

position(U) = position(V2); add the edges U
wi−→V and U

v′−→ V2 and

replace V1
v−→V2 by V1

u′

−→U .

Rule 4 If u = w(j, i) is a suffix of w(i) and a path extending from u begins
by wi, then do nothing (the suffix w(j, i)wi is already present).

The sequences (a0, a1, . . .) in Figure 4.16 indicate which rules were applied
during phase i. One might observe the following behaviour (Exercise 4.16).

Lemma 4.15. Let aj(i) denote the rule used during extension j of phase i.
Then:

(i) if aj(i) ∈ {1, 2, 3}, then aj(i
′) = 1 for all future phases i′;

(ii) if aj(i) = 4, then aj′(i) = 4 for future extensions j′ of i.

The importance of the lemma will be evident a bit later. First, let us
explain how to recover the suffix tree T (w) from T ♭(w) by processing an
additional ‘end-of-text’ character external to the alphabet A (say $). Note
that since $ does not appear in A, no suffix of w$ is a proper prefix of



4.5. SUFFIX TREES 151

0
0a

0

0

1

ab

b

0

0

1

aba

ba

0

0

1

abab

bab

0

0

1

ababa

baba

0

0

0

2

1
3

1

ab

abb

b

b b

abb

0

0
0

0

1
1

a

ba
ba

ba ba

0

0

0

2

1

3

1

ab

abb

b

b
b

abb

·b

·a

·b

(1, 2)

(1, 1, 4)

(1, 1, 4, 4)

·a
·b

(1, 1, 4, 4, 4)
(1, 1, 3, 3, 4)

·$ ·$

ababa ababb

Figure 4.16: The suffix trees T (ababa) and T (ababb), built using
Ukkonen’s on-line algorithm. Each implicit suffix tree is built from
the last by lengthening leaves or adding nodes in a systematic
manner.
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another (i.e., there are no implicit suffix nodes in T ♭(w$)). Instead of using
Rules 1–4 to pass from T ♭(w) to T ♭(w$), we use the following modifications
and arrive directly at T (w): if Rule 1 should apply for w(j, n)$, do nothing;
if Rule 2 or 3 should apply, set suffix(U) = “True” in place of adding the
new node V ; Rule 4 will never apply by our choice of $.

Proposition 4.16. The above procedure constructs the suffix tree T (w) of
a word w ∈ A∗ in O

(
|w|3

)
time.

Proof. The key issue is how to locate the ends of the i + 1 suffixes of w(i)

within T ♭
(
w(i)

)
. If we start from the root of the current tree, the j-th ex-

tension to phase i + 1 would take O(i + 1 − j) time to locate. We leave the
details to Exercise 4.17.

4.5.3 Towards a linear-time algorithm

So far, we have a blueprint for construction of T (w) in O
(
|w|3

)
time—hardly

the O(|w|) time advertised in the introduction. Ukkonen begins with this
blueprint and introduces several modifications to reduce the time and space
demands of the execution. Chief among them is the notion of suffix links
that stems from the following observation, which we leave as an exercise.

Lemma 4.17. Suppose w ∈ A∗. If U is a node in T ♭(w) with path(U) = av
for some a ∈ A, then there exists a unique node V with path(V ) = v.

Define the suffix link function S on nodes of T ♭(–) by S(U) = V (in the
notation of Lemma 4.17). Note that once S(U) has been defined in phase i,
its value does not change in subsequent phases. Less trivial is the observation
that if a new node U is created in extension j of some phase i, then it will
be possible to define S(U) at least by the end of extension j + 1 (so S(U) is
ready for use in phase i + 1). Creating and maintaining suffix links greatly
reduces the time required to apply Rules 1–4 during each phase. Indeed,
if during phase i you have finished working on extension j, you need not
march from the root all the way to w(j +1, i). You can get there in constant
time if w(j, i) corresponds to a node (following a suffix link), and in time
proportional to i− j−1 otherwise. Implemention of suffix links thus reduces
the total run-time from O

(
|w|3

)
to O

(
|w|2

)
.

We are now ready to use Lemma 4.15. The next speed boost begins
by reducing the space requirements, replacing the edge labels w(j, k) with
the pair of integers (j, k) (see Exercise 4.15). This is useful as follows. If
w(j, i) corresponds to a leaf, it will correspond to a leaf for all i′ > i by the
lemma. As a result, it is sufficient to just label it (j, e) where e represents
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the “current-end-of-text.” Incrementing e once per phase is sufficient to deal
with all leaves in that phase. Moreover, one may simply keep a counter j0

that points to the “last-known-leaf” from the previous phase. Then j0 + 1
is the starting index of the first suffix in the current phase that needs to
be explicitly dealt with. Next, again by the lemma, one notes that as soon
as Rule 4 is applied in extension j, one can immediately skip to the start
of the next phase (all remaining extensions j′ will be by Rule 4 and all
relevant suffix links have already been made). Finally, Ukkonen shows that
the total number of times Rule 2 or 3 must be applied is bounded by 2|w|.
Implementing these last tricks yields the advertised O(|w|) time for the on-
line algorithm. Again, we refer the reader to [Gus1997] for omitted details.

4.5.4 Crochemore factorizations and square-free tests

We have shown that using prefix arrays and the Crochemore factorization
c(w) of a word w, one can test for square-freeness in O(|w|) time. To verify
that the test can truly run in O(|w|) time, it remains only to show that
c(w) can be built in linear time.

Proposition 4.18 (Crochemore [Cro1986]). The Crochemore factorization
c(w) = (x1, x2, . . . , xn) of a word w may be realized in linear time.

Proof. As usual, the factor x1 is the single letter w0. Next, assume that the
first i factors x1, x2, . . . , xi have been found and write w = x1 · · · xix

′ with
|x1 · · · xi| = N . Use the suffix tree to search for prefixes p of x′ within w.
Choose p such that |p| is maximal among all prefixes q with πw(q) < N .
If p = ǫ, then put xi+1 equal to wN (the first letter of x′). Otherwise, put
xi+1 = p.

The above procedure evidently results in the Crochemore factorization
of w. Since the suffix tree can be built in linear time, it remains only to
verify that the indicated search may be carried out in linear time. We leave
this to Exercise 4.20.

Example. The Crochemore factorization (a, b, a, c, aba, abaca) is readily built
from the suffix tree T (abacabaabaca) in Figure 4.14. It passes Tests (i) and
(iii) of Theorem 4.11 at each index 2 ≤ j ≤ 6 and first fails Test (ii) at
(x5, x6).

