UNIVERSITAT AUTONOMA BE BARCELONA

WEERU,

84




Leitfiden der angewandten
Mathematik und Mechanik LAMM

Unter Mitwirkung von

Prof. Dr. E. Becker, Darmstadt

Prof. Dr. G. Hoiz, Saarbriicken

Prof. Dr. P. Kall; Zirich

Prof. Dr. K. Magnus, Minchen

Prof. Dr. E. Meister, Darmstadt

Prof. Dr. Dr. h. c. F. K, G. Odqvist, Stockholm
Prof. Dr. Dr. h. ¢. Dr. h. ¢c. Dr. h. c. E. Stiefel

herausgegeben von
Prof. Dr. Dr. h. c. H. Gértler, Freiburg

Band 38

Die Lehrblicher dieser Reihe sind einerseits allen mathematischen Theo-
rien und Methoden von grundsdtzlicher Bedeutung fir die Anwendung
der Mathematik gewidmet; andererseits werden auch die Anwendungs-
gebiete selbst behandelt. Die Bande der Reihe sollen dem Ingénieur und
Naturwissenschaftler die Kenninis der mathematischen Methoden, dem
Mathematiker die Kenntnisse der Anwendungsgebiete seiner Wissen-
schaft zuganglich machen. Die Werke sind filr die angehenden Industrie-
und Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler be-
stimmt, dariiber hinaus aber sollen sie den im praktischen Beruf Tatigen
zur Fortbildung im Zuge der fortschreitenden Wissenschait dienen.

Transductions and
Context-Free Languages

By Dr. Jean Berstel
Professor at the Université P. et M. Curie, Paris

With 32 figures, 158 exercises
and numerous examples

E B. G. Teubner Stuttgart 1979




Prof. Jean Berstel

Born in 1941 at Nimes (France). From 1961 to 1966 studies in
mathematics at the University of Paris. 1967 Thése de
troisieme cycle, 1972 Thése d’Etat at the University of Paris.
From 1970 to 1972 Chargé &’Enseignement at the University
of Strasbourg. Since 1972, Maitre de Conférence, then Profes-
sor at the Institut de Programmation, University of Paris VL
During the Summer Semester 1976 on leave at the University
of Saarbriicken. Activity; Mathematics and Theoretical Compu-

ter Science.

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Berstel, Jean:

Transductions and context-free languages / by

Jean Berstel. — Stuttgart : Teubner, 1979. —
(Leitfiden der angewandten Mathematik und
Mechanik ; Bd. 38) (Teubner Studienbiicher :
Informatik)
ISBN 3-519-02340-7

This work is subject to copyright. Al rights are reserved, whether the WJ?D]E:
or part of the material is concerned, sppcifically thosze of translation,
reprinting, re-use of illustrations, broadcastm.g, reproductionsby photocop-
ying machine or similar means, and storage in data b-anks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to
be determined by agreement with the publisher. .

® B. G. Teubner, Stuttgart 1979

Printed in Germany

Setting: The Universities Press (Belfast) Ltd., Belfast

Printer: J. Beltz, Hemsbach/Bergstr.

Cover design: W. Koch, Sindelfingen

Preface

This book presents a theory of formal languages with main emphasis on
rational transductions and their use for the classification of context-free lan-
guages. The level of presentation corresponds to that of beginning graduate or
advanced undergraduate work. Prerequisites for this hook are covered by a
“standard” first-semester course in formal languages and automata theory: e.g.
a knowledge of Chapters 1-3 of Ginsburg [1966], or Chapters 3-4 of
Hopcroft and Ullman [1971], or Chapter 2 of Salomaa [1973], or Chap-
ters 2 and 4 of Becker and Walter [1977] would suffice. The book is
self-contained in the sense that complete proofs are given for all theorems
stated, except for some basic results explicitly summarized at the beginning of
the text. Chapier IV and Chapters V-VIII are independent from each other.
The subject matter is divided into two preliminary and six main chapters. The
initial two chapters contain a general survey of the “classical” theory of regular
and context-free languages with a detailed description of several special
languages. Chapter IIT deals with the general theory of rational transductions,
treated in an algebraic fashion along the lines of Eilenberg, and which will be
used systematically in subsequent chapters. Chapter IV is concerned with the
important special case of rational functions, and gives a full treatment of the
latest developments, including subsequential transductions, unambiguous trans-
ducers and decision problems.

The study of families of languages (in the sense of Ginsburg) begins with
Chapter V. There, the structures of “rational cone” and “full AFL” are
introduced, and some general results are established. The chapter ends with the
treatment of several examples of cones of linear languages. Chapter VI
contains a theory of operators on families of languages, setting up an algebraic
framework for transformation and comparison of families of languages. Other
general results on cones and full AFLs are easily derived from a series of
inequalities involving only operators. Chapter VII is concerned with the study
of principal cones and full AFLs, that is families generated by one language
only. Main interest is in subcones of the context-free languages. First, several
languages are proved to generate the entire cone of context-free languages.
Then 8. Greibach’s “Syntactic Lemma™ is proved and used to exhibit nonprin-
cipal cones. A detailed study of two important families follows, namely the
family of one counter and the family of quasi-rational (nonexpansive,
derivation-bounded - - -) languages. Chapter VIII presents a general method
(due to Boasson and Beauquier) for proving strict containment or incompara-
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bility of cones of context-free languages, using iterative pairs and systems of
iterative pairs. This method yields easy proofs of the existence of several
wellknown and of new hierarchies of cones of context-free languages, showing
thus the intimate connection between iterative pairs and the structure of
context-free languages.

Main interest is in lJanguages rather than in grammars or in acceptors. Indeed, a
language (even a context-free one)} exists independently from the grammars
generating it, and a great number of context-free languages can be described
by a combinatorial or an algebraic property, without any reference to a
grammar. Moreover, grammatical characterizations of classes of languages
usually require just the existence of one grammar of some special type. Thus to
prove that a given language is not in the family, one must show that all
grammars generating it violate some property. This is usually a very delicate
proof. Finally there are results which are proved by the method of iterative
pairs and which cannot be proved—up to now—by considering only grammars.
Rational cones are treated in greater detail than full AFLs. They are indeed in
a natural relationship with rational transductions; further full AFLs are a
secondary structure in the sense that any full AFL is the rational closure of
some cone. Since we are mainly concerned with context-free languages, a
description of AFLs and ““trios” (in opposition to full AFLs and rational cones)
seemed unnecessary, all the more as some fundamental results such as the
Syntactic Lemma are still lacking for these families.

The notes from which this book derives were used in courses at the University
of Paris and at the University of Saarbriicken. I want to thank Professor G.
Hotz for the opportunity he gave me to stay with the Institut fiir angewandte
Mathematik and Informatik, and for his encouragements to write this book. I
am grateful to the following people for useful discussions or comments con-
cerning various parts of the text: J. M. Autebert, J. Beauquier, Ch. Choffrut,
G. Cousineau, K. Estenfeld, R. Linder, M. Nivat, D. Perrin, J. F. Perrot, J.
Sakarovitch, M. Soria, M. Stadel, H. Walter. I am deeply indebted to M. P.
Schiitzenberger for his constant interest in this book and for many fruitful
discussions. Special thanks are due to L. Boasson whose comments have been
of an invaluable help in the preparation of many sections of this book. T want
to thank also J. Messerschmidt for his careful reading of the manuscript and
for many pertinent comments, and Ch. Reutenauer for checking the galley
proofs. I owe a special debt to my wife for her active contribution at each step
of the preparation of the book, and to Bruno and Clara for their indulgence.

Paris, Spring 1978 J. Berstel
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I Preliminaries

This chapter is a short review of some basic concepts used in the sequel. Its aim
is to agree on notations and terminology. We first consider monoids, especially
free monoids, and morphisms. Then a collection of definitions and results is
given, dealing with finite automata and regular languages.

I.1 Some Notations

N=1{0,1,2,....}is the set of nonnegative integers. Z={---—-2,-1,0,1,.. .} is
the set of integers. Let E be a set. Then Card{E} is the number of its elements.
The empty set is denoted by . If A, B are subsets of E, then we write A< B
iff xeA=>xeB, and AgB iff A< B and A# B. Further

A\B={xeEixeAand xéB}.

A singleton is a subset of E consisting of just one element. If no confusion
can arise, we shall not distinguish elements of E from singletons, The set of all
subsets of E, ie. the powerset of E, is denoted by R(E)} or 2% With the
preceding convention, E < B(E).

The domain dom(e) of a partial function a : E — F is the set of elements x in
E for which «(x) is defined. a can be viewed as a (total) function from E into
B(F), and with the convention F<PB(F), as a total function from E into
FU{@}. Then dom(a)={xc E|a(x)# O

1.2 Monoids, Free Monoids

A semigroup consists of a set M and a binary operation on M, usually
denoted by rnultiplication, and which is postulated to be associative: For any
my, Ms, mse M, m,(myms) = (m;m,)ms. A neutral element or a unit is an
element 1,,cM (also noted 1 for short) such that I,m=ml,, =m for all
m e M. A semi-group which has a neutral element is a monoid. The neutral
element of a monoid is unique. Indeed, if 1" is another neutral e¢lement then
'=11"=1.

Given two subsets A, ‘B of a monoid M, the product AB is defined by

AB={ccM|3acA,3beB:c=abl. 2.1)
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This definition converts (M) into a monoid with unit {1,,}. A subset A of M
isasubsemigroup (submonoid) of Mif A’ A (1€ A and A%c A). Given
any subset- A of M, the sets -

AT=1J AN AF=1] A"

n=1 =0

where A°={1} and A" = A™A, are a subsemigroup resp. a submonoid of M.
In fact, A" {resp. A¥) is the least subsemigroup (resp. submonoid) for the
order of set inclusion containing A. It is called the subsemigroup (submonoid)
generated by A, If M=A" for some AcM, then A is a system of
generators of M. A monoid is finitely generated if it has a finite system of
generators. The unary operations A— A" and A~ A* on subsets of M are
called the (Kleene) plus and star operations. The formulas A*= AA¥= A% A
and A*=1UA" are readily verified.
For any set X, the free monoid X* generated by X or with base X
is defined as follows. The elements of X* are n-tuples

H={X1, X2, ..., X,) (n=0) | 2.2)

of elements of X, If v =(y,,..., y,.) is another element of X*, the product uv
is defined by concatenation, i.e.

MO = (X}, Xay o o3 Xy V1o oo vy Vo)

This produces a monoid with the only O-tuple 1=( ) as neutral element. We
shall agree to write x instead of the 1-tuple (x). Thus (2.2) may be written as

U=XXz" " " X,

Because of this, u is called a word, xe X is called a letter and X itself is
called ap alphabet. By the convention x=(x), X can be considered as a
subset of X*. This justifies the notation X*, since indeed X* is the only
submonoid of X™ containing X. Further X = X™\1. In the sequel, and unless
otherwise indicated, an alphabet will be supposed to be finite and
nonempty.

We shali use the following terminology concerning a free monoid X* generated
by an alphabet X. A (formal) language over X is any subset of X*. The
length |ul of a word u e X* is the number of letters composing it. The neutral
element of X™ is called the empty word, and is noted t or «. It is the only
word of length 0. Clearly |uv|=|ul+|s|. If Y < X, then |u|, is the number of
accurrences of letters y€ Y in w. Thus

lul= 2 |ul.
xeX

The reversal of a word u=x,x, - x, (n=0,x,€X) is denoted by # or u.
and is defined by Gi=x3, - xx,. Clearly G=u, 1=1, (ww) =6a@ For

AcX* A={i|ucA}. If B< X*, then (AB) =BA, and (A% =(A)*.

1.2 Monoids. Free Monoids 11

Let ue X* Then a word v is a factor of u if u=avb for some a, b X* If
a=1, then v is a left factor; if b=1, then v is a right factor of u. v is a
proper factor (left factor, right factor) of u if further v# u. A word v may
occur at several places as a factor of u. A fixed occurrence of v as a factor of u
is called a segment. This definition always refers to some previously defined
factorization u = avb. If ' = a'v'b’ is another factorization, then the segment o’
is contained in the segment v iff a is a left factor of a’ and b is a right factor
of &'. Finally » is a subword of u if u=wex,w,---x.w,, (n=0,%x,,...,
% eX, wg, ..., WX and v=x, - x,.

Let M be a submonoid of X*. Then A =(M\IN(M\1)? is a system of
generators of M, i.e. A* =M. Further A is minimal with this property, i.c.
B¥=M implies B> A. A submonoid M of X¥* is free with base C if any
word ue M has one and only one factorization u=¢,¢, - - -¢,, with n=0 and
€1,..., 6, €C The base of a free submonoid M is unique and is equal to
(MALN(M\1)2 Thus X* is free with base X. A base of a free submonoid is
called a code. Examples of codes are supplied by prefix and suffix sets. A
subset A of X" is prefix iff AX'"NA=¢, i.e. if A contains no proper left
factor of some of its word, and A issuffix it X"TANA=@ A isbifixif itis
both prefix and suffix. Any prefix or suffix subset is a code.

Let M be any monoid, and let A, B< M. The left and right quotients B A
and AB! are the sets

B'A={ceM|3acA IbecB:a=bc,
AB'={ceM|3ac A TbcB:a=chl.

I M is a group and u, v € M, then ™ 'u and uv™ ' are always singletons. If M is
a free monoid, then uo™' is non empty iff v is a right factor of u; thus uM " is
the set of left factors of u.