Complete details on the use of Crochemore’s algorithm to test for square-
freeness may be found in [CHL2007, Chapter 9.3]. We mention that Dan
Gusfield and Jens Stoye have a suffix-tree method for testing square-freeness
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that avoids both the Crochemore factorization and suffix arrays [GS2002].5

While their algorithm is somewhat simpler to describe, the present one af-
fords us the opportunity to introduce more tools of the trade.

4.5.5 Further applications

It is worthwhile to mention a few additional uses of suffix trees. Exercises
4.18–4.22 outline several that are within reach, despite the rapid introduc-
tion to suffix trees above. Touching on a central theme of Part I, suffix trees
may also be used to find the maximal palindrome p within a word w in linear
time. We close by mentioning the k-mismatch problem.

Fix two words s = s0 · · · sr and w = w0 · · ·wn over an alphabet A, with
r ≤ n. Given k ∈ N, a k-mismatch of s within w is a factor wi · · ·wi+r of
w such that wi+j 6= sj for at most k integers 0 ≤ j ≤ r. The k-mismatch
problem is to find all k-mismatches of s within w. Gad M. Landau and
Uzi Vishkin [LV1986] and Eugene W. Myers [Mye1986] have shown that
this can be done in O(kn) time. Moreover, Gad M. Landau and Jeanette P.
Schmidt [LS1993] developed a method to test for k-mismatch square-freeness
in O

(
kn log n

k

)
time. It uses, as we did in Section 4.2, a divide-and-conquer

idea as its starting point.

Exercise 4.14. Verify from the definition of T (w) that if f is any proper
factor of w, then there is a unique node U ∈ T (w) with f a prefix of path(U).

Exercise 4.15. Prove Proposition 4.14. Also, prove that if one replaces the
factors w(j, k) labelling edges by the extremal indices (j, k), then T (w) also
takes up only O(w) space.

Exercise 4.16. Prove Lemma 4.15.

Exercise 4.17. Prove Proposition 4.16.

Exercise 4.18 (The Factor Problem). Given a text w and a factor f , return
in O(|w| + |f | + k) time all k instances of f within w. (Hint: Assume, or
prove, that the following modification of T (w) may also be built in O(|w|)
time: instead of labelling internal nodes U with position(U), label them with
the set {position(V ) | V is a leaf node whose path passes through U}.)

Exercise 4.19 (Longest Common Factor). The longest common factor of
two words u, v can be found in linear time relative to |u|+ |v|. (Hint: Build

5Though admittedly they introduce so-called branching squares and DFS arrays in
their place.
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a suffix tree for each word first, and do a bottom-up search. See [CR2002,
Theorem 5.3].)

Exercise 4.20 (Longest Prefix Factor). Given the suffix tree for a word
w ∈ A∗ and a suffix s beginning at position i in w, return in O(|p|) time
the longest prefix p of s such that πw(p) < i.

Exercise 4.21 (All Distinct Factors). The number of distinct factors of
a word w may be counted in O(|w|) time. The distinct factors may be
enumerated (printed) in O(|w| + N) time, where N is the sum of the lengths
of the distinct factors of w.

Exercise 4.22 (Smallest k-Repeat). Given w ∈ A∗ and k ∈ N, find in
O(|w|) time the shortest factor s that occurs exactly k times within w.
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Chapter 5

Repetitions and Patterns

In this final chapter, we outline several directions of research departing from
the Thue-Morse word and square-free work of the preceding chapters. More
details may be found in [Lot1997, Chapter 2], [Lot2002, Chapter 3] and, of
course, the original sources cited below.

5.1 Maximal repetitions

Let v and w be words and write w = w0w1w2 · · · , where w0, w1, w2, . . .
are letters. Recall that wiwi+1 · · ·wj is said to be an occurrence of v in
w if v = wiwi+1 · · ·wj . (In particular, an occurrence of v in w includes
information about where v appears in w.) Here we will be concerned with
occurrences of repetitions in a fixed word.

A repetition is a word of the form unv, where u is a word, v is a prefix
of u and n ≥ 2. Thus, squares and overlaps are examples of repetitions. If r
is a repetition, then the minimal period of r is the smallest positive integer
p such that ri = ri+p for all 0 ≤ i < |r| − p. An occurrence of a repetition
r = wi · · ·wj in w is extendible if wi−1r or rwj+1 has the same minimal
period as r. An occurrence of a repetition is nonextendible if it is not
extendible. A maximal repetition, or a run, in a word is an occurrence
of a nonextendible repetition in the word.

Examples. Let w = abaabababaaab.

1. The second occurrence of baba in w is an extendible repetition since
ababa has minimal period 2. Note that babaa does not have minimal period
2. The first occurrence of baba in w is also an extendible repetition.

2. The first occurrence of the square aa in w is a maximal repetition, but
the other two occurrences of aa are not maximal repetitions because they
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occur in the cube aaa.

3. The occurrences of abababa, aaa and abaaba in w are also maximal
repetitions.

Any occurrence of a repetition in a word w can be extended to a max-
imal repetition, so the maximal repetitions in w carry all the information
about repetitions that occur in w. Moreover, thanks to the work of Roman
Kolpakov and Gregory Kucherov [KK1999a, KK1999b], we know that the
number of maximal repetitions in a word of length n is linear in n, so this
fact has practical applications. However, their arguments did not provide an
explicit bound on the number of maximal repetitions. The first such bound,
5n, was established by Wojciech Rytter [Ryt2006], and was later improved
to 3.44n [Ryt2007]. The best result in this direction was recently announced
by Maxime Crochemore and Lucian Ilie.

Theorem 5.1 (Crochemore, Ilie [CI2007]). The number of maximal repeti-
tions in a word of length n is less than 1.6n.

Crochemore and Ilie also provide suggestions on how to improve the
above bound [CI2007, Section 7]. In their analysis, they use the fact that
the number of maximal repetitions with periods at most 9 in a word of length
n is at most n (see their Lemma 2). If this fact can be improved, then their
argument gives a better bound. For example, if it holds for periods at most
32, then their argument gives a bound of 1.18n.

5.2 Repetition thresholds

In addition to minimal periods p = |u| for the words r = unv above, there
is the notion of exponent |r|/p, a number lying between n and n + 1 and
measuring how close r is to a pure power. Given an infinite word s, the
critical exponent of s is the supremum of the exponents of all its (finite)
factors r.

Françoise Dejean [Dej1972] introduced this notion in the interest of gen-
eralizing the square-free questions of Thue. She asked,

Given a fixed n-letter alphabet A, what is the minimal critical
exponent among all infinite words over A?

We call this the repetition threshold rt(n) for n.

Example. A quick check reveals that every binary word of length four has
a factor with exponent 2. Hence, the exponent is at least 2 for any infinite
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binary word s. On the other hand, Exercise 5.1 tells us that the exponent
of the Thue-Morse word t is at most 2. That is, rt(2) = 2.

Appealing to Thue’s work again, we recall that there exist square-free
words on 3 letters, so rt(3) < 2. Dejean was able to show that, in fact,
rt(3) = 7

4 . She was also able to show that rt(4) ≥ 7
5 and rt(n) ≥ n

n−1 for
n ≥ 5. She furthermore conjectured that these bounds are tight.

In [Pan1984], Jean-Jacques Pansiot finally answered the question in the
affirmative for n = 4. Results for larger n have been less forthcoming.
Jean Moulin-Ollagnier verified the case 5 ≤ n ≤ 11 [MO1992]. Interest-
ingly, James D. Currie and Mortez Mohammad-Noori verified the cases
12 ≤ n ≤ 14 [CMN2007] by using certain Sturmian words to construct
binary words whose critical exponents achieve the desired lower bound n

n−1 .
The work continues and is likely to end in a positive answer. For exam-
ple, Arturo Carpi has proven that Dejean’s conjecture holds for all n ≥ 33
[Car2006,Car2007].

Exercise 5.1. Words of the form r = unv, with v a prefix of u, are called
fractional powers in the literature.1 Prove that a word w is overlap-free
if and only if it contains no fractional power r as a factor with exponent
greater than 2.

Exercise 5.2 ([BMBGL2007]). Suppose β ≥ 2 and m ≥ 1 are integers. Let
A be an m-letter alphabet A and fix a ∈ A and a cyclic permutation σ of
A. Define a generalization of the Thue–Morse word as tβ,m = ξ∞(a), where

ξ(x) = xσ(x)σ2(x) · · · σβ−1(x)

for all x ∈ A. Show that the critical exponent e(tβ,m) of tβ,m is

e(tβ,m) =





∞, if m | β − 1,
2β
m , if m ∤ (β − 1) and β > m,

2, if β ≤ m.

5.3 Patterns

A pattern p is a nonempty word over some alphabet A. Given a pattern p =
a1a2 · · · an (ai ∈ A), an instance of a pattern p is a word x1x2 · · · xn (xi ∈
B∗ \ {ǫ}) such that ai = aj implies that xi = xj. Equivalently, x1x2 · · · xn

1One can find these called “sesquipowers” in the literature, even for n > 1. We prefer
to reserve that terminology for n = 1, given the etymology of “sesqui.”
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is an instance of p if there exists a nonerasing morphism h : A∗ → B∗ such
that h(p) = x1x2 · · · xn. An Abelian instance of a pattern p is a word
x1x2 · · · xn such that ai = aj implies that xi equals some rearrangement, or
anagram of xj , i.e., |xi|b = |xj|b for each b ∈ B. We denote this by xi ∼ xj .

Example. Consider the pattern p = aabb. The word

zxzyzxzyzxyyxyyyz = z(xzyz)(xzyz)(xyy)(xyy)yz

contains an instance of p (use the mapping (a, b) 7→ (xzyz, xyy)), while

xyzxxyzxzyyyxyzy = x(yzx)(xyz)(xzyy)(yxyz)y

contains an Abelian instance of p.

Definition 5.2. A pattern p is k-avoidable (respectively, Abelian k-
avoidable) if there exists an infinite word x on k letters that contains
no instance (Abelian instance) of p as a factor.

Remarks. 1. Note that a word on k letters is also a word on k + 1 letters,
i.e., “k-avoidable” implies “(k + 1)-avoidable” for all k ∈ N \ {0}.
2. In terms of morphisms, we say that p is k-avoidable if and only if for all
nonerasing morphisms h : A∗ → B∗, h(p) is not a factor of x. Likewise for
Abelian k-avoidable.

Examples. 1. The pattern ababa is 2-avoidable since t is overlap-free.

2. The pattern aa is 3-avoidable because there exists an infinite word on
3 letters that is square-free (e.g., the word m = 2102012 · · · from Chapter
3.1).

The study of words avoiding patterns goes back to Thue [Thu1906]. He
asked, given p ∈ A∗ and w ∈ B∗ with w sufficiently longer than p, can one
always find a nonerasing morphism h : A∗ → B∗ such that h(p) is a factor
of w? He answered himself in the negative (see the second example above).
The present notion of pattern appeared independently in [BEM1979] and
[Zim1982].

The question of Abelian pattern avoidance was first posed by Paul Erdős
[Erd1961], hidden among a list of 66 other unsolved research problems. An
important early result is due to Frederik Michel Dekking.

Theorem 5.3 (Dekking [Dek1979]). The pattern a4 is Abelian 2-avoidable.

We indicate his argument below. Using a similar argument, Dekking also
showed that a3 is Abelian 3-avoidable. He furthermore raised the question
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whether a2 is Abelian 4-avoidable. An early step towards the ultimate answer
was provided by A. A. Evdokimov [Evd1968], who gave an example of an
infinite word without Abelian squares over 25 letters. This was improved to
5 letters by Peter A. B. Pleasants [Ple1970]. The final answer was given by
Veikko Keränen: he gives an 85-uniform morphism over 4 letters generating
an infinite word without Abelian squares [Ker1992].

Turning to Dekking’s argument, let φ : {0, 1}∗ → {0, 1}∗ be the mor-
phism taking (0, 1) to (0001, 011). We will show that φ∞(0) avoids the pat-
tern a4 in the Abelian sense. We will also make use of an auxillary morphism
g : {0, 1}∗ → Z/5Z taking (0, 1) to (2,−1).

Lemma 5.4. Fix a sequence of letters a1, . . . , an ∈ {0, 1} and consider
factorizations φ(ai) = pisi for some choice of prefixes pi and suffixes si 6= ǫ.
If g(p1) ≡ · · · ≡ g(pn) mod 5, then p1 = · · · = pn or s1 = · · · = sn.

Proof. Considering the prefixes p of 0001 and 011, the possible values for
g(p) are 0, 1, 2 and 4. In particular, g(0001) ≡ g(011) ≡ 0 mod 5.

Now, if g(pi) ≡ 0 for all i, then pi = ǫ for all i. If g(pi) ≡ 1 for all i, then
si = 1 for all i. If g(pi) ≡ 2 for all i, then pi = 0 for all i. If g(pi) ≡ 4 for all
i, then pi = 00 for all i.