Sometimes, we shall need the notion of semiring, A semiring consists of a set
S and of two binary operations, called addition and multiplication, noted + and
-, and satisfying the following conditions:

(i) § is'a commutative monoid for the addition (s +r=1t+s for all 5, t8) with
neutral element 0;

(ii) S is a monoid for multiplication;

(iii} the multiplication is distributive with respect to the addition:

s{tit)=st +st;; (h+e)s=ts+ths forall s5,4,6€8;

(iv) forall s€8,0-s=5-0=0.

If M is a monoid, then B(M) is a semiring with set union for addition and the
multiplication (2.1).
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Exercises

2.1 Let M, and M; be monoids. Show that the cartesian product M, X M, is a monoid
when multiplication is defined by (m,, ma){(m1, ma) = (mymy, mam;). N

2.2 Show that if S is a semiring, then the set $™™" of square matrices of size n with
elements in S can be made a semiring, for addition and multiplication of matrixes induced
by the operations in S.

2.3 Let M be a monoid, and let A, B, C < M. Prove the following formulas: {AB)"'C=
BMATC), (AT'B)CT T =ATY(BC™).

2.4 Let X be an alphabet, Ac X", A# (J Show that A is prefix if A”'A=1,

2.5 Let X be an alphabet, and let @, be X ™. Show that the three following conditions
are equivalent:

(i) a=4d', b=d* for some word d and r,s=1;

(ii) ab=ba;

(iii) a™ = b" for some m,n=1.

2.6 Two words ¢ and b are conjugate if ac =cb for some word c. Show that this
equation holds iff a = uv, b= vu, ¢ = (uv)*u for some words u, v, and k=0.

2.7 A word a is primitive iff it is not a nontrivial power of another word, ie. if a = 4"
implies n =1,

a) Show that any word a=1 is a power of a unique primitive word.

b} Show that if a and b are conjugate, and a is primitive, then b is also primitive.

c) Show that if ac=cb and a# 1, then there are unique primitive words u, v, and
integers p=1, k=0, such that a ={uw), b= (ou)’, ¢ =(uww)u

1.3 Morphisms, Congruences

If M, M’ are monoids, a (monoid) morphism e:M— M is a function
satisfying

a(m,m,) = a(m;)a(m,) forall my, m,eM (3.1}
a(ly) =1,

Then clearly a(M) is a submonoid of M'. If only (3.1) is postulated, then « is
called a semigroup morphism and «(M) is a subsemigroup of M’. Unless
otherwise indicated, morphism always means monoid morphism. A morphism
a: X* — M, where X is an alphabet, is completely defined by the values a({x)
of the letiers xeX. We now review some formulas. Let «: M—M be a
function, and let A, B M, A', B'c M. Then

a(AUB)=alA)Ua(B); a HA'UB)Y=a "(AYUa"1 (B,
aH{A'NBY=aA)Na YBY, ala{AYNB)=A'Na(B).

1.3 Morphisms, Congruences 13

Next if « is a semigroup merphism, then
a{AB)=ca(A)a(B), a(AM)=(al(A)".

If « is a morphism, then a(A*)=(a{A))¥.

Note that the formula a *(A'BY=a (A '(B') is in general false. This
observation leads to the definition of particular morphism, for which that
formula holds.

Let X, Y be alphabets, and let « : X* — Y* be a morphism. Then a is called:
alphabetic i «(X)cYUI;

strictly alphabetic if a(X)<Y;

continuous or efree if a(X)cY™;

a projection if Y<X, and if a(y)=y for ye Y, a(x)=1 for xe X\Y.
Thus projections are particular alphabetic morphisms.

If a:X*— Y* is an alphabetic morphism, then

a NAB)=a HA)a"Y(B), a YA =(a " (A)" for A, BcY*

For the proof, it suffices to show that a™': Y*—$B(X¥) is a semigroup
morphism. Define

Z={xeX|ax)=1}=a(1)NX; Z,={xeX|a(x)=yl=a'{(NNX

for yeY.
Then o Y{(D=2Z*  a (y)=2Z*2ZZ% (yeY)

If g=y, ¥, (;€Y), then

a g)= Z*ZMZ*ZMZ* < ZRZ,ZF
Thus a(g,g,) = o (g)a"(g,} for all g;, g.€ Y*. This completes the proof.
Note that the formula o *{A¥) = (e (AN* is only true if further « is continu-
ous, orif 1€ A ie. A¥=A",

We shall frequently use special morphisms called copies. Let & X Y* be
an isomorphism. Then &(X)=Y. For each subset A of X*, afA) is called a
copyof Aon Y.

Another class of particular morphisms are substitutions. A substitution o
from X* into Y* is a (monoid) morphism from X™* into B(Y*); thus & verifies:
o(x)= Y* for xc X, and

a(l)=1, a(uv) = olu)o(v) for u,veX*.

Thus if @: Y*— X* is an alphabetic morphism, the function o™' is a substitu-
tion iff & (1)=1. A substitution o is extended to B(X™) by the convention

olA)=J olu) (Ac X).

ueA
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For sake of simplicity, we write o : X*— Y™ for-a substitution from X* into
Y* If r: Y¥ = Z%is another substitution, then the function ¢ o from X into
B(Z*) is a substitution. -
Finally we note that any finitely generated monoid is a hemomorphic image of
a free monoid. Consider indeed a monoid M, and let S={m,,...,m.} be a
system of generators of M. Set X ={x,,...,x}, and define a morphism
a:X*—>M by a(x)=m for i=1,... sk, Then a(X*)={a(X))*=8*=M
Clearly this result remains true for any monoid if infinite alphabets are
considered.

Let E and F be two sets. A relation over E and F is a subset @ of E X F, For
(x,y}e 6, we also write xfy, x~y(mod 8) or x= y(mod 8), or simply x~—y,
x=y if no confusion can arise. If E=F, then 6 is a relation over E. Relations
are ordered by (set) inclusion.

Let M be a monoid. A congruence over M is an equivalence relation 6
which is compatible with the monoid operation, i.e. which satisfies

my =mi(mod 9), my=m3(mod 6) > m,m,=m{ms(mod 9). (3.2)
For each me M, the class of m mod ¢ is

[mls={m'e M| m=m'(mod 9)}.
Then (3.2) is equivalent to

[myJelmale < [mym, ],

If 6 is a congruence, then the function which associates to each m e M its class
[m]s is a morphism from M onto the quotient monoid M/6. Conversely, if
a:M—M'is a morphism, then the relation 6 defined by

m~m'(mod ) U a{m)=alm)
is a congruence. The number of equivalence classes of an equivalence relation

6 is the index of 0. The index is a positive integer or infinite.
Given a relation ¢ over a monoid M, the congruence 6 generated by @ is the
least congruence containing 6. The congruence @ can be consiructed as follows:
Define a relation 6, on M by
m~m'(mod 8,) iff m=uav, m'=uby,
and {a-~b{mod 8) or b~ a{mod .
Next define a relation 67 by m=m'(mod 6%) iff there exist k=0 and

Mg, ....,m. €M such that m=m,, m'=m, and m; ~my,,(mod 8;) for i=
0,...,k—1. Then it is easily shown that 8% = 4.

Example 3.1 Let X be an alphabet, and define a relation over X* by

Xy~ yx for x,yeX, x#y

1.4 Finite Automata, Regular Languages 15

Let 6 be the congruence generated by this relation. Then u=w(mod &) i'ﬁ
lul, =|vl, for all xe X. The quotient monoid X*/8 is denoted by X® and is
called the free commutative monoid generated by X.

Exercises

3.1 Let M be a group, M’ a monoid, and let & : M — M’ be a2 monoid morphism. Show
that a{M) is a group and that & is a group morphism (a(m ) =a(m)" for me M).
3.2 Give examples of morphisms « : X* — Y™, such that a " {AB)2a"(A)a""{B), and
a {AHR(e (AN

3.3 Let X, Y be alphabets and let a: X — Y* be a morphism. Show that there are an
alphabet Z, an injective morphism 8 : X* — Z* and a projection y:Z* — Y* such that

a=vy°f
3.4 Let X be an alphabet. Given A € X*, the norm of A is the number

[Af=2"*  where w(A)=minflul/ucA), w(@) =«
If B< X*, the distance d(A, B) is the number
d(A, By=[|A\BU B\Al.

a) Show that || || and d are a norm and a distance in the usual topological sense, and
that d satisfies the ultrametric inequality: d(A, BYsmax{d(A, C), d(C, B)}._ .
b) Let & : X*— Y* be a morphism. Show that the mapping fr_on_l BXH) into B(Y™H)
defined by « is continuous for this topology iff @(X )< Y. (This is the reason why an
g-~free morphism is called continuous.)

3.5 Let X be an alphabet, and let L < X*. The syntactic congruence . of L is the
coarsest (greatest) congruence over X* which saturates L, i.e. such that uel, u=
v(mod 8, ) implies v e L. Show that

u=v{mod 8.} iff forall fgeX¥:fugel « fogelL.
The quotient monoid Synt(L) = X*/4, is called the syntactic monoid of L. Show that
Synt(L) =Synt{X™\L).

3.6 Let M, N be monoids, o :M— N a morphism. Let AcM, Q<N, and set -
B=a(A), P=a7(Q). Show that A”'P=a"(B™" - Q).

1.4 Finite Automata, Regular Languages

In this section, we review some basic facts concerning finite automata, mainly
in order to fix notations and to allow references in later chapters, When the
proofs are omitted, they can be found in any of the books listed in the

bibliography.
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Definition A finite (deterministic) automaton A=(X, Q,q_, Q.,5) consists
of an alphabet X, a finite set Q of states, an initial state q-€Q, a set of
final states Q, < (Q, and a next state function §: QxX — Q. -

If no confusion can arise, we denote § by a dot, and we write

A=(X 0Qq.,0Q,)
inst.ead of the above notation. The next state function is extended to ¢ x X* by
setting

g-l=g 4.1)

grux=(q-u)-x ue X* xeX 4.2)
Then the formula

q-uv={q-u) v woe X* 4.3
is easily verified. A word ue X* is recognized or accepted by A iff
q--uec Q.. The language recognized by A is :

lA{={ueX*|q_ - ueQ.,). (4.4)
A language L < X* is recognizable or regular iff L=|A| for some finite
automaton A.

Finite automata can be represented by a graph in the following way. Each state
q is represented by a vertex, and an edge labelled x is drawn from q to q' iff
g+ x=g'. The initial state has an arrow entering in it. Final states are circled
twice,

Example 4.1 Let A be defined by X ={x, y}, Q={1,2, 3, 4}, g-=1, Q,.={4},
and the next state function given by

Then A is represented in Fig. I.1. A word is recognized by A iff it has xyx as a
right factor. Thus |A| = XFxyx.
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The following result is known as Kleene’s Theorem.

Theorem 4.1 (Kleene [1956]) The family of regular languages over X is equal
to the least family of languages over X containing the empty set and the
singletons, and closed under union, product, and the star operation.

We shall see another formulation of this theorem in Section II1.2. Following
closure properties can be proved for regular languages.

Proposition 4.2 Regular languages are closed under union, producr, the star and
the plus operation, intersection, complementation, reversal, morphism, inverse
morphism, regular substitution.

A substitution o : X*— Y™ is called regular iff o(x) is a regular language for
all xeX.

There are several variations for the definition of finite automata. Thus in a
nondeterministic finite automaton, the next state function is a function
from QxX into the subsets of Q. Thus g-x<Q for geQ, xeX This
notation is extended by defining first

Q-x=1J) g-x for Q' =qQ. (4.5)

qedy

Then the next state function can be defined on Q X X™* by (4.1} and {4.2), and
(4.3) is easily seen to hold. The language recognized by A is then

[Al={uecX¥|q_-unQ, =B}

Note that this definition agrees with (4.4) in the case where A is deterministic.
Note next that (4.5) can also be considered as the definition of the next state
function of a deterministic finite automaton B={X, P, p_, P..} where P=0(Q).
With p_={q_}, and P, ={Q = Q| Q'N Q, = @}, it is easily seen that |B|=|A|.
Thus a language is regular iff it is recognized by some nondeterministic finite
automaton. Nondeterministic automata are represented pictorially like deter-
ministic automata, by drawing an edge labelled x from ¢ to ¢’ whenever
q'eq-x '

Example 4.2 Fig. 1.2 represents a nondeterministic finite automaton A, with
alphabet X ={x, y}. It is easily verified that [A|=X¥xyx.

X

@
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Let A =(X, O, q_, Q.) be a finite (deterministic) automaton. .A st-ate q_is called
accessible if g - u=gq for at least one ue X™. A is accessible 1f_ all its states
are accessible, If A is not accessible, let P <  be the set of accessible states of
A. Then g_€P. Define B={(X,P,q_,P,) by P,=0QNQ.,, and by taking as
next state function the restriction to P of the next state function of A. Then
[B|=|A|. B is called the accessible part of A.

Given a finite automaton A ={X, Q, q_, Q,), an equivalence relation called
the Nerode equivalence, noted =, is defined by

q=q iffforall ueX* q-ueQ. < ¢ -ucQ.

This equivalence relation is easily seen to be right regular, i.e. to verify g=¢’,
weX*>g-w=gq' - w. Hence a next state function can be deﬁne_d on the
quotient set Of/= by [gq]- x=[g ' x] ([g] is the class of g in the equivalence).
Let L =|A], and let

Al==(X,Q/=,[q1{lqllge QD

be the quotient automaton with the next state function defined above..Then
it can be shown that |[A/={=|A|[, and that the accessible part of A/= Is the
unique automaton (up to a renaming of states) recognizing L having a mmlmz.il
number of states among all finite automata recognizing L. Therefore this
automaton is called the minimal automaton of the language L.
Another useful concept is the notion of semiautomaton. A semiautomaton
8§ =(X, Q, q_) is defined as a finite automaton, but without specifying the set of
final states. There is a language recognized by 8§ for any subset Q' C.Q, de‘ﬁned
by [$(Q)|={ueX*|g_- ue Q}. Semiautomata are used to recognize “Slll‘ll:ll—
taneously” several regular languages: Consider two (more generally any finite
number) regular languages A, B< X¥ and let A=(X Q q_, Q+), B=
{X, P, p., P,) be finite automata with |A|=A, |B|=B. Definc a scmiautoma-
ton §=(X, OxP, (g_, p_)) by

(g.p) x=(g-xp x) xeX, (g pecOxP
Then A =|8(Q. x P)| and B =|8(Q x P,)|. Usually only the accessible part of §
is conserved in this construction.
There exist several characterizations of regular languages. The first uses local
regular languages.