Lemma 5.5. Let q = q1 · · · qm be a pattern, with qi ∈ {0, 1}, and suppose
that Q1 · · ·Qm is a shortest Abelian instance of q in φ∞(0). Then g(Qj) 6≡ 0
mod 5 for some 1 ≤ j ≤ m.

Proof. Choose a prefix w = a1 · · · aN of φ∞(0) so that Q1 · · ·Qm is a factor
of φ(a1 · · · aN ). We may assume that φ(a1 · · · aN ) = PQ1 · · ·QmS for some
P, S ∈ {0, 1}∗ with S 6= ǫ (replacing N by N + 1 if necessary). Suppose

w: a1 a2 · · · aN

φ(a1) φ(aN)

φ(w): P Q1 Q2 · · · Qm S

Figure 5.1: If Q1 · · ·Qm occurs in φ∞(0), then there is a (mini-
mal) N and a prefix w = a1 · · · aN of φ∞(0) so that φ(w) has the
factorization PQ1 · · ·QmS with S 6= ǫ.

that g(Qj) ≡ 0 mod 5 for all 1 ≤ j ≤ m. We will construct a shorter
Abelian instance t1 · · · tm of q within a1 · · · aN , contradicting the minimality
of |Q1 · · ·Qm|.
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We first argue for the existence of a subsequence i1 < i2 · · · < im of
{1, 2, . . . , N} with the property that φ(aij ) ends within Qj. That is, there
is a nonempty suffix sj of φ(aij ) that is also a prefix of Qj . See Figure 5.2.
If this is not the case, then there is an index j ≥ 2 yielding the situation

φ(ai1) φ(ai2) φ(aim) φ(aN)

P Q1 Q2 · · · Qm−1 Qm S

p1 s1 p2 s2 pm sm pm+1 sm+1

Figure 5.2: Analysis of the prefix PQ1 · · ·QmS of φ∞(0). Given
the preimage a1 · · · aN , there exist indices 1 ≤ i1 < · · · < im <
im+1 = N so that φ(aij

) = pjsj is a factorization centered on
(PQ1 · · ·Qj−1 , Qj · · ·QmS) with sj 6= ǫ.

illustrated in Figure 5.3 (i.e., Qj−1 is a proper factor of φ(aij )). We deduce

pj−1 sj−1

pj sj

φ(ai)

· · · Qj−1 Qj

Figure 5.3: Analysis of the prefix PQ1 · · ·QmS of φ∞(0). An
impossible relationship between the φ(ai)’s and the Qj ’s.

that g(pj−1) ≡ g(pj) (since g(Qj−1) ≡ 0), and moreover that pj−1 = pj

(applying Lemma 5.4 with n = 2 and a1 = a2 = aij ). But then Qj−1 = ǫ,
which is absurd.

In summation, we do indeed have the situation illustrated in Figure 5.2.
Let us augment that picture by labelling a few more factors. See Figure 5.4.
Note that each Q′j is in the image of φ, so we get g(Q′j) ≡ 0 (indeed, g(φ(0))

φ(ai1) φ(ai2) φ(aim) φ(aN)

P Q1 Q2 · · · Qm−1 Qm S

p1 s1 Q′
1

p2 s2 Q′
2

p3 · · · · · · pm sm Q′
m

pm+1 sm+1

T1 T2 · · · Tm

Figure 5.4: Analysis of the prefix PQ1 · · ·QmS of φ∞(0). Factors
Tj and Q′

j are added to Figure 5.2 in order to apply Lemma 5.4.

and g(φ(1)) are both zero modulo 5). Since g(Qj) ≡ 0 for all 1 ≤ j ≤ m,
we must have g(sj) + g(pj+1) ≡ 0 for all 1 ≤ j ≤ m. On the other hand,
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0 ≡ g(φ(aij )) ≡ g(pj) + g(sj) for all 1 ≤ j ≤ m, from which we infer that
g(pj) ≡ g(pj+1) mod 5 for all 1 ≤ j ≤ m. Lemma 5.4 then tells us that
p1 = · · · = pm+1 or s1 = · · · = sm+1. We consider the first case (the second
being symmetric).

Referring to Figure 5.4, note that Tj is φ(tj) for some word tj , and that
t1 · · · tm is a factor of φ∞(0) satisfying |t1 · · · tm| < |Q1 · · ·Qm| (because
|φ(0)|, |φ(1)| > 1). We will show that t1 · · · tm is an Abelian instance of q in
φ∞(0), contradicting the assumption that Q1 · · ·Qm is a shortest Abelian
instance of q in φ∞(0). Suppose qi = qj; we need to show that |ti|z = |tj |z
for z ∈ {0, 1}. Since Q1 · · ·Qm is an Abelian instance of q, we have Qi ∼ Qj.
Looking again at Figure 5.4, we infer that Tkpk+1 = pkQk for all 1 ≤ k ≤
m. Since pk = pk+1 for all 1 ≤ k ≤ m, it follows that Tk ∼ Qk for all
1 ≤ k ≤ m. Consequently, Ti ∼ Tj , so |Ti|z = |Tj |z for all z ∈ {0, 1}. Since
|Tk|0 = 3|tk|0 + |tk|1 and |Tk|1 = |tk|0 + 2|tk|1 for all 1 ≤ k ≤ m, we have

3|ti|0 + |ti|1 = 3|tj |0 + |tj |1 and |ti|0 + 2|ti|1 = |tj |0 + 2|tj |1.
It follows that |ti|z = |tj|z for z ∈ {0, 1}. Hence, t1 · · · tm is an Abelian
instance of q in φ∞(0).

Proof of Theorem 5.3. Suppose a4 is not Abelian 2-avoidable in φ∞(0) and
consider a shortest Abelian instance PQ1Q2Q3Q4R of a4. Since Qi ∼ Qj

for all 1 ≤ i, j ≤ 4, we have that g(Qj) is constant for all j (and nonzero by
Lemma 5.5). In particular, the sequence

g(P ), g(PQ1), g(PQ1Q2), g(PQ1Q2Q3), g(PQ1Q2Q3Q4) (5.6)

is an arithmetic progression of length 5. We claim that it does not contain
the number 3, which is a contradiction.

To see the claim, build a factorization of P and each Qj, analogous to
that in the proof of Lemma 5.5, as follows: Find the unique i1 so that

|φ(a1 · · · ai1−1)| ≤ |P | < |φ(a1 · · · ai1)|.
Write P = φ(a1 · · · ai1−1)p1 for some prefix p1 of φ(ai1). Repeat for each
factor in (5.6), writing, e.g., PQ1 = φ(a1 · · · ai2−1)p2 for some prefix p2 of
φ(ai2). (We do not demand that i1 < i2 < · · · < i5.) Since g(t) ≡ 0 for any
t in the image of φ, the sequence in (5.6) becomes

g(p1), g(p2), g(p3), g(p4), g(p5).

The prefixes above were chosen so that φ(aij ) = pjsj with sj 6= ǫ. We
observed in the proof of Lemma 5.4 that g(p) must belong to {0, 1, 2, 4} for
such prefixes p. This completes the proof of the claim and the theorem.
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Dekking’s technique of comparing arithmetic progressions works for more
general patterns than just powers. Consider the following example.

Example. The word φ∞(0) avoids a3ba2b3 in the Abelian sense (Exercise
5.7).

The above example is a “true” generalization of Dekking’s theorem, as
opposed to the Abelian 2-avoidability of, say, abababba, which is the same
as (ab)4 (indeed as a4) in the sense of Abelian pattern avoidance. James
Currie and Terry Visentin have begun to investigate which binary patterns
are Abelian 2-avoidable. In [CV2007], many such patterns are found; the
avoidance proofs are in the spirit of the Dekking argument above.

Exercise 5.3 (König’s Lemma [Lot2002, Proposition 1.2.3]). If X is an
infinite prefix-closed set of words over a finite alphabet A, then there is an
infinite word x having all of its prefixes in X.

Exercise 5.4 ([Lot2002, Proposition 1.6.3]). A pattern p is k-avoidable if
and only if there are infinitely many words in {0, 1, . . . , k − 1}∗ that avoid
p. (Hint: A standard application of König’s Lemma above.)

Exercise 5.5 ([Dek1979]). Show that a3 is Abelian 3-avoidable.

Exercise 5.6. The pattern a2 is not Abelian 3-avoidable. The pattern a3 is
not Abelian 2-avoidable. (Hint: Maximal words avoiding the patterns have
length seven and nine, respectively.)

Exercise 5.7. The pattern a3ba2b3 is Abelian 2-avoidable. (Hint: Use the
word φ∞(0) and argue, as in the proof of Theorem 5.3, with arithmetic
progressions.)

5.4 Zimin patterns

We conclude our introduction to the theory of patterns with a discussion of
certain unavoidable patterns. The reader interested in learning more about
unavoidability may consult [Lot2002, Chapter 3]. See also [Cur1993], where
a number of open questions are posed—some with prizes attached.

Definition 5.7. Given a fixed alphabet A, the set of Zimin words Z(A)
are the words in A∗ defined recursively as follows:

(i) every letter a ∈ A is a Zimin word;

(ii) if p is a Zimin word over A \ {a}, then pap is a Zimin word.
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Example. The Zimin words Z({a, b, c}) include a, aba, abacaba and all im-
ages of these under permutations of the ordered alphabet (a, b, c).

As it happens, the Zimin words are unavoidable in a sense we now make
precise (indeed, this is why A. I. Zimin introduced them [Zim1982]). A pat-
tern p over A is called k-unavoidable if every sufficiently long word w
over a k-letter alphabet B contains an instance of p. More precisely, there
is an integer N so that if |w| ≥ N , then there is a nonerasing morphism
hw : A∗ → B∗ so that hw(p) is a factor of w.

We will also need an avoidability notion for sets. Given a set P =
{p1, p2, . . . , pn} of words in A∗, we say that P is a k-unavoidable set if
every sufficiently long word w over a k-letter alphabet B has an associated
nonerasing morphism hw : A∗ → B∗ satisfying hw(pi) is a factor of w for
all 1 ≤ i ≤ n. Conversely, we say that P is a k-avoidable set if there is
an infinite word x over B with |B| = k so that, no matter the morphism
h : A∗ → B∗, x does not have the factor h(pi) for at least one pi ∈ P .

Note that in the case |P | = 1, this notion reduces to the preceding
pattern-avoidance notion. We call P a set of patterns in what follows to
emphasize the connection. Finally, given two sets of patterns P and P ′, we
write P

.
= P ′ if for each k ∈ N either both are k-avoidable or both are

k-unavoidable.

Proposition 5.8. Fix a letter a ∈ A and two words p1, p2 ∈ (A \ a)∗. Then

{p1, p2} .
= {p1ap2}.

Proof. Fix k and suppose that {p1, p2} is a k-avoidable set. Then there
is an infinite word x over B = {0, 1, . . . , k − 1} such that, no matter the
morphism hâ : (A \ a) → B, either hâ(p1) or hâ(p2) is not a factor of x.
Now, {p1ap2} being a k-unavoidable set would mean that h(p1)h(a)h(p2)
exists within some prefix of x (for some h : A∗ → B∗). Defining hâ to be
the restriction of h to A \ a, this forces both hâ(p1) and hâ(p2) to be factors
of x. Consequently, {p1ap2} must be a k-avoidable set.

Conversely, suppose that {p1ap2} is a k-avoidable set. Then there is
an infinite word x over B = {0, 1, . . . , k − 1} such that, no matter the
morphism h : A∗ → B∗, x does not contain the factor h(p1)h(a)h(p2). Now,
{p1, p2} being a k-unavoidable set would mean that there is an integer N
satisfying: for all w ∈ Bn (n ≥ N), there exists a nonerasing morphism
hw : (A \ a)∗ → B∗ such that both hw(p1) and hw(p2) are factors of w.
Being an infinite word, x cannot avoid every word of length N . In fact,
there must be a word w of length N yielding the factorization

x = uwvwx′ with v 6= ǫ
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for some u, v ∈ B∗. Writing w = w′1hw(p1)w
′′
1 and w = w′2hw(p2)w

′′
2 , we

further factorize x as

uw′1hw(p1)w
′′
1vw′2hw(p2)w

′′
2x′.

Extending hw to a morphism h of A∗ by defining h(a) = w′′1vw′2 would
then contradict our assumptions on {p1ap2}. Consequently, {p1, p2} is a k-
avoidable set.

Corollary 5.9. The Zimin words are k-unavoidable for every k ∈ N \ {0}.

Proof. Fix an alphabet A and a Zimin word w ∈ Z(A). We reason by in-
duction on the length ℓ of w, supposing every Zimin word having less than
|A| distinct letters and of length less than ℓ has been shown k-unavoidable
for all k.