Definition A language K< X* is a local regular language iff there are
subsets U, V of X and W of X? such that

K =(UX*NX*V)\X*WX*
or K=1U{UX N X*VAX*WX™,

Clearly, such a language is regular.
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The terminology is justified by the following observation: In order to check that a word
w is in K, it suffices to verify that the first letter of w is in U, the last letter of w is in V,

3

and that no couple of consecutive letters of w is in W, These verifications are all of local
nature. The set W is called the set of forbidden transitio ns, and X2\ W is cailed the
set of authorized transitions.

Proposition 4.3 A language L < X* is regular iff there are an alphabet Z, a
local regular language K < Z*, and a strictly alphabetic morphism «: Z* — X*
such that a({K)=1L.

Proof. By Proposition 4.2 «(K) is regular for a regular language K. Con-
versely, let A =(X, O, q_, @,) be a finite automaton such that I, = IAl. Define
Z by

Z={g.xq-x)qcQ,xeX}
and define a morphism «:Z*— X* by a((q,x,q- x})=x. Then « is strictly
alphabetic. Next let

U={lgx.q x)[q=q), V={gxq-x)|q xcQ}
W={(q. x, g1 * X1)(ga, Xa, gz X3) I G X & gab
and set K=(UZ*NZ*V\Z*WZ*. Then for n=1,

c= (fh, xIs ql N xl)(qla x2= q2 " x2) e (qm xm qn " xn)EK (4-6)
iff q1=q-, Giv1= 4 " X izl:-'-sn713 4 .xn€Q+' (47)
Consequently  a{¢)=xx, - x, L. Conversely, if wu=xx- - x,&L,
(n=1, x;¢ X), then there are states 41, - -, q, such that (4.7) holds, and in

view of (4.6), ue a(K). Thus L = a(K) if 1 € L. If 1 L, the same equality holds
if the empty word is added to K, o

Another important characterization of regular languages is the following,

Proposition 4.4 A language L = X* is regular iff there exist a finite monoid M,
a morphism : X* — M, and a subset R © M such that L= o "(R).

Proof. We first show that the condition is necessary. Consider a finite
automaton A =(X, Q, q_, Q.} such that L =|A}. For each word w define a
mapping w: Q — Q which associates to g € Q the state q - w. For convenience,
we write the function symbol on the right of the argument. Thus (@w=q- w.
Then

C(@ww =g ww'=(g - w) - w'=(q®) W (4.8)
(@l=q-1=gq. (4.9)

Let a be the function from X™ into the (finite!) monoid Q% of all functions
from Q into Q defined by @(w)=w. Then « is a morphism in view of (4.8) and

(4.9). Next, define R<Q° by R={meQ?|(q_)meQ.,). Then wel iff
q- - we Q,, thus iff a(w}e R. Consequently L =a (R).
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Conversely, define a finite automaton A =(X, M, 1,,, R} by setting
m: x = ma(x) meM, xeX }

Since « is a morphism, m - w = ma(w) for all we X*. Consequently we|A|iff
10 (w)=a{w)e R, thus iff wea '(R). a
There exist several versions of the Iteration Lemma or Pumping Lemma for
regular languages. The most general formulation is perhaps the analogue of an

Tteration Lemma for context-free languages proved by Ogden (Lemma IL2.3).
Let X be an alphabet, and consider a word

fexixa %, (xeX).

Then a position in f is any integer ie{l,...,n}. Given a subset I of
{1,...,n}, a position i is called marked with respect to I iff ieL

Lemma 4.5 (Ogden’s Iteration Lemma for Regular Languages) Let
L < X* be a regular language. Then there exists an integer Nz 1 such that, for
any word f€ L, and for any choice of at least N marked positions in f, f admits a
factorization f= aub, {a, u, b e X*) such that

(i} w contains at least one and at most N marked positions;

(i) au*b< L.

Proof. Let A =(X, Q,q_, Q.) be a finite automaton recognizing L, and set
N=Card(Q). Let f =xx; - * x,,, (%;€ X) be a word in L, and consider a choice
I<{1,...,n} of at least N marked positions in f. Since Card(I)= N, we have
n=N. Let 1=, <i,<+:-<iy<n be the N smallest elements of I, and define
a factorization

f=8081""" BnBre
by Bo=1Xi """ X;.1, g1=X,,, G =X 43" %, (k=2,...,N),

BN+1 T X+l * 7" Xpe
Then each g (1= k=< N) contains exactly one marked position. Set

Qo =4q-" 8o, G = Qo1 B (kK=1,...,N}, G+ =qn " Bn+1-

By assumption, g, & Q.. Next two among the N+ 1 states ¢y, . . ., gn are equal,
Thus there exist i, j, (0=<i<j=N), such that q; = q; Define

a=go81" " B U= g1 & b=gu """ Gur1-

Then q_-a=q_-au=gq_- au™ =g; for all m=1, whence q_- au™b=gq, for
all m=0, and au*h < L. Next u contains exactly j—i marked positions. Since
0<j—i=N, this proves the lemma. ]
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If the marked positions in f are chosen to be consecutive, the same proof gives
the following corollary.

Coroflary 4.6 Let L = X* be a regular language. Then there exists an integer
N=1 such that for any word fe L, and for any factorization f=hgh' with
|gl= N, g admits a factorization g = aub such that

(i) 0<|u|=N;

(i) hau®bh'c L.

If Y is a subset of X, and if the marked positions are chosen to be occurrences
of letters in Y, we obtain

Corollary 4.7 Let L < X* be a regular language, and let Y < X. Then there is an
integer N=1 such that for any fe L, and for any factorization f=hgh' with
|gly= N, g admits a factorization g = aub such that

(i) 0<|uly=N;

(i) hau*bh'<L'.

Exercises

4.1 Let K be a local regular language, and let a, u, b be words. Show that if aub,
au’beK, then autbhc K.

4.2 Let K < X* be a regular language. Show that there are two integers N, M such that
if au*be K and k=N, then au*(u*")V*b <= K.

4.3 (continuation of Exercise 3.5). Let L = X*, and assume that L =« '(P), where a is
a morphism from X* onto 2 monoid M, and P < M. Show that there is a morphism
B:M—Synt(L), and R<Synt(L), such that P=8"'(R). Show that L is regular iff
Synt(L) is finite. (Since Synt(L)=Synt(X*\L), such a characterization cannot exist for
context-free languages. See Perrot and Sakarovitch [1977].)
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The first section of this chapter contains the definitions of context-free or
algebraic languages by means of context-free grammars and of systems of
algebraic equations. In the second section, we recall without proof several
constructions and closure properties of context-free languages. This section
contains also the iteration lemmas for context-free languages. The third section
gives a description of the various families of Dyck languages. They have two
definitions, as classes of certain congruences, and as languages generated by
some context-free grammars. The section ends with a proof of the Chomsky-
Schiitzenberger Theorem. Two other languages, the Lukasiewicz language and
the language of completely parenthesized arithmetic expressions, are studied in
the last section.

1L.1 Grammaxs, Languages, Equations

In this section we define context-free grammars and context-free languages.
We show how a system of equations can be associated to each context-free
grammar in such a way that the languages generated by the grammar are
precisely the minimal solution of the system of equations. For this reason,
context-free languages and more generally context-free grammars are also
called algebraic languages and algebraic grammars.

Definition A context-free or algebraic grammar G =(V, X, P) consists
of an alphabet V of variables or nonterminals, of an alphabet X, disjoint
from V, of terminal letters, and of a finite set P VX(VUX)* of
productions.

A production (£, @)& P is usually written in the form
E— .

If £=a, £ ay,. .., E—a, are the productions of (G having the same left side
£ they are grouped together by using one of the following notations

Evayan o E—ataxt - tay; E—{og, 0.0, @)

Clearly, the above definition is equivalent to another notation consisting of triple
T, X, P, where T is the total alphabet and X is a subset of T. Then V=T\X.

Example 1.1 Let V={£}, X ={a, b}, P={6— &, £— a}. Then the productions
can be written as £+ & +a.
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Example 1.2 let V={£ £, &}, X={a, b}, and the set P given by:

E—>1+af bé+ bgas,; L, —1+ag bE,;
& —1+béaé,.

Let G =(V, X, P} be a context-free grammar, and let f, g be in (VU X)*, Then
we define

foe (L1)

iff there are factorizations f= uév, g=uev with éeV, y, o, ve(VUX)® and
£—aeP. If no confusion can arise, we write f— g instead of (1.1). For any
p=0, define

fog
iff there exist fo, f1,. .., f, € (VU X)* such that
f=fo g="F, and  fi_, -2 for i=1,...,p

(In particular, f % f for any fe (VU X)*). The sequence
(fOsf]: e 3fp)

is a derivation from f into g, and p is the length of the derivation. Finally,
we define

fog iff fHg  forsome p=0;
f%g iff f—:;gg forsome p=>0.

In the first case, we say that f derives g in G, in the second case that f
properly derives g in G. If no confusion can arise, the index G is dropped.
For any variable £€ V, the language generated by £in G is

Lo(&)=fwe X*| ¢S5 wh
More generally, the language generated by fe(VUX) in G is
La(f={weX*|f= w}.

Clearly, Ls(fi={f} for feX* The language of sentential forms
generated by fe(VUX)* in G is

Lo ={we(VUXY|f wh
Of course,

Le(H=Lo(fHinx*
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As noted by M. P. Schiitzenberger [1961za], there is a close relation between the
derivations in a context-free grammar and derivations in an algebra. Recall that a
derivation in an algebra M is a linear function 8 satisfying R

xyy=alx)-y+x-9y) xyeM
Given a grammar G ={V, X, P}, define 3: (VU X)*—=B{(VU X)*) by

gedlH Hf fz g

and for A =(VUXY* :9(A)= LJ a(f). Then {see Lemma 1.1 below) we have
feA

AABY=d(A)-B UA - a(B).
Further
Lo(A)=0a%(A),

where 8%(A)= |J 3"(A). Thus Ls(f)=8*(HnxX*.
=0

A context-free grammar G ={V,X,P) generates a language L <X* iff
L =L;(¢) for some £< V. Thus a grammar G generates Card(V) languages, not
necessarily distinct.

Definition A language L is context-free or algebraic if there is some
grammar G that generates L. The set of all context-free languages of X* is
denoted by Alg(X™).

Example 1.1 (continued). The language generated by £ is Lg(£€)=a™; further
Lo{(é)y={a, &

Example 1.2 (continued). The language generated by £, is the so-called
restricted Dyck language D* over X, with opening parenthesis a, and closing
parenthesis b (see also Section 3); L;(§,) is obtained from L;(£,) by exchang-
ing @ and b. Finally, Ls(&) is the Dyck set over X, consisting of all words w

such that |w|, =|w/,.

Let G={V, X, P) be a context-free grammar. The following lemma is very
useful.

Lemma 1.1 Let f,, 5, g (VU X)Y*, and let p=0 be an integer. Then

flfz—p>g

iff there are g,, g2 (VW XY, p1, p2=0 such that

P

1 Pz
fi =g, = g, g=818 p=ptpa
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Proof. If flggl and fzzgz, then

f1f2“m4’g1fzpi>glgz, thus fifz_p>g-

Assume conversely f,f, 2 g. If p=0, there is nothing to prove. Arguing by
induction on p, suppose p>>{0. Then

p—1
flfz—_"h_’g
for some he{VUX)* and by induction there is a factorization
h=hh, with fish, fL>h, q+g-p-1.

Since h— g, there are £->a <€ P, and words u, v with
b= uéw, £ = uav.

If |ug|=|h;}, then b, =uéii for some word i Thus setting
g = uail, 2, = ha,

we obtain

dz

1 1
£= 8182 fl'ji’gl: ™ 2.

Otherwise, |£v|=<t|h,|, and a symmetric argument achieves the proof. =
Corollary 1.2 For any f, fe (VU X)*, Lo(fif2)= Lo (f)Ls(f2).

Proof. By the preceding lemma, we Lg(f,f,) iff there is a factorization
w = w, w, such that w, € Ls(fy), wo€ Ls(f3). =

Since Ls(1)={1}, the mapping f— Ls(f) is a substitution from (VU X)*
into itself. We denote it by Lg. The same is true for Lg (Exercise 1.2).

Lemma 1.3 Let G =(V, X, P} be a context-free grammar, £€ V. Then

Ls(&) =, U PLa(a') =Lo{a|é—acP}).

e

Proof. For'§¢—acP, clearly L;(a)< Ls(£). Conversely, let w e Lg(£). Since
weX*, we have £ w. Thus there is a production é—aeP such that
E—aw Thus we Lg(a). [ ]

Now we associate to each context-free grammar a system of equations. We
shall see that the minimal solution of the system of equations is formed of the
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languages generated by the grammar. In certain special cases, the system has a
unique solution. This gives a characterization of context-free languages by
systems of equations.

Definition Let V={¢,, ..., &} and X be two disjoint alphabets. A system of
algebraic equations is a set

&E=P, i=1,...,N (1.2)
of equations, where P, ..., Py are finite subsets of (VU X)*. The letters £

are called the variables of the system.