The base case ℓ = 1 holds because each a ∈ A is k-unavoidable for all
k ∈ N \ {0}. If w is a Zimin word of length ℓ > 1, then w = pap for some
a ∈ A and p ∈ (A \ a)∗ \ {ǫ}. Moreover, p ∈ Z(A)∩ (A \ {a})∗ by definition.
Proposition 5.8 then gives

{pap} .
= {p, p} .

= {p}.

Now, p is k-unavoidable for all k by induction, implying pap is as well.

In a certain sense, Zimin words are the only unavoidable patterns. This
is indicated by the next result.

Theorem 5.10 (Zimin, [Zim1982]). A pattern p on an alphabet A is un-
avoidable if and only if there exists a Zimin word z on an alphabet B and a
nonerasing morphism h : A∗ → B∗ so that h(p) appears as a factor of z.

Example. The pattern p = abcba is unavoidable because of the Zimin word
z = abacaba. More specifically, the morphism h defined by (a, b, c) 7→ (b, a, c)
maps p to bacab, the central factor of z.

Finding the morphism h in the theorem may be difficult. Luckily, Propo-
sition 5.8 can give us more than Corollary 5.9. To illustrate, consider the
pattern p = abxbcycazactcb on the alphabet A = {a, b, c, x, y, z, t}.

Corollary 5.11. The pattern p above is 3-unavoidable.

Proof. Using the proposition, we have

{p} .
= {abxbcyca, actcb}
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(eliminating z). Continuing by eliminating y, x and t, we arrive at

{p} .
= {ab, bc, ca, ac, cb}.

We show that Q = {ab, bc, ca, ac, cb} is a 3-unavoidable set by considering
the words w in {0, 1, 2}∗ of length 14. If w contains a square, then w does
not avoid Q (take h(a) = h(b) = h(c) = u). Otherwise, one checks that w
contains all six factors ij with {i, j} ⊆ {0, 1, 2} (there are many square-free
words of length 14, but if Thue could do it, so can you). Taking h(a) = 0,
h(b) = 1 and h(c) = 2, we see that such a w also does not avoid Q. Finally,
if w is a word of length 15 or greater, then it has a prefix of length 14, so it
also does not avoid Q. This completes the proof.

Exercise 5.8. If a pattern p is (k+1)-unavoidable for some k, then it is also
k-unavoidable (and the same bound N on the length of exceptional words
will suffice).

Exercise 5.9. A set of patterns P is k-unavoidable if and only if it is not
k-avoidable.

Exercise 5.10 (Zimin images). In Theorem 5.10, it was shown that mor-
phic preimages of factors of Zimin words are unavoidable. Show that the
same does not hold for morphic images. Consider aba and find a nonerasing
endomorphism γ on {a, b}∗ so that γ(aba) is 2-avoidable.

5.5 Bi-ideal sequences

The recursive form of Zimin words has been exploited in many ways not
outlined above. We mention a few of them here and refer the reader to
[Lot2002, Chapter 4] for more details.

Zimin words have a natural generalization called sesquipowers. These
are defined recursively as follows: any nonempty word is a sesquipower of
order 1; a word w over an alphabet A is a sesquipower of order n > 1 if
w = w0vw0 for some words w0, v ∈ A∗ with w0 6= ǫ and w0 a sesquipower of
order n− 1. So w is a sesquipower if and only if it is a nonempty image of a
Zimin word under a morphism h (not necessarily nonerasing). A sequence of
words wn ∈ A∗ is called a bi-ideal sequence if each term in the sequence
is a sesquipower of the preceding term, i.e.,

wn = wn−1vnwn−1

for some choice of words vn ∈ A∗.
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The use of bi-ideal sequences in algebraic structures is quite old (see,
e.g., m-sequences in [Jac1956] or [Sch1961, Section IV.5]), but the termi-
nology was not coined until 1966 by Michel Coudrain and Marcel-Paul
Schützenberger. In [CS1966], they use bi-ideal sequences to give criteria for
a finitely generated semigroup to be finite (see [Lot2002, Theorem 4.5.10]).

Closer to the topics in the present book, bi-ideal sequences may also be
used to improve upon a classical result of Anatoly I. Shirshov [Šir1957] on
n-divisions. Suppose u is a word over a totally-ordered alphabet. A factor-
ization u = (x1, x2, . . . , xn) is called an n-division if each xi is nonempty
and u is lexicographically greater than any nontrivial anagram xi1xi2 · · · xin

of the factors. The following appears as Theorem 4.4.5 in [Lot2002].

Theorem 5.12 (de Luca, Varricchio [dLV1999]). Fix a totally-ordered al-
phabet A of cardinality k. Given positive integers p and n, every sufficiently
long word w ∈ A∗ satisfies:

(i) there exists u 6= ǫ such that up is a factor of w; or

(ii) there exists a factor u of w that is the n-th term of a bi-ideal sequence.
Moreover, u has an n-division u = (x1, x2, . . . , xn) where each xi is a
Lyndon word and x1 > x2 > · · · > xn.

Finally, to any bi-ideal sequence (wn)n≥1, one may naturally associate
an infinite word w = limn→∞wn with arbitrarily long sesquipower prefixes.
Infinite words constructed in this fashion are precisely the recurrent words.
See Exercise 5.11.

Exercise 5.11 ([Lot2002, Proposition 4.3.1]). Recall that an infinite word x

is recurrent if every finite factor of x occurs within x infinitely often. Prove
that every recurrent infinite word is the limit of some bi-ideal sequence.
(Hint: Given a recurrent word x, set w1 = x1 and define a bi-ideal sequence
w1, w2, w3, . . . recursively, using the recurrent property of x.)

5.6 Repetitions in Sturmian words

To tie the two parts of this book together, we briefly mention some results
concerning repetitions in infinite words that are constructed from lines of
irrational slope as Christoffel words were constructed from line segments of
rational slope in Part I.

We begin with the Fibonacci word. Let φ be the golden ratio. Let ℓ be the
positive ray in R2 of slope −φ∨ = φ− 1 beginning at the origin, and let s be
the infinite binary word obtained by discretizing ℓ. The Fibonacci word,



5.6. REPETITIONS IN STURMIAN WORDS 169

denoted by f , is the infinite binary word satisfying s = xf . We have already
encountered f : it was introduced in Exercise 1.5 of Part I, and studied in
Exercises 3.7 and 4.12 of Part II.

It is known from the work of Filippo Mignosi and Giuseppe Pirillo
[MP1992] that f contains no powers of exponent greater than 2 + φ, and
that it contains powers of exponent less than but arbitrarily close to this
number. Therefore, the critical exponent of f is 2 + φ.