The terminology comes from the analogy with systems of algebraic equations over, say
the field of real numbers. Such a system is given by a set of polynomial equations
Qv ¥a ... =0,(i=1,..., N). In the case where, in each Q,, there is a monomial
v, the system can be written in the form y;=Qi(y,, ys....,vw), with each Q' a
polynomial. In the same manner, the sets P, of (1.2) can be considered as “polynomials™
by writing

P=3} a

ach,

with coefficients in the boolean semiring. The theory of systems of algebraic equations
over arbitrary semirings allows in particular to take into account the ambiguity of a
grammar. This is beyond the scope of the book. Sece Saiomaa and Soittola [1978]
and Eilenberg [1978].

The correspondence between systems of algebraic equations and context-free
grammars is established as follows. Given a context-free grammar G =
(V, X, P), number the nonterminals such that V={&,...,&;} with N=
Card(V}, and define

Pi:{algl.——aaep} i=1,...,N.

Then (1.2) is the system of equations associated to G.
Conversely, the context-free grammar associated to (1.2) has as set of
productions

P={t¢—alaecP, 1=i=<N}.

We now define a solution of (1.2) as a vector A =(A,,..., Ay) of languages
such that the substitution in P, of the language A, to each occurrence of ¢
yields precisely the language A,
Formally, given (1.2)let A=(A,,..., Ay with A, c(VUX)Y fori=1,..., N
Define a substitution A from (VU X)* into itself by

Alx)={x} xeX;

A=A,  i=1...,N
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Definition The vector A =(A, ..., Ax) is a solution of the system of
equations (1.2) iff
AP)=A, i=1,...,N (1.3)

Example 1.1 (continued). The equations £= & +a has the solution a™ since
a“=a%a"Ua and also the solutions X* and (VU X)*, since X¥*=X*X*Ugq
and similarly for the second set.

Example 1.2 (continued). As will be shown below, the vector (Lg(£), Lg(£,),
L;(&)) is the unique solution of the system

§=1+a&bé+bgad; & =1+agbé; & =1+ bga4,.

A system of equations (1.2) may have several, and even an infinity of solutions.
We order the solutions by setting, for A=(A,,...,Ax), B=(B4,...,By),
AcBiff AicB fori=1,...,N.

Theorem 1.4 Let G be a context-free grammar, and let (1.2) be the system of
algebraic equations associated to G. The vector Lg =(Lg(£)), ..., Ls(&y)) is the
minimal solution of (1.2).

This result contains a converse statement: given a system of algebraic equa-
tions, the components of the minimal solution are context-free languages. For
this reason, context-free langunages are called algebraic languages. Note that
only the components of the minimal solution are claimed to be context-free.
There are solutions of systems which are not context-free (Exercise 1.4).

Proof. By definition, we have L;(f)=Lg(f) for all fe(VUX)*. We shall
verify that the substitution L satisfies (1.3). Indeed, in view of Lemma 1.3,

Lo(P)= U Lgla)=Ls(§)  i=1,...,N

acsPh;

This shows that Lg ={(Ls(£,),..., La(&)) is a solution of (1.2). Next, let
A =(A;, ..., Ay) be another solution of (1.2). We show that

Lo(h=Alp)  fe(Vux)* (1.4)

by induction on the length of the derivation of the words of Ls(f). Let
weLa(f). If £ w, then f=we X* and we A(f). Assume now f-5 w and
p>0. There exist a word g such that

fogt w,

and factorizations f=u&v, g=uav such that £-—acP. Since we A(g) by
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induction, it follows that
weA(g)=AWA(a)A(w) = AWAP)A(v).
Since A(P)=A; =A(£), we have
A(WAP)A(v)= Alugv) = A(f).
Thus we A(f). From (1.4), we obtain
L&) Alg)= A, i=1,...,N. n

We now show that in some cases, a system of algebraic equations has a unique
solution.

I.)eﬁnition An algebraic grammar G =(V, X, P) is strict iff for each produc-
tion £é—a € F, either ¢ =1 or a contains at least one terminal letter, thus iff

a e lU(VUXYX(VUX)*,
A system of equations is strict if the associated grammar is strict.

By Greibach’s Normal Form Theorem, a strict grammar can be supplied for any
context-free language (see the books listed in the bibliography).

Theorem 1.5 Let G={(V, X, P) be a context-free grammar. If G is strict, then
Lo =(Lg(&), ..., Lg(&)) is the unique solution of the system of equations
associated to G.

Proof. Let (1.2) be the system of equations associated to G, and let A =
(Ay, ..., Ay), B=(B,,..., By) be two solutions of this system. We prove:

for i=1,....N, weA, |w|=n implies weB, (1.5}

by induction on #. This shows that A < B, and A =B by symmetry.

If 1e A;=A(F) then 1€ A(a) for some acP, and since G is strict, this
implies @ =1. Thus 1P, and 1€ B(P,)= B, Assume wc A, and |w|=n>0.
As before, we A(a) for some aeP. If «cX*, then a=weP, and weB,
Thus suppose the contrary. Then l

o= u[)éil byt ur*lgi,ur!
with r=1, u,,...,ue X, &,..., & & V. Therefore
W= UgUity - U U,

w'ith v eA(g)=A, for k=1,...,r. Now ugly;+--u,#1 since G is strict.
Since r=1, {u|<n for all k=1,...,r, and by the induction hypothesis,
veB, =B() for k=1,.:., n Thus

weuB )u + - u, 1 B(E)u, =B(a)< B, L]
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Note that the finiteness of the sets P, was used in none of the proofs of
Theorems 1.4 or 1.5. Thus these remain true if the sets P, are infinite, provided
grammars with infinite sets of productions are allowed or alternatively, if the
connections with grammars are dropped in the statements. Thus especially
Theorem 1.5 can be used to proof unicity of the solution of equations (Exercise
1.5}

We conclude this section with a result that permits transformations of system of
equations without changing the set of solutions. This is used later to show that
systems of equations which are not strict have a unique solution by transform-
ing them into strict systems.

Definition Two systems of equations
=P (IsisN) and E=Q; (1=is=N)
with the same set of variables are equivalent if they have the same set of
solutions.
Proposition 1.6 (Substitution Lemma) Let
&=P, i=1,...,N (1.6)

be a system of equation. Assume that o = u&v € Py, for some j, ke{l,..., N} and
some words u, v. Define Q, =P, for ik, and Q, =(P,\a)U uPv. Then (1.6) is
equivalent to

=0 i=1,...,N. (1.7

Example 1.1 {continued}. Starting with £= P, where P =a+ & we single out
a=§, and form Q=P\a U P =a+ ££¢+ ga. The substitution lemma claims
that the equation £ =a + £a + &€ is the equivalent to the initial one.

Example 1.3 Let X ={a, b}, and consider the system
E=1+mf  m=aéb

Taking « = n£ and replacing n by agb, yields the strict system
&=1+aébg; 1= ath.

By the Substitution Lemma, the first system has a unique solution.
For the proof of Proposition 1.6, we need a technical lemma,

Lemma 1.7 Let Y be an alphabet, and let A, B, C, I and M be subsets of Y*. If
L=AUBMC and M=AUBLC,

then L.=M.

Proof. F B=@ or C=(J, then L=M=A. Next, if 1eB and 1€, then by
the first equation M < BMCc L, and similarly L < M, hence L =M. Thus we
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may assume that 1¢ BC. Then 1eL iff 1 A, hence iff 1e M. Arguing by
induction on the length of words, consider we Y*, |w)=p=>0, and assume
wé A, Then we L iff we BMC, hence iff w=bw'c with beB, ceC, weM
and |w'|<p Thus wel and we BLOc M. Similarly, we M implies we L.
This proves the lemma. =

Proof of Proposition 1.6. Let A =(A,, .. -»An) by a solution of (1.6). By
definition, A(B)=A, for i=1,..., N. Thus

A(Q)=A, i=1,...,Ni#k
A(Q)=APN)UAWA(PIA) = AP\ U Ala) = A,

showing that A is a solution of (1.7).
Conversely, let B=(B,, ..., By) be a solution of (1.7). Then

B(P)=B, i=1,...,Ni#k
B(P.) = B(P\a)U B(e) = B(P\e) U B(w)B(£)B(v)
= B(P\e) U B()B(Q))B(w). (1.8)

If j# k, then Q; =P, Thus

B(F,) =B(P\a U uP;U) =B(Q,) =By,
and B is a solution of (1.6). If j =k, then by (1.8)

B(P)= B(P\a)U B(w)B(O,)B(v);

B(Qu=B(P\e)UB(u)B(P,)B(v)
by definition. In view of Lemma 1.7, we have

B(Pk)z-‘_B(Qk):Bk;

thus B is a solution of (1.6). "

Exercises

1.1. A context-free grammar G =(V, X, P} is called proper if each production £~ a c P
verifies ad TUV. A vector A ={A,,... » Ayn) of languages is called proper if 1¢ A;
fori=1,..., N. Prove that the system of equations associated to a proper gramimar has
2 unique proper solution.

1.2 Show that Corollary 1.2 remains true if L is replaced by Iy, and that Lemma 1.3
becomes false.

1.3 Show that the languapes of senfential forms of a context-free grammar are
context-free.

1.4 Show that there are non context-free languages among the solutions of the equation
of Example 1.1
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1.5 Use Theorem 1.5 to show that the equation £=A U£&B has the unique solution
AB® provided 1€ B.

I1.2 Closure Properties, Iteration

We recall here some closure properties of the family of context-free languages,
and also the iteration lemmas for these languages. We give no proof; we just
recall some constructions that will be used later. Proofs of the results stated
here can be found in standard books on formal languages (see Bibliography).

Theorem 2.1 Context-free languages are closed under union, product, star
operation, reversal, morphism, inverse morphism, intersection with regular sets,
context-free substitution.

A context-free substitution is a-substitution- 8: X*— Y™ such that 6(x) is a
context-free language for each xe X

We now recall the usual constructions employed to prove closure under
morphism, inverse morphism, intersection with regular sets and substitution,
Let L < X¥ be an algebraic language, let G=(V, X, P} be an algebraic lan-
guage and let o€ V be such that L =L;(o).

a) Morphism Let y: X*— Y™ be a morphism. Extend ¢ to a morphism from
(VUXY* into (VU Y)* by setting ((¢}=¢& for £& V. Define a grammar
YG=(V, Y, {P)
by PP ={&->yla)|E>acP).
Then it is readily shown that
YLa(§)=Lyc(d) €€V,

Thus yif. = L,;(o) is a context-free language,

b) Inverse alphabetic morphism Let ¢: Y*— X™ be an alphabetic morphism. -
As above, extend ¢ to (VUY)* by setting ¢(£)=¢ for £ V. Define Z =
{vyeY|e(y)=1} and T= Y\Z. Finally, let & be a new letter {mé VUXU Y).
Define a grammar

¢ G=(0UV, Y, P)

where P'IP"U{w——>1+ 3 mz}

zeZ

and where P” is defined as follows: For £€V, k=0, y1, V2, ...,y e VUT

oy oy0 - opweP’ < f—o(yvac o w)eP.
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Since the restriction of ¢ to (VU T)* is strictly alphabetic, P" is finite. Next, it
is easy to prove that

‘p_lLG(g):ch"(G)(g) eV,

and L -gfw)=Z* Thus ¢ 'L is a context-free language. Any inverse
morphism can be factorized into an alphabetic morphism, followed by the
intersection with a regular language, followed by a morphism. Thus closure
under arbitrary inverse morphism can be deduced from the above and from the
following construction.

¢) Intersection with a regular langvage Let K © X™ be a regular language, and
A=(X Q,q._,Q,) be a finite automaton such that K=|A|. Let & be a new
symbol, and define a grammar

G ={(0U(QXVXQ), X P}

where P,=FP UP",

with  P'={6->(q,0,q.)[q. € Q.},

and P’ composed of the following productions:

For k=0, &£my,.ccomeV, g, .., meX¥, 4.9, g1, ... 4 g1, ... qhe Q,
(4. & 4= uolqu, M, qVu(ga, M. 48) - (G Mo GiV 1 € P

if and only if

E= Utz M P

’

and  q-up=q1, grw=q, (F=1,...,k-1), gi-wm=qg".
It is not difficult to show that
Lolg £ d)=Le(&)NK,, (q.4€Q,£eV)

where K ={feX*|q - f=q}.

Thus LNK=Lg/ ().

d) Context-iree substifation Let 8: X*— Y™ be a context-free substitution.
For each x€ X, let

G.=(V,, Y, P}

be a context-frec grammar such that 8(x}=Lg (c,) for some o, € V. Clearly
the alphabets V, may be assumed pairwise disjoint and disjoint from V. Define
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a copy morphism v (VU X)Y* = (VU{o, :xe X})* by y(§) =& for e V, v(x)=
o, for xe X, and let vG =(V,{o, :x € X}, vP) be defined as in a). Let

H=(W,Y,Q)

be the grammar with W=V |J V, Q=+vPU {J P.. Then it can be shown

xeX xeX
that

Ly(€)=08(Ls(8) £V

Consequently §(L) = Lg(o).

The iteration lemmas for context-free languages are not as accurate as the
corresponding lemmas for regular sets. It can be shown (Exercise 2.1) that a
strict analog of the iteration lemmas for regular languages does not exist. The
most frequently used iteration lemma is due to Bar-Hillel, Perles and Shamir.

Lemma 2.2 (Iteration Lemma for Algebraic Languages) LetI.c X* he
an algebraic language. There exists an integer N=1 such that any word fe L
with |fl= N admits a factorization f= aubvc (a. u, b, v, c € X*) satisfying

(i aubv'ce L forall n=0;

(ii) O0<luv|=N.