This result has been extended as follows. For any irrational real number
α, let s be the infinite word obtained by discretizing the line of slope α/(1+
α) passing through the origin in R2, and let cα denote the infinite binary
word satisfying s = xcα. Such words are called characteristic Sturmian
words. Mignosi proved that if the continued fraction representation of α has
bounded partial quotients, then the powers occurring in cα are bounded, and
conversely [Mig1991]. Detailed studies of the exact exponent of powers that
appear in a Sturmian word have been carried out later.

Finally, we mention a recent, interesting connection between repetitions
and transcendence. It has been shown that if a binary infinite word has
infinitely many prefixes that are repetitions of exponent 2 + ε for some ε,
then the real number whose binary expansion is this infinite word is either
rational or transcendental [FM1997]. As a consequence, any number whose
binary expansion is a Sturmian word is either rational or transcendental.
For more results in this direction, see [AB2005].
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15 (3):381–406, 1879. ↑3, 67, 68, 70

[Mar1880] A. Markoff. Sur les formes quadratiques binaires indéfinies. Math. Ann.
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Index

Key words and phrases from the text appear in lexicographic order, as usual. Mathe-
matical symbols appear in the order in which they occured within the text. Mixtures
of symbols and text, such as k-avoidable pattern are likely to be found among the
key words (omitting the symbols), e.g., under avoidable pattern.

N, vii
|w|a, vii
m∞, viii
a ⊥ b, 3
C(a, b), 4
xxyxxyxxyxy, 5, 19, 23, 29, 30, 37, 54,

59
G, 9, 23, 30, 76
D, 9, 30
G̃, 9
D̃, 9, 23, 76
E, 9
G, 10, 25
D̃, 11
SL2(Z), 21
Pal, 29
w+, 29
N2×2, 38
P, 69
R>0, 69
λi(A), 69
M(A), 69
t, 83
s̄, 84
ϕ∞, 85
bin(n), 94
Fq, 97, 98
ct(n), 99
Han(n, i, j), 112, 116

C(h), 126
O(n), 136
w(i, j), 139
w(i), 139

w(i), 139

1 , 139, 146

0

, 139
πw(u), 143, 147
Suff(w), 146
rt(n), 158
.
=, 165

Abelian k-avoidable, 160
Abelian instance, 160
accepted by an automaton, 105
algebraic series, 96, 110
alphabet, vii
alternating lexicographic order, 71, 75
anagram, 160
aperiodic sequence, 53
k-automatic sequence, 94
automatic sequences, 115
automaton, 93, see finite determinis-

tic, 105
pushdown, 107

k-avoidable pattern, 160
k-avoidable set, 165

Bézout’s Lemma, 22, 23, 44, 64
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balanced1, 50, 53, 79
balanced2, 51
basis, 41, see free group
bi-ideal sequence, 167
bifix code, 126
big-O, 136
binary quadratic form, 67

discriminant of a, 67
equivalent, 67
minimum of a, 67
reduced, 68

binary word, 83
bissective code, 130
block, 72, 86
Burrows–Wheeler transform, 48

Cayley graph, 6, 36, 37, 47
centered square, 138

left-, 138
right-, 138

Chomsky hierarchy, 104
Christoffel morphism, 9, 26, 46

G, D, G̃, D̃ and E, 9
Christoffel path, 4, 59

closest point for a, 19
lower, 3
slope, 3
upper, 4

Christoffel tree, 44, 57, 61, 63
Christoffel word, 4

lower, 4, 7
nontrivial, 4, 28
of slope 4

7 , 5, 19, 23, 29, 30, 37,
54, 59

slope, 4
standard factorization, 19, 30, 44
trivial, 4, 5
upper, 4, 27

circular word, 51, 95
closest point, 19
code, 125

bifix, 126
bissective, 130
comma-free, 127
faithful, 130

infix, 126
left synchronizing, 130
prefix, 125
prefix-suffix, 130
ps-code, 130
right synchronizing, 130
strongly synchronizing, 130
suffix, 125
synchronizing, 130
uniform, 126

comma-free code, 127
compact suffix tree, 148
complexity function, 99
conjugate

group-theoretic, 14, 42
monoid-theoretic, viii, 14, 42
root, 5, 61, 77

contain, viii
context-free grammar, 107

derivation, 107
leftmost derivation, 109

context-free language, 104, 107
pumping lemma for a, 110
unambiguous, 109

continuant, 58
continued fraction, 57, 71

continuant, 58
representation, 57

cover relation, 146
covers, 146
critical exponent, 158, 169
Crochemore factorization, 143
cutting sequence, 5

de Bruijn word, 95, 96
degree, 87, see Tarry-Escott
derivation, 107
derived, 107
diagonal, 97, see generating series
discretization, 3, 168
discriminant, 67
n-division, 168

empty word, vii
erasing morphism, 16
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exponent, 158
critical, 158, 169

extendible repetition, 157
extreme point, 60

factor, viii
left special, 100, 102
proper, viii
right special, 100

Factor Problem, 146
factorization, viii

Crochemore, 143
n-division, 168
left Lyndon, 51
right Lyndon, 50
standard, 19, 30

faithful code, 130
Fibonacci, 146

number, 61, 96, 136, 138
word, 5, 70, 122, 123, 136, 145,

168
words, 136, 145

final states, 93, see finite deterministic
automaton

Fine-Wilf Theorem, 39, 48, 137
finite deterministic automaton, 93, 96,

105, 106, 111, 115, 123, 148
final states, 93
initial state, 93
next state function, 93
states, 93

first occurrence, 143, 147
πw(u), 143, 147

formal language theory, 104
forumlae of Justin, 30–33
fractal rendering, 95
fractional power, 159
free group, 41

basis, 41
inner automorphism, 43
positive element, 42
primitive element, 41

generalized Thue-Morse word, 88
generating series, 96

algebraic, 96
diagonal, 97
Fibonacci numbers, 96
rational, 96
transcendental, 96

golden ratio, 5, 61, 136
grammar, 107, see context-free

Hanoi word, 113
and Thue-Morse word, 115
automatic sequence, 115

ideal solution, see Tarry-Escott
identity morphism, viii
implicit suffix tree, 149
index

recurrence, 102
starting, 143, 147

infix code, 126
initial state, 93, see finite determinis-

tic automaton
inner automorphism, 43
instance

Abelian, 160
of a pattern, 159

iterate of an endomorphism, 85
iterated palindromic closure, 29

König’s Lemma, 164

label, 6, 19
language, 104, 148

context-free, 104, 107
regular, 104, 105

leaf node, 147
left factorization, 51
left special factor, 100, 102
left synchronizing code, 130
left-centered square, 138
leftmost derivation, 109
length

in the free group, 41
in the free monoid, vii

letter-doubling morphism, 102
letters, vii
Levi’s Lemma, 137
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lexicographic order, 47
alternating, 71, 75

longest common prefix, 139

1 , 139
longest common suffix, 139

0

, 139
lower Christoffel word, 7
Lyndon word, 48, 50, 95, 168

left factorization, 51
right factorization, 50

magic square, 90
La Sagrada Famı́lia, 90
Melencolia I, 90
from the Thue-Morse word, 90
of order 2m, 90
order, 90

Markoff numbers., 70
Markoff spectrum, 79
maximal repetition, 157
mediant, 62
minimal period, 157
k-mismatch, 154
morphism, viii

Christoffel, 9, 46
erasing, 16
exchange, 84
fixed point of a, 85
Hall, 121, 124
identity, viii
iterate, 85
letter-doubling, 102
nonerasing, 16, 125
period-doubling, 114
positive, 46
square-free, 123
k-square-free, 124
Thue–Morse, 84
trivial, viii, 123
uniform, 124
k-uniform, 84
morphism

k-uniform, 94
morphism of Hall, 121, 124

next state function, 93, see finite de-
terministic automaton

nonerasing morphism, 16, 125
nonextendible repetition, 157
nontrivial Christoffel word, 28

occurrence, 157
extendible repetition, 157
nonextendible repetition, 157
number of, vii, 31, 133
of a factor, viii
starting index, viii, 99, 143

Open Question
Thue-Morse generating series, 98
context-free language of non-factors

of t, 109
Markoff numbers, 71

order, 90, see magic square
overlap, 98, 137
overlap-free word, 98

palindrome, viii, 15, 27, 74
palindromic closure, 29
palindromic prefix, 28, 33
palindromic suffix, 28
path, 147
pattern, 159

Abelian k-avoidable, 160
Abelian instance of a, 160
k-avoidable, 160
k-avoidable set, 165
instance of a, 159
k-unavoidable, 165
k-unavoidable set, 165

period, 30, 33
minimal, 157

period-doubling morphism, 114
periodic phenomena, 54
periodic sequences, 53
Pick’s Theorem, 21–23
poset

cover relation, 146
covers, 146

position, 147
positive element, 42
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positive morphism, 46
k-th-power-free word, 119
prefix, viii

longest common, 139
palindromic, 28, 33
proper, viii

prefix array, 140
prefix code, 125
prefix poset, 133, 146
prefix-suffix code, 130
primitive element, 41
primitive word, 5, 41, 133
productions, 107
proper factor, viii
ps-code, 130
pumping lemma

for context-free languages, 110
for regular languages, 105

pumping length
for regular languages, 105

pushdown automata, 107

quadratic form
binary, 67
equivalent, 67
minumum of a, 67
reduced, 68

quadratic number, 77

rational series, 96, 110
recurrence index, 102
recurrent, 102

uniformly recurrent, 102
recurrent word, 168
reduced word, 41
regular language, 104, 105

pumping lemma for a, 105
rejected by an automaton, 105
relatively prime, 3
repetition, 157

extendible, 157
maximal, 157
nonextendible, 157

repetition threshold, 158
reversal, vii, 15, 27

right factorization, 50
right special factor, 100
right synchronizing code, 130
right-centered square, 138
root node, 147
run, 157

sequence
aperiodic, 53
bi-ideal, 167
cutting, 5
periodic, 53
ultimately periodic, 53, 106, 110

sesquipowers, 167
shift registers, 95
size, 87, see Tarry-Escott
skew-words, 53
square

centered, 138
left-centered, 138
right-centered, 138

square-free morphism, 123
k-square-free morphism, 124
square-free word, 119
standard factorization, 19, 26, 44, 63
starting index, viii, 99, 143, 147

πw(u), 143, 147
starting position, see starting index
states, 93, see finite deterministic au-

tomaton
Stern–Brocot tree, 57, 63
strongly synchronizing code, 130
Sturmian word, 5, 50, 53, 159

characteristic, 5, 169
suffix, viii

longest common, 139
palindromic, 28
proper, viii
Suff(w), 146

suffix, 147
suffix array, 140
suffix code, 125
suffix link, 152
suffix node, 147
suffix tree, 147
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T (w), 147
compact, 148
implicit, 149
leaf node, 147
path, 147
position, 147
root node, 147
suffix, 147
suffix node, 147
unadorned, 146

synchronizing code, 130
left, 130
right, 130
strongly, 130

Tarry-Escott problem, 86
Thue-Morse word, 87
degree of a, 87
ideal solution, 89
Prouhet’s solution, 87
size of a, 87

terminal letters, 107
test set for square-freeness, 124
Three Squares Lemma, 134
Thue-Morse morphism, 84, 95
Thue–Morse word, 83, 94, 96, 98, 103,

106, 108, 116
and Hanoi word, 115
automaton, 94
complexity function, 100
generalized, 88
generating series, 97

Toeplitz sequence, 117
Toeplitz word, 117
Tower of Hanoi, 111
transcendental series, 96, 110
trivial morphism, viii, 123

ultimately periodic, 53, 106, 110
unadorned suffix tree, 146
unambiguous context-free language, 109
k-unavoidable pattern, 165
k-unavoidable set, 165
uniform code, 126
uniform morphism, 124

k-uniform morphism, 84, 94
uniformly recurrent, 102
upper Christoffel word, 27

variables, 107

word, vii
accepted, 105
anagram of a, 160
as a fixed point of a morphism, 85
balanced1, 50
balanced2 Lyndon, 51
binary, 83
characteristic Sturmian, 5, 169
Christoffel, 4
circular, 51, 95
conjugate, 5
contains, viii
critical exponent, 158, 169
de Bruijn, 95
derived, 107
exponent, 158
factor of, viii
Fibonacci, 123, 145, 168
fractional power, 159
Hanoi, 113
infinite, viii
Lyndon, 48, 50, 95, 168
minimal period, 157
occurrence, viii, 157
overlap, 98, 137
overlap-free, 98
pattern, 159
k-th-power-free, 119
primitive, 5, 41, 133
recurrence index, 102
recurrent, 102, 168
reduced, 41
rejected, 105
repetition, 157
reversal, 27
square-free, 119
Sturmian, 53, 159
Thue–Morse, 83
Toeplitz, 117
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ultimately periodic, 106
uniformly recurrent, 102
Zimin, 164

Zimin word, 164