There is some difficulty in the use of this lemma arising from the fact that the
position of the segments u and » in f cannot be predicted. The following
refinement of the above lemma states that at least the position of one of the
two segments can be located with some precision. The notion of marked
position is the same as in Section L.5.

Lemma 2.3 (Ogden’s [teration Lemma for Algebraic Languages) Let
L < X* be an algebraic language. There exists an integer N=1 such that for any
fel, and for any choice of at least N marked positions in f, f admits a
factorization f = aubve (a, u, b, v, c € XY sarisfying

() au"bv"celL for all n=0;

(ii} {each of a and u and b) or (each of b and v and ¢} contains at least one
marked position;

(iii) uv contains at most N marked positions.

If all positions of { are marked, we obtain Lemma 2.2. Assume that N
consecutive positions are marked, hence that a segment g of f has been
distinguished. Then (ii} implies that either © or v is a segment of g. Thus we
have:

Corollary 2.4 Let L< X* be an algebraic language. Then there exists an integer
N such that for any word f e L, and for any faciorization f= hgh'(h, g, h' € X*)
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with |g|= N, f admits a factorization f= aubvc (a, u, b, v, ¢ e X%} satisfying

(i) au™bv"ceL for all n=0; -
(ii) either u is a segment of g and |u|>0 or v is a segment of g and jv|>0.

We do not prove these lemmas (see Qgden [1968], Aho and Ullman [1972],
Autebert and Cousineau [1976]). The proof is on derivation trees and the
lemmas are in fact results on derivations in algebraic grammars. We give this
version of the lemma for later use.

Lemma 2.5 (Ogden’s Iteration Lemma for Algebraic Grammars) Let
G =(V, X, P) be an algebraic grammar. Then there exisis an integer N such that,
for any derivation £ f with £e V., fe(VUX)*, and for any choice of N
marked positions in f, there is a factorization -
f=aubvc (a, u, b, v, c€ X*) and ne V such that

i) & anc, n unp, 0 b;

(ii) (a and u and b) or (b and v and ¢) contain at least one marked position;
(iii} uv contains at most N marked positions.

Note thf'it the integer N is independent of the nonterminal £ Note also that the
lemma is true for sentential forms as well as for words in X%,

A context-free grammar G =(V, X, P) can be “reduced” in several ways, Let
ogeV. Then G is

reduce:l in o, if for each £eV, L (&)= @, and o> uév for some words
u,veX™, ’

strictly reduced in o, if G is reduced in o, and if further L;(£) is infinite
for each £e V.

Lemma 2.6 Let L= X" be a context-free language. If L is nonempty, then
L =15(o) for some context-free grammar G=(V, X, Py which is reduced in .
If L is infinite, then G can be assumed to be strictly reduced in o.

We only pgive the construction. Let L = Ls(o) for some grammar G=
(V. X, P), and let V' be the set of £€ V such that I, (&)= and ¢ 2
s Fh 3 @ => uép fi

some u, veX* If L#{ then oecV'. Letc G'={V' X P \%i’le?é
P={f{—>acPitcV,ac(V'UX)). Then G' is reduced in o, and L;(&)=
LsA&) for each £ V.

Next let V"={£e V'| L.{&) is infinite}, and define a grammar G"={V", X, P")
as follows. Let 8:(V'UX)*—(V"UX)* be the substitution given by

Oxy=x (xeX), GE)=£(EeV"), (&) =La(d) (€ V\VY),

—
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and set

P={t—>p|lt—=acP, Bebla)

If L is infinite, then o€ V", G" is strictly reduced in o, and Lg.(£) = L (&) for
each e V™.

Exercise

2.1 Show that Corollary 2.4 cannot be strengthened to assert the existence, for each
factorization f = hgh'g'h" of f e L, of a factorization f = aubvc satisfying (i} and such that
both u is a segment of g and v is a segment of g'.

IL3 Dyck Languages

The Dyck sets are among the most frequently cited context-free languages. In
view of the Chomsky-Schiitzenberger Theorem proved below, they are also the
most “typical” context-free languages. In Chapter VII, we shall see another
formulation of this fact: The Dyck languages are, up to four exceptions,
generators of the rational cone of context-free languages.

A Dyck language consists of “well-formed” words over a finite number of pairs
of parentheses. There are two (and in fact even four) families of Dyck
languages defined by different constraints on the use of parenthesis. The
restricted Dyck languages D2¥ (n=1) are formed of the words over n
pairs of parentheses which are “correct” in the usual sense. Thus

(LOrOTL0D G

is a word of D%¥. For the Dyck languages D¥, the interpretation of the
parentheses is different. Two parentheses of the same type are rather consi-
dered as formal inverse for each other. A word is considered as “correct™ iff
successive dejetion of factors of associated parentheses (say of the form xX and
ix) yields the empty word. Thus
XxXxyyxx

is a word of D¥, This interpretation is used for the construction of free groups.
Finally, D, and D are the sets of Dyck-primes and restricted Dyck-
primes, that is the words of D¥ (resp. D4") which are not product of two
nonempty words of D¥ (resp. D.¥).

The appropriate framework to formalize the definitions of D;* and D¥ are
congruences. We first give this definition, and prove then that the four families
consist of context-free languages. The section ends with a proof of the
Chomsky- Schittzenberger Theorem.

Let n=1 be an integer, and let X, ={x,,...,x.}, X, ={%,..., %} be two
alphabets of n letters. Each couple x;, ¥, can be considered as a pair of
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parentheses of the same type. Define Z, = X, U X,. We introduce the following
useful notation. For ze Z,, let

- {fk if z=x;
X if z=x%.
Thus Z =z.

Definition The restricted Dyck congruence §', is the congruence of Z¥F
generated by

xkfk""]. k:1,...,n. (3-1)
The Dyck congruence 8, is the congruence generated by (3.1) and by
Xx ~1 k=1,...,n (3.2)

Thus twe words w and w' are congruent moduio &7, or modulo 8, and we write
w=w'{mod 8} or w=w'(mod§,)

iff w’ can be obtajned from w by a finite number of insertions or deletions of
factors of the form x,%, (resp. x %, or %.x.).

Definition The restricted Dyck language D7 is the class of 1 in the
congruence &,:D;¥=[1];. The Dyck language D¥ is the class of 1 in the
congruence §, : DE=[1], .
Ciearly by definition both D7* and D¥ are submonoids of Z¥*.
Definition The set D}, of restricted Dyck primes is

D} = (D D\(DIF\1),
The set of Dyck primes is D, =(DHD\(DF\1)2.
The notation is consistent since DY, and D, indeed generate the submonoids
D7* and D¥ (see Section 1.2). In fact, we shall see that D!, and D, are bifix
codes; thus D" and D are free submonoids of Z¥. In order to give a unified
treatment, we follow an idea of M. P. Schittzenberger and introduce a more

general family of congruences and languages. It will appear that the restricted
and the general Dyck languages are just extremal cases in the new formulation.

Definition Let I be a subset of {1, ..., n}. The congruence &7 1s the congruence
generated by

xx.~1 (k=1,...,n) and Ex~1 (el

The language DY is the class of the empty word in the congruence §;.
Clearly DY is a submonoid of Z¥, justifying thus the notation. Anyone of the
2" subsets of {1,.. ., n} defines a “Dyck-like” language. If I=¢J, then 8 =8,
and DF =D}, it I={1,...,n}, then & =8, and D¥=D*,
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Our aim is to prove that DF and D;=(DF\UDNDH\1) are context-free
languages for any I={1..... n}. For this we first introduce a new relation. Let
u,ve Zy, and set ur—v iff there are f, ge Z¥ such that u=fog v=fg and
either &« = x, x, forsome ke{l,...,n}or e =%x; forsomeicl The reﬂe.x:ive _ai‘nd
transitive closure ﬁ;— of o is called the Dyck reduction. Clearly, if urT v,
then |ul2|s|, and u|=|v| implies u=wv. The congruence &; and the reduction

- are linked by

u =y (mod &)

iff there are k=0, u,, ..., u, € ZF such that
Uy = U, =1,
and (upﬁuf‘,+1 O U1 p=0,..., k-1

Thus u+ v implies = wv{mod &;), but the converse is false.

A word u is reduced mod & iff it contains no factor of the form x,%, or Xx,
(ie D). Thus u is reduced iff {v | ur-v}=@. For any word we Z there is at
least one reduced word u congruent to w(mod &;). Usually, there are several
ways to compute a reduced word. We shall prove that all computations lead to
the same reduced word which is unigue. We follow Autebert and
Cousineau [1976] rather than the standard exposition as treated in Magnus,
Karrass and Solitar [1966]. Indeed, the presentation below is closer to the
extensions to more general congruences over free monoids as considered by
Cochet and Nivat [1971], Benois and Nivat [1970].

Example 3.1 For n =2, I'={1, 2}, consider the word w = Zxxxyyix. It can be
reduced to the empty word in at least the two following fashions:

W = Xx¥xyyXx W = XxXExyyxx
wy =|J_E§)7yfx wh= Xxyyix
Wz=,fjix wh= )EEJ_EIX
W= g, wh=
wy=1 whi=1,

From now on, we write +— and - instead of +- and $

Lemma 3.1 (Confluence Lemma) If w u, and w = u,, then there exists a
word v such that u, = v, U= v.
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Thus the lemma asserts the existence of a word v such that the followin
diagram holds (Fig. 1L.1). -

w
/\ /\
th i
x /\
v

Fig. L1

We first prove the lemma in a special case.

Lemma 3.2 If w—u; and w— u,, then there exists a word v such that u, - v
and w2 v :

Proof. There are words fi, g1, f2, £2€ Z> and a,, a,c Z2 such that
w=f1a:8:=f20:2, u = fig, Uy =f>8.

If {fi|=1fal then w, = u, and there is nothing to prove. Assume for instance
1< |fsl. We distinguish two cases.

a) |fii+2=|f,]. Then fo=fiah for some word h, thus w=fa;ha,g,, and
v =f,hg, satisfies u,— v, U— .

b) |fil+ 1=|f.l. Then f,=f,z for some letter z, hence a,=zZ, and a,= 2z
(This implies that z=x; or z=5x with iel) Thus w=[fz3zg,, and u;=
f1z8; = u,. Hence v =u, satisfies the conditions. n

Proof of Lemma 3.1 By induction on |w|. If |[w|=0, then u,=w=u, =1, and
v = w satisfies the lemma. Assume |w|=p>0. If ju,| =|w!, then u, = w and the
lemmma is verified for © =u.. Thus we may suppose |u,|<p and similarly
luo} < p. There exist two words v,, v, with [v,}={v,| = p—~2 such that

Wi— Uq - g, Wi— Uy Uy,

Thus in view of Lemma 3.8, there is a word f such that
vr-t oand Utk

Since v+~ 1y, vyt and |2y <p, by induction there is a word w, such that
U wy, E wy;

similarly, there is a word w, such that

U Wo, P W
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Now £ wy, ¥ w, and |¢| < p. Using the induction hypothesis once more, there
exists a word v such that

Wi -, Wa - 0.
This shows that o, F= wy =0, Ua - W= .

The construction of the proof is reflected in Fig. I1.2.
w
2N
" %
2NN
& t u
SN
w w
NS
v

Corollary 3.3 Let i, ve 7%, then u=u(mod &) iff there exists a word w such
that u w and v-w.

Proof. Assume u=~uv(mod &). Then there are k=0, ug, ..., th € Z* such that
ug = U, W, =0 and

Fig. TL.2

Uy - Hprs O Hpagt— Uy for p=0,....k—1.

If k=0, then u =» and there is nothing to prove. Arguing by induction on k,
there is a word w, such that
e w,  and v wy

If g w4y, then u,r~w, and the corollary is true with w=w. i 1y — ug, there
exists, by the Confluence Lemma, a word w, such that ug™ wo and wy 2 Wy,
whence v = w,. The converse is obvious. [ |
Remark. The Confluence Lemma can be considered as a property of some binary
relations: Let % be the relation opposed to +—. Then the congruence 5; 18 the least
congruence contaiping 4 and . Corollary 3.3 states that &; is the product (of

relations) of ¥ by -*i; the Confluence Lemma asserts the cxistence of a weak com-
mutativity property: the product of 4 by  is contained in the product of & by X

We list two other coroilaries.
Corollary 3.4 If v is reduced and u=v(mod &), then u v,
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Proof. By Corollary 3.3, there is a word w such that u == w and » « w. Since
v 1s reduced, v=w, -
Corollary 3.5 Any class of the congruence 8; contains exactly one reduced word.

Proof. It is clear that any class contains at least one reduced word. Assume
u, v are reduced and u=wv(mod &). Then by Corollary 3.4, u+=v and v+
thus u=ov. =

We denote by p;(w) the unique reduced word congruent to w mod 8,. If I= £,
we write o’ and if T={1,..., n}, we write p instead of p,. The language p,(Z)
of reduced words is a.local regular set, since

P ZD)=ZINZV, 2
with Vi=i{x% :k=1,.. .  ntu{ix iel}

The next lemma describes the words which reduce to a given word. It is the key
lemma for the proof that the languages D¥ are context-free.

Lemma 3.6 Let f, weZE, w=z,z,- - -z,,(z, € ZF). Then
fw

iff there exist dy, d,, . . ., d,, € Z¥ such that
f=doz\di25 - “d,, 1 Zpuden,

and  dye1,d,2-1, ..., d -1

Proof. The conditions are clearly sufficient. The proof of the converse is by
induction on |f|~|wl. If {f| =|wl, then f= w; if |f|>>|w], then there exists f' such
that |f/|=|f|—2 and f— f' ¥ w. By induction,

f=dozydizy - - dp120dn
for some words d, with d,~ 1, (r=0, ..., m). Next, there is a factorization
f=gah, with f=gh,

and a = x5, for some ke{l,... n}or a=Zxx for some ic I Hence there is
an integer j, (0=<j=<m} and a factorization d;, =d'd", (d', d" € Z¥) such that

g=doz, ... zd, h=d"z. - z.d,.

Sct ¢;=d’ad". Then ¢+ d;" 1 and

f=dozy2€Z111" " * Zyylom: n
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Theorem 3.7 The language DF is contexi-free. More precisely, DY is the
language generated by the grammar G, with productions:

P i X EGE+ Y BEE (3.3)
k=1

iel
First, we introduce the notation

Y;=X,U{x :iell.

Thus Y, =X, if I=, and Y; =2, if I={1,..., n}.
Proof. The grammar G, is strict. Thus it suffices to show that DF is a solution
of the equation associated to (3.3). Assume w=zw'Zw’ with w=w"=
1{mod ;) «nd z€ Y;. Then w=zi=1 (mod &;) and we D¥. This shows the
inclusion

D¥>1u U xD¥fz.D¥FU | 5Dy DT,

l=k=n iel

Conversely, let we D¥, w=1. Since 1 is reduced, w1 by Corollarv 3.4.
Since w# 1. there is a letter z€Y; such that w'zZ. By Lemma 3.6, w
factorizes in

W= d()zdlfdz

with dy, d,, doe D¥E. I do=1, then wezDFzD¥. If d,#1, then |dg|<|w],
and arguing by induction, d,eyD¥FDT for some veY, Thus
weyD¥yD¥zD*:D% < yD¥$D%. This achieves the proof. »
We now investigate the language

Dy ={DAINDRAIN
For ze Z,, define
D, =DM zZ¥

Proposition 3.8 (i) The language Dy is bifix;
(i) D, #@ iff ze Yy
(iii} if Dy, # &, then any w e Dy, admits a unique factorization

W= ZU Us " "t Uy Z with m=0, uy,...,u, e DA\D;.

Proof. (i) Let we Dy, and assume w=uv with ue Dy, ve Z¥. Then I=up=
v(mod 8;), thus v e D¥, Thus v =1 by the definition of I,. This shows that D,
is prefix. A symmetric argument shows that D; is suffix.

(ii) Let we D;,. Then w=zu for some word u. Since w1, there is a letter
y € Y; such that wix y¥. In view of Lemma 3.6, w factorizes in w=d,yd,vd.,
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with dy. d,, d,eD¥. Since we Dy, dg=d>.=1 and y=z This proves the
assertion, since clearly D, # & if ze Y, _
(iii) W: just have seen that a word weD,, factorizes in w=zd,? with
d € D}, Thus either d, =1, or &, =wus - - ‘1, with u,, ..., i, € 1. Assume
that u, € Dy; for some p. Then u, = zZdz for some d e D¥, and

w=(zu; -ty B2ty - - w2y e (DAY

contrary to the definition of I3 The unicity is immediate since D; isacode. m
By Proposition 3.8,

D= D,
i zgﬁ i (3.4)
DI.Z = ZAI.ZZ'_' (Z € Sfl) (35)
where 4,, is the submoneid of Z¥ generated by D\D;,:
Ay, = *
Lz (YEEJ\EI)Ly) ‘ (3.6)

Finally, since D; generates D¥, we have:

D¥=1uD,D¥ 3.7

From equations (3.4)-(3.7), we deduce the followin rammar H;=
(Vi Z,, Pr). Set # I

VI ={§7 "?}U{fz, M. :Z€ YI}:

and let P; contain the productions:

£—=1+nf; n— 2

za'¥Y

nows  &o1( T omle  Gewy.
YEYhT .
By the Substitution Lemma, the system of equations associated to H; is
equivalent to:

E=1+ ) 2628, =1+ 3 yije  (zeY): (3.8)

zeY; ve Y\Z

n=2m: m=z2£67 (zeY)).
2eY;
The equations (3.8) are strict, thus the system associated to H, has a unique
solution, and equations (3.4)-(3.7) show that H,; generates the various lan-
guages related to the Dyck sets:

D}k = LHI(E); D= LH,("I)S Dy, = LH,(T!z), a,.= LH,(!EZ)
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Corollary 3.9 The languages D; are context-free. u

1f J=4¢J, the grammar H; reduces, after short-cutting the n,, to the grammar
with the productions:

E-ltnts - ) k.
k=t

Thus we have, for D7*, D', D¥*, D, the following formulas:

DF=1UDD  Di= U xDiFk

1=k=n

D¥=1UD,DY;  D,=\ D..3
zeZ,

E]
D,.=24,% (zeZ); 4.=( U D) =z
veZ,\E
It can be shown (Exercise 3.1) that D7¥ is also generated by the grammar with
productions
E— &+ ), xR +1,
k=1

and that D¥ is generated by the grammar with productions

n

EEE+ Y, nbh + Y Bba o+ L
k=1 k=1
Let X =7Z%/5 be the quotient monoid; we denote by §, the canonical
morphism from Z¥ onto X defined by &, (w) = [wl,.Forw=2,2,-"+z,€ ZE
(z;€ Z,), define w=3%,%, 4 - Z,.Since

ww = ww=1{mod §,),

X™® is a group, and 8,(w)=(8,(w))"". In particular, §,(2)=(8,(z))" for
2 e Z,. Tt can even be shown that X% is a free group (see Magnus, Karrass
and Solitar [1966]). X% is called the free group generated by X,. Since
each class [w], contains exactly one reduced word p(w), there is a bijection
from X% onto p(Z¥) which associates to any u € X5" the unique reduced word
w such that u = §,(w). If no confusion can arise, the index » will be omitted in
the above notations.

Note that any word in X* is already reduced. Thus X¥ < p(Z¥). It is sometimes
convenient to identify X* with its image in X3¥. This identification allows use
of inverses and may simplify considerably certain formulations. However, it is
important not to confuse the product f 'g in X, where f, g€ X, with the left
quotient operation defined in Section L.2: Viewed as an operation in X3”, f'g
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is always a well defined element of X{P, and f'g=he X* iff fh =g. Viewed
as an operation in X7, f'g is either the empty set or a word in X%, according
to f is not, or is a left factor of g. The embedding of X* intc X will be used
only in Sections IV.2 and IV.6. In all other circumstances, f 'g should be
interpreted as the left quotient defined in Section 1.2.

The Dyck languages are known by the Chomsky-Schiitzenberger Theorem. We
prove the following

Theorem 3.10 (Chomsky-Schiitzenberger Theorem) Let I.< Y* be an
algebraic language. Then there are an integer n= 1, an alphabetic morphism
e Z¥ > Y* and a local regular language K such that

L=¢(DENK)=e(DFNK)= (D, NK)=o(D,NK).

Proof. Assume the theorem proved in the case where 1¢ L., Then 1€ K. Thus
setting K'=K U1, K' is still a local language and the theorem holds for .U 1.
Thus we may assume that 1¢ L.

The idea of the proof is simple: each production in a grammar generating I. is
bracketed by a distinct pair of parentheses, and new letters are added to make
the new grammar generate a subset of DY, and in fact of D/. Thus it has only
to be shown that none of the generated words is in D¥\D7.

We assume that L is generated by a grammar G ={V, Y, P} in quadratic form,

i.c. that each production §— « ¢ P satisfies «e YU V2. Such a grammar can

always be obtained (see e.g. the books listed in the bibliography). We set
V:{fh"'aEN}s Y:{Yh---qu}:

and define

Xo= Yu{ai.j.kvbi.j.k‘l‘i:j’k=]—¢'-'aN}U{di,s:izla---,N,SzL...sq}:

where the a;;u, b, d;, are new letters. Thus n=2N>+Nq-+q. Set X, =
{¥|lxeX}and Z, =X, UX..

Let H=(V, Z,, Q) be the grammar with following productions:

For i, j,ke{l,...,N}

&— aijkbijk"::jgifkgkaijk cQ (3.9
if and ‘only if -

&— &b P
Further, for iefl, ..., NLs=1,...,q

&= dyyd. € Q (3.10)

if and only if
&—y, eP.
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For i=1,..., N, set M, =Ly(£), and let ¢ : ZF— Y™ be the projection. Then
clearly

(M) =L (&)-

We shall prove that
M, =D*NK =D*NK,=D,NK,=D;NK, i=1...,N {(3.11)

where K, =(AZ*NZ*ANZEBZ}

is the local regular set defined by:
A={ag | k=1,..., NIU{d;, s=1,....q%, A ={f|xeAlL
ZAB=W, UW,UW,,

with W, ={aubu i k=1,..., Nk (3.12)

—ldv.vd. li=1,... . Nos=1,....qtU{nd [s=1,....qh
WZ {dlsyaa Ystlis | L (3.13)

Wi = U baeA; U by U Ay U A i (3.14)
Li.k
a) Mo D*NK, (i=1,...,N).
Let indeed w e M, Then either, by (3.10),

for some seil,...,q}, and cearly we DFN K or by (3.9)

W= aijkbijkul;iij&ijk
tor some j, keil,....,N} and ue M, veM,. Arguing by induction,
we DMK, veD¥NK,, thus we DF and, in view of (3.12) and (3.14), uc K,
n 13 n £

b) D¥NK cD,NK, (i=1,....N).
First, we verify
Do NZNZEBZE=F for xeX. (3.15)

Assume the contrary, and let weD,,‘,-cﬁfo\ZfBZ? be of _minimal lengjch.
Then |w|>2 since Xx € B. In view of Proposition ?’.8(111), W= Ty U, with
weD,NXZEX, (p=1,...,m) by the minimality of w. Since the first letter
of 1, i% not barred, x = by from some indices i j, k by (3.14). Thus, by (3.12),
the last letter of u,, is ay and w, ¢ D, N X, ZEX,. This proves (3.15).

Now let weD¥NK, w=ww, -~w, with w,eD,N X z*X  for p=
1,...,r by (3.15). Then w, € A, Z A, for some i, thus if r>1, the first letter of
w, would be barred by (3.14). Thus r=1 and we D, Next if w begins with a

letter d,, then w= dl-sys)':s&,-s by (3.13) and w e D}, Finally, if w begins with the
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letterﬂaiik, then w = ayud; for some ueD?¥, and in view of (3.12), u=
b,-,-ki.:!lbi,-kv2 for some v, v,eD}. In view of (3.14), v,eK, v,eK , and
arguing by inductien, v, € D,N K, v,e D,NK,. Thus we D’ I B
Q) DLOK <M, (i=1,...,N), i

Let we DN K. If w begins with a letter d,,, then by (3.13), w =4, V. 9.d; and
we M, by (3.10)._Otherwise, W = a,, udy, for some indices j, k, and Z:;JSD::" By
(3.12), u=by0,byo, for some v,, v, D™ Moreover, v, K. and v"éK
Thus v,€ D*NK, < D4NK, and similarly v,e DMK, by part b) of the
proof. Therefore by induction v; € M, v,e M, and we M, by (3.9)

Thus we proved I o

M cD*NKcDiNK,cM, i=1,....N
and (3.11) follows.

Exercises

3.1 Show that for any T <={1 *
et rany I<{l,..., n}, D{ is the language generated by the grammar with

ot ) ndR 4y Gent L
k=1 iel
3.2 Same question as in 3.1, for the grammar

H

E— g6+ 3 nmbER + Y Rtkx 41

k=1 il
1?.3 (Magnus, Karrass and Solitar [1966]) Define a function 6 :ZF¥+Z* induc-
tively as follows: #(1)=1, 6(z) =2z for ze Z,, and if Olwy=z,2,"+z,, (z EZHH) then
6,(wz}={2122 tZoy if z,€Y; and z,=%2;
2127+ Z,z  otherwise~
Show that 8, = p;.

3.4. Show that ww'c D¥=> w'we D¥.

3.5 Show that for each we Z%, the class [wls, of w is a context-free language.
3.6 For we Z¥ define

"
lwl=Iwlx, ~Iwlz, = 3 lwl, —lwls.
k=1

Show the following assertions:

a) weDi=|wl|=0.
b) we D> ||w =0 for each left tactor w' of w,

¢} we D> ||w'|>0 for each proper non empty |
n eft fact !
D wept e Tellmo. pty or w' of w.
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3.7 (Requires knowledge in ambiguity.) Show that the grammars H; are unambiguous.

3.8 Assume that the grammar G =(V,Y.P} for L in the proof of the Chomsky-
Schiitzenberger Theorem is in Greibach Normal Form, ie. £—« implies
xeYUYVUYVV.

a) Show that G can be transformed in such a way that for any two productions £— yf3,
£—y'B'(y,y'eY), if y#y' then B#p".

b) Replace the productions of the form

&—>yEs by & ap&lud

&—vE by &by 'ljgl

&—y by f.—’dzan
and prove that L = e(D* O K) where K is a local regular set and where ¢ erases barred
letters, and replaces unbarred letters according to the above rules.
¢) Show that each word in D' K ends by exactly one barred letter, and that no word
in DN K contains a factor of more than two barred letters.
d) Show that any context-free language L can be represented in the form L =
o(D*NR) with R local and ¢ £-limited on R (i.e. k- | (w)|=|w] for all w in R and

for some k> 0).

154 Two Special Languages
We present some properties of the Lukasiewicz language, and of the language
of completely parenthesized arithmetic expressions.

a) The Lukasiewicz langnage £ over X ={a, b} is the language generated by
the grammar with productions

E—afEt+b.
Thus + is the unique language satisfying

E=abEEUb. (4.1}
The first words of £ are

b, abb, aabbb, ababb, aaabbbb, aababbb, . ...

The language of Lukasiewicz is the simplest of a family of languages con-
structed in order to write arithmetic expressions without parentheses (prefix or
“polish” notation). The letter a represents a binary operation, say +, and b
represents the operand. Thus the word abb represents the expression b+ b, and
aababbb represents the expression ((b+ (b+b)}+h).

For we X*, define

ffwl =wlo —{wl-

Clearly [[ww'l|={wll+llw'{-
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Proposition 4.1 Let we X™*. Then weE iff w safisfies the two following con-

ditions: -
(i) [[wil= -1
(ii) lwll=0  forany proper left factor w' of w.

Clearly, Proposition 4.1 implies that £ is prefix.

Proof. Let we . If w=b, then (i) and (ji} are satisfied. Assume |w}> 1. Then
by (4.1}, w = auv with u, v € £. Thus |lw||=1+[|u| +|v]|=—1. Next, iet w’ be a
proper left factor of w. If w'=a, or if w' is a left factor of aw. then clearly
Iwl=0. If w'=auv’ and v' is a proper left factor of v, then | ={v'li=0.

Conversely, let w be a word satisfying (i} and (ii). If lwi=1, then w=beF.
Arguing by induction on |w|, assume |w|> 1. First note that by (ii), w begins
with the letter a. Thus w = aw’ for some w'. Next, since ||w]| = —1, there exists a
shortest non empty left factor u of w’ such that |Jau|=0. Set w = quv. Then
luff=—1, and for any proper left factor u' of u, ||u’|=0 by the minimality
assumption on w. Thus u € £. Next {Jo|| = |lw||=—1, and |v =|lauz'|=0 for any
proper left factor v of v since w satisfies (ii). Thus ve £ and we by (4.1). =

Proposition 4.1 can be used to draw a pictorial representation of a word w in
L. This is given by the graph of the function w'>|w’|, where w’ ranges over
the left factors of w. Thus, for w = aabaabbabbabaaabbbb, we obtain Fig. 11.3.

) AN

a ¢ b a g b & @ b b g b g g a b & b b
Fig. 11.3

Next, consider the restricted Dyck language D7 over X, i.e. with X;=a,
%,=b; Then D{* is defined by
DF=1U aDf*bD7*,
Multiply this equation by b on the right. This gives
D¥b=bU aD{*pDh.
Thus D7*b is solution of (4.1), and therefore Df¥b=L.

Corollary 4.2 Let we X™. Then we D{* iff w sarisfies:

(i) fiwll =0;

(ii) Iwl=0  forany left factor w' of w. =
Recall that u and v are conjugate iff u=fg and v = gf for some words f, g.
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Proposition 4.3 Let ue X* with |uj=—1. Then there exists one and only one
word v conjugate to u such that ve L.

Proof. We show first the unicity. Assume u=fg v=gfef. g#1. Then by
Proposition 4.1 ||fll=0, thus ju||=—1=]|fl+|gll=[gl. and g cannot be a proper
left factor of v. Thus f=1 and u=wv.

Next, let p=min{|u']: ' proper left factor of u}. If p=0, then u L. Assume
p<<0, and let f be the shortest left factor of u such that [|f]|=p. Write u = fg.
Then

[fll=p+1  foranyproper left factor f' of f (4.2)

by the minimality of f. Next

llgllz=0 forany properleftfactor g’ of ¢ {4.3)
since p <|ifg’||=p+|g]: by definition of p and

lgl=-1-p=0. (4.4)
Let v = gf. Then |jv] =|ul|=—1. Let v’ be a proper left factor of v. If v’ is a left
factor of g, then ||[v'l|=0 by (4.3} and (4.4). Otherwise, v'=gf where f is a
proper left factor of £, and |[v%=—1—p+|fli=0 by {4.2). In view of Proposi-
tion 4.1, vetf. =
b) The language of completely parenthesized arithmetic expressions E over
X={a, b, ¢, d} is the language penerated by the grammar with productions

£ agbtc+d.
Thus E is the unique language satisfying

E=qaFEbEcUd. (4.5)
The first words of E are

d, adbdc, aadbdcbdc, adbadbdce, aadbdebadbdcc, . . . .
The terminology is from M, Nivat [1967]. Write indeed “(” for “a”, *)” for
“e”, “+7 for “b” and “i” for “d”. The words listed above become

LU (D0, E+GE+H0), I+ D+G+D), .. ..
Consider the morphism that erases ¢ and d. Then by (4.5) the image of E is the
tanguage D7 over {a, b}. If b and c are erased, then the image of F is the
language F. over {a, d}. Thus E is closely related to these languages. In fact, we
shall prove later (Chapter VII) that the langvage E is a generator of the cone
of context-free languages.

Lemma 4.4 Let we E. Then

i |wla=lwl, =|w|. =|wl,—1;

() If w' is a proper, non empiy left (resp. right) factor of w, then
[w'la>|w'le (resp. fw'l, <iw'l).
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The easy proof is left to the reader. Note that (ii) implies that the language F is
bifix.

Let n be the congruence over X* generated by the relation
adbdc ~ d.

Theorem 4.5 The language E is equal to the class of d in the congruence
n:E=[d],.

Proof. Clearly de[d],. Let we E. w#d. Then w=aubvc for some u,neE
by (4.5). Arguing by induction, u= v =d{mod 7}, thus w=adbdc = d{mod n).
This shows the inclusion E<[d],.

To show the converse conclusion, it suffices to prove that for any two words
w = udv and w' = uadbdcu,

(4.6)

We verify (4.6) by induction on jw|=|w|—4. If u=1, then we E iff w=d, and
w'e E iff w'=adbdc, since E is prefix. Thus we may assume u# 1. Suppose
wc E. Then w=aw,bw,c for some w,, w,cE. Then either |ud|<|aw,} or
|dv|=iw,c|. In the first case, w, =u,dv, for u, and v, defined by au,=u,
v = U1 bw,c. By induction, w) = u,adbdcv, belongs to E. Thus awibw,c =w'c E
by (4.5). The second case handles in the same way. Conversely, suppose w'e E.
Then

weE = weE

w' = uadbdcv = aw!{bwic

for wi, wic E. If [aw!|=]|uad|, then w{=d since E is suffix, hence u=1
contrary to the assumption. Thus either |uad| <|aw?| or |dev| < |wicl. It suffices
to consider the first case. Clearly, it implies that |uadbdel=<|aw?], thus w)=
i, adbdcv with au’} =u and v = vibwhe. By induction, w, = uldv] € E, hence

aw, bwic=wcE. [
Theorem 4.5 admits the following

Corollary 4.6 Let u, u'c E. Then fugc E iff fu'ge E.
Proof. fug=fu'g(mod ). Thus fug=d{mod n) iff fu'g= d(mod ). =

Exercises

4.1 Show that £ =[b],, where A is the congruence over {a, b}* generated by the
relation abb~b.

1
4.2 let p,=Card(X* 7 NL). Show that p, = I (2}1). Show that p, =g,, where
n n
4, = Card(X*"*' N E).

HI Rational Transductions

Rational transductions are defined by rational relations, i.e. rational subsets of
the product of two free monoids. The chapter therefore begins with two
sections concerned with recognizable and rational subsets of an arbitrary
monoid. The next two sections contain the definition and basic properties of
rational relations and rational transductions. Examples of rational transduc-
tions are given in Section 5. Then the machines realizing rational transductions
are introduced. Matrix representations of rational transductions are investi-
gated in Section 7. In the last section we show that most of the usual decision
problems are unsolvable for rational transductions.

III.1 Recognizable Sets

Kleene’s Theorem gives a characterization of the regular languages of a finitely
generated free monoid, but the theorem cannot be extended to arbitrary
monoids. Therefore one can try to investigate the class of monoids where
Kleene’s Theorem remains true. An example of such a monoid was given by
Amar and Putzolu [1965]. A wider family of semigroups, where Kleene’s
Theorem is partially true is formed by the equidivisible semigroups of
McKnight and Storey [1969]. S. Eilenberg had the idea, formulated for
instance in [1967], to distinguish in each monoid two families of subsets, called
the recognizable and the rational subsets. These two families are of distinct
nature and Kleene’s Theorem precisely asserts that they coincide in finitely
generated free monoids. Properties of regular languages like closure properties
can be proved some for the recognizable subsets, others for the rational subsets
of a monoid. This gives also insight in the siructure of regular languages by
showing from which of their two aspects originate their properties.

This section deals with recognizable, the second section with rational subsets of
a monoid. We are mainly interested in properties which are of later use for
rational transductions, but we also touch slightly on properties of rational
subsets of groups.

We want recognizable sets to be, in free monoids, exactly the languages
recognized by finite automata. Instead of a generalization of finite automata,

" we prefer to use as definition the characterization via a morphism into a finite

monoid. This simplifies the exposition.
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Definition Let M be a monoid. A subset A of M is recognizable if there
exist a finite monoid N, a morphism « from M into N and a subset P of N
such that A =a"'(P). .

If this holds, then a{A)=PMa(M) and consequently A =a («{A)). Next, a
considered as a morphism onto «(M) is surjective, and A =a~}(Q) with
Q=PNa(M). Thus we may assume that « is surjective in the above defini-
tion. An equivalent condition for A © M to be recognizable is the existence of
a congruence relation 8 on M of finite index such that A is saturated for 4,
ie. A is a union of equivalence classes of 4.

The set of all recognizable subsets of M is denoted by Rec(M).

Example 1.1 Let M be any monoid, and let N={1} be the monoid consisting
of a single element. Let & be the unique morphism from M onto N. Then
g =a"&) and M=a N). Thus M, JeRec(M) for any monoid M.

Example 1.2 If M is a finite monoid, then any subset of M is recognizable.

Example 1.3 If M=X"* and X is an alphabet, then A cRec(X™) iff A is
recognized by a finite automaton (Proposition 1.4.4).

Example 1.4 Consider the additive group Z of integers. Let a be a morphism
from Z onto 4 finite monoid N. Then « is a group morphism and N=a(7) is a
finite group, thus N =Z/n Z for some integer n =1 (Exercise 1.3.1). Consequently
N can be identified with the set {0,1,...,n—1}, and for peN, o™ (p)=
p+nZ. Thus for Pc N, a *(P}= |J p+nrZ. Conversely, any subset of 7 of this

peP
form is recognizable. It follows that A eRec(#) iff A is a finite union of
arithmetic progressions. In particular, any nonempty recognizable subset of Zis

infinite.

Proposition 1.1 et M be a monoid. Then Rec(M) is closed under union,
intersection and complementation.

Since ¢J, M e Rec(M), it follows that Rec(M) is a boolean algebra.

Proof. Let AcRec(M), let N be a finite monoid, let a:M— N be a
surjective morphism and let P be a subset of N such that A =qa '(P). Then
M\A =a '(N\P). Thus M\ A € Rec(M). This proves the closure under com-
plementation.

Next, let BeRec(M), B=8"1Q), where B8 is a morphism from M onto some
finite monoid N' and Q<= N'". Let N"=NXN' be the product monoid and
define y: M — N" by vy(m)=(a(m), B(m)), meM. Then v is a morphism.
Further y(m}c P> Q iff a(m)e P and B{m)ec Q, thus iff me a (P)N 8 YO).
Consequently ANB=vy""(PxQ), and since N is finite, AN BeRec(M).
Thus Rec(M) is closed under intersection. Closure under union follows from de
Morgan’s rule. =
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Coroltary 1.2 If A, B eRec(M), then A\B c Rec{M). =

An important property of recognizable sets is the closure under inverse
morphisms.

Proposition 1.3 Let M and M’ be monoids, and let v: M — M’ be a morphism.
If A'eRec(M’), then v '(A"Ye Rec(M).

Proof. Let «: M — N be a surjective morphism onto a finite monoid N, and
let P< N such that A'=a '(P). Then v '(A"Y=8""(P), with B=a oy Thus
¥ (A" e Rec(M). =
If the monoid M’ of Proposition 1.3 is finitely generated, then M can be chosen
to be the free monoid generated by an alphabet. It follows that v (A"} is a
regular language.

Corollary 1.4 Ler v be an isomorphism from M onto M'. Then A € Rec(M) iff
v(A)e Rec(M). =

The following example shows that the homomorphic image of a recognizable
set is not recognizable in general.

Example 1.5 Let X ={x, y}, and let v:X* — 7 be the morphism defined by
v =Ifl. —Ifl, (Fe X™®). Then {1} & Rec(X™), and v({1}) ={0}. In view of Exam-
ple 1.4, {0} & Rec(Z). This can also be seen by applying Proposition 1.3. Assume
indeed {0} = Rec(Z). Then v '({}) is a recognizable subset of X¥, i.e. a regular
language. Since ¥ *(0) = D¥, the Dyck language over X (Exercise 11.3.6), this
yields a contradiction.

In general, the family Rec(M) is closed neither under product nor under star
operation. This is shown by the following example which is credited to S.
Winograd by Eilenberg [1974].

Example 1.6 Consider the additive group Z, and add to 7 two new elements &,
@. The set M=7U{s, a} is a commutative monoid with addition extended as
follows:

etm=m (meM), a+a=0, a+x=x (xeZ).
Thus £ is the neutral element of M. We first show that {}, {a}eRec(M).
Consider indeed the commutative monoid N ={z, @, 0} with neutral element £,
and with addition defined by 0 +0=0+4d=ad+ad=0. Then a : M — N given by
a(e)=§ ala)=4, a(x)=0, (xeZ) is a morphism, and {e}=a "), {a}=
a~'(a@). Next if AeRec(M), then ANZeRec(Z). Let indeed 8 be a morphism
from M onto a finite monoid N', let 3, be the restriction of 8 on 7, and set
N; = B.(Z).
If A=8"YP) for P= N, then

BTYPNN) =B {PANINZ=EHP)NZ=ANT.
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Consequently A NZeRec(Z). Define now A ={a}. Then A eRec(M)}, and
A+A={0}, AT={0,a}, A*={0, ¢ a}. None of these subsets is in Rec(M),
since otherwise their intersection with Z, that is {0} would be a recognizable
subset of 7 in contradiction with Example 1.4.
The following theorem gives a description of the recognizable subsets of the
product of two monoids. Eilenberg [1974] attributes it to Mezel
Theorem 1.5 (Mezei) Let M, M, be monoids and M =M;xM,. Then Be
Rec(M) iff B is a finite union of sets of the form A, X A,, with A, € Rec(M,) and
A;eRec(M,).
Proof. The condition is sufficient. Let indeed 7 :M— M, (i=1,2) be the
canonical projections. If A; < My, A, ©M,, then

A XA =(A, XM)M (M} Aj)= WTI(Al) M ’TT;](Az)-
Thus if A; e Rec(M,), A,eRec(M,), then A, X A, € Rec(M) in view of Propos-
itions 1.3 and 1.1. Since Rec(M) is closed under union, B € Rec(M).
Conversely, assume B e Rec(M). Then there exist a finite monoid N, a morph-

ism B:M— N, and a subset P of N such that B=g"'(P). Consider the
morphisms a;: M, — N defined by
a,(my) = Blmy, 1), ax(my) = B(1, my)
and let v: M — N XN be the morphism defined by
v(my, my) = (a(my), az(my)).
In N X N consider the set
Q={(m, ny) ! nyn, € Pl
Then y(m,, my)e Q iff a,(m,)ay(m;)e P. Since
ay{m)as(m,) = B{m,, ma),
and since (m,, my)eB ift B(m,, my)eP, it follows that B=+vy~(Q). Next
¥ (m, mo) = a7 () X a3 '(ny), whence

B= U vy '(m,nm)= U ai'(n) X az'(n).
(ny,r)eQ (r1,n2)eQ

Since the sets w7 () are recognizable subsets of M, (i=1,2), the required
decomposition of B is obtained. N

Exercises

1.1 Let M be a monoid, M a submonoid of M. Show that if A'eRec{M’) then
A'N M e Rec(M). Give an example showing that Rec{M) is in general not contained in
Rec(M"), even if MeRec(M'). (Hint (Perrin). Consider M = (xy™)* & Rec({x, v}*).)
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1.2 Let M be a monoid. Define a finite automaton A over M by a finite set of
states Q, an Initial state g., a set of final states Q,, and a next state function
Q x M — Q satisfying the following conditions:

q-1=¢q (ge Q)
g -mm'=(q -m)-m' {(geQ.m, m'eM).

The subset of M recognized by A is by definition [A[={meM|q_- m e Q.}. Show
that A eRec(M) iff A is recognized by a finite automaton over M. (For further
discussion on these lines, see Walljasper [1970] and Vogel [1972].)

1.3 Let G be a group. Show that A € Rec(G) iff there exists an invariant subgroup H of
G of finite index (i.e. G/H is finite) such that A is a union of cosets of H. Show that
a subgroup of G is recognizable iff it is of finite index.

1.4 Let M be a monoid, AecRec(M). Show that for any B<M, B ‘A=
{m|BmN A @} is a recognizable subset of M. (Hint. Use Exercise 1.3.6.)

II1.2 Rational Sets

In this section, we study the rational subsets of a monoid and their relation to
recognizable subsets.

Definition Let M be a monocid. The family Rat{M) of rational subsets of M
is the least family # of subsets of M satisfying the following conditions:

i) @eR{mleR forall meM; (2.1)
(ii) if A Be® then AUB ABe%; (2.2)
(iii) if Ae®R, then AT=1JA"eR. (2.3)

n==tl

In presence of (i) and (if), the condition (iii) is equivalent to:

(iiil"y Ae&R>A%eR

Assume indeed A*e@R. Since {1}e®R by (i), it follows by (i) that A¥*=
{HUAT R, Conversely, it A, A*c @R, then by (i) A*=AA*cR.

Any subset A of M obtained from the singletons by a finite number of unions,
products and plus or star operations is in Rat(M). Moreover, the family of
subsets of M obtained in that way, together with the empty set satisfies
conditions (i}-{iii), and therefore is the family Rat(M). Thus a rational subset of
M is either empty or can be expressed, starting with singletons, by a finite
number of unions, products, and plus or stars. Such an expression is called a
rational expression. It is the simplest way to show that a given set is
rational.
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Example 2,1 Any subset of a finite monoid is rational.

Example 2.2 Let X be an alphabet, and X® be the free commutative
mqnoid generated by X. We claim that A is a rational subset of X% iff A isa
finite union of sets of the form

ab¥p¥ - p* (n=0,a b, ...,b,cX®. (2.4)

Unions of sets (2.4) are also called semilinear. Clearly, any set of the form
(2.4) is rational, thus any semilinear set is rational. Next if A, B< X®, then
(AUB)*=A*B* and (ab¥b¥---b¥)*=qa*b%.--b* This shows that
semilinear sets are closed under star operation, The empty set and the
singletons are semilinear, further semilinear sets are obviously closed under
union and product. Thus any rational set is semilinear. This proves that the
semilinear sets are exactly the rational subsets of X .

Example 2.3 If X is an alphabet, then the rational subsets are, according to
Kleene’s Theorem, exactly the languages recognized by finite automata.

Thus Kleene’s Theorem can be formulated as follows:
Theorem 2.1 (Kleene) Let X be a (finite) alphabet. Then Rat(X*) = Rec(X™).

In view of this theorem, we also call regular languages indistinctly rational or
recognizable languages.
We now prove that rational sets are closed under morphism.

Proposition 2.2 Ler M, M’ be monoids, and let o: M — M’ be a morphism. If
AcRat(M), then a(A)cRat(M'). Further if « is surjective, then for any
A'eRat(M') there is a set A e Rat(M) such that a{A)=A’.

Proof. Let %t be the family of subsets A of M such that «{A)e Rat{(M'). Then
FeR and {m}c R for me M. Next

a(AUB)=alA)Ua(B), a(AB)=a(A)x(B), a{AY) =(a(A)" (2.9

for any subsets A, B of M. Thus A, Be® implies that AUB, AB, A" cR.
Thus R satisfies conditions (2.1}, (2.2), (2.3). Consequently %t = Rat(M) and
the first statement is proved. Consider now the family ¥ of subsets A’ of M’
such that A’ = «(A) for some A € Rat{M). Since « is surjective, {m'} € & for all
m'e M'. Obviously @e¥. In view of (2.5), ¥ is closed under union, product
and the plus operation. Thus ¥ > Rat(M"), =

Corollary 2.3 Let o be an isomorphism from M onto M'. Then A € Rat{M) iff
a(A) e Rat(M"). =

Note that the second part of Proposition 2.2 only claims the existence of a
rational set A such that a{A)=A"e Rat(M"). QObviously this does not imply
that any subset A of M with a{A)eRat(M’) is rational. In particular, the
inverse image a~'(A") is generally not rational for rational subsets A’ of M’
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Example 2.4 Consider as in Example 1.5 the alphabet X ={x, y} and the
morphism y:X™— 7 defined by v{f)=|fi.—|fl, (feX™. Then {0}cRat{Z),
and vy~ (0)={fe X*||fl, =Ifl,} = DT ¢ Rat(X™).

Although Kleene’s Theorem is not true in arbitrary monoids, there is a
weakened version for finitely generated monoids.

Proposition 2.4 (McKnight (1964)] Let M be a finitely generated monoid,
Then Rec(M) < Rat(M).

Proof. Since M is finitely generated, there exist an alphabet X and a
surjective morphism o : X*— M. 1et A € Rec(M). Then o '(A) € Rec(X*) by
Proposition 1.3. By Kleene’s Theorem, o~ '(A}e Rat{X?*). In view of Proposi-
tion 2.2, a(a (A)) = A cRat(M). n

Proposition 2.4 is not true in monoids which are not finitely generated.
Consider indeed such a monoid M. Then M ¢ Rec(M), but Mé& Rat(M) in view
of the following lemma.

Lemma 2.5 Let M be a monoid. For any A € Rat(M), there exists a finitely
generated submonoid M, of M such that A< M,.

Proof. Let &t be the family of subsets A of M contained in some finitely
generated submonoid of M. Obviously, @< R and {m}c R for m e M. Next let
A, Be®, and let R, § be finite subsets of M such that A = R¥, B < §* Then
AUB, AB=(RUS)* and A*< R*. Consequently AUB, AB, A*e® and
% > Rat(M). =

Proposition 2.6 Let M be a monoid. If A eRat(M) and BeRec(M), then
A N B e Rat(M).

Proof. Let A be a rational subset of M. Then there exists a finitely generated
submonoid M,; of M such that A = M|, and consequentiy A € Rat(M,). Next
there is an alphabet X and a morphism & : X*— M that maps X * onfo M.
Thus by the second part of Proposition 2.2, there is a rational language
A’= X* such that a{A")=A. Let B be a recognizable subset of M. Then
B'=a"'(B) is a recognizable subset of X* by Proposition 1.3. In view of
Kleene’s Theorem, C'=A'NB’ is a regular, thus a rational language, and
a{C" e Rat(M) by Proposition 2.2. Since

a(Ch=alA'MNe ' (B)=a(ANNB=ANBS,
it follows that A N B« Rat{M). =

The following example shows that the intersection of two rational sets is not
necessarily rational.




58 III Rational Transductions

Example 2.5 Let M={x}*x{y, z}*, and consider the sets
A=(x 9%, 20 ={(x", y"2*):n, k=0},
B=(1, y)*(x, z)* ={(x", y*z"):n, k=0}.
Clearly, A, B e Rat(M). Suppose that
C=ANB={x",y"2"):n=0}
is rational, and define a morphism w:M—{y, z}* by w(x, 1)=1, (1, y)=1v,
(1, z)=z. Then w(C}={y"z" :n =0} would be a rational subset of {y, z}* by
Proposition 2.2. Thus C is not rational.

Sometimes the notion of starheight of a rational set is useful. Let M be a
monoid, and define inductively sets Rat (M) < Rat,(M)<- - - by:

A eRaty(M) iff A is a finite subset of M;
A eRat, (M) iff A is a finite union of sets of the form B,B, - - - B,

where either B; is a singleton or B, = C* for some C, € Rat, (M)}. It is readily
shown (Exercise 2.1) that
Rat(M} = | Rat,(M).
k=0
The sets in Rat,\Rat;_, are said to have starheight h

‘We use starheight in the proof of the following result which gives an interpreta-
tion of rational sets in groups.

Theorem 2.7 (Anissimov and Seifert {1975)]) Let G be a group, and let H be
a subgroup of G. Then H is finitely generated iff H is a rational subset of G.

Proof. For any subset A of G, let {A) denote the subgroup generated by A,
and let A7'={x""| xc A}. Then {(A)=(AU A"y This shows that a finitely
generated subgroup of G is rational,

In order to prove the converse we first consider the following situation. Let A
be a subset of G such that

A= TPOT - 6, Ti%n (2.6)

with xi, ..., %1€ G, T1,.... T, =G, and define
Vi =XiXa o X i=1,...,n+1 2.7
S =yTyi" i=1,...,n
A=y, US§U---US,. (2.8)
Then we claim:
(A)=(A"). (2.9
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Indeed, observe that by (2.6), Va1, Yer1 €{A). Further
Si=0xe %Xy Xy1)Vns-

Thus $; = (A), whence A’<{A) and {A"y=(A). Next
SE=Ty Y =yTHy"

Since x; =y, and x, =yihy, 2<isn+1),
A=y Ty v TEys yuTayn Yuss =5T8E - - S¥yuir.

Thus A ={A", whence (A)={A"). This proves (2.9).

Consider now a subgroup H of G such that H € Rat(G). Since H =(H}, H has
a rational set of generators. We have to show that H has a system of generators
of starheight 0. Let R be a rational set of generators of minimal starheight h,
and assume h >(0. Then

R=A,UAU---UA,

where each A,, (1=k=r) has the form (2.6), and at least one A, has
starheight h. Set

R'=AIUALU---UA,

where each A is deduced from A, by (2.7) and (2.8). Then clearly R’ has
starheight i — 1. By (2.9), each A, is contained in (R"), and conversely each A}
is contained in R. Thus (R)={R"Y=H, and R’ is a system of generators of H of
starheight h—1, in contradiction with the minimality of h. Thus A =0 and the
theorem is proved. =

In the case of free groups, a more precise description of rational sets can be
given. Consider an alphabet X ={x;,..., x.}, let X ={%{xe X} and set Z=
XUX. Let X be the free group generated by X (see Section I1.3), and let
5: 7% > X™ be the canonical morphism. As already mentioned, there exists an
injection ¢: X — Z* which associates to each element ue X the unique
reduced word «(u) = fe p(Z*) such that 8(f)= . The following result describes
a property of the mapping p.

Proposition 2.8 (Benois [1969]) Ler K< Z* be a regular language. Then the
language p(K) is also regular.

This theorem yields the following characterization of rational subsets of X®.
Theorem 2.9 (Benois [1969]) Let K< X™ Then K e Rat{X™) iff «(K) is a
regular language.

Proof. Let KeRat{X"™), In view of Proposition 2.2, there exists a regular
language K'< Z% such that (K" = K. Thus K" = p(K') is regular by Proposi-
tion 2.8, Now p=1t°8, whence K"=1¢(K). Thus «(K) is regular. Conversely,
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assume t(K)eRat(Z*). Then the homomorphic image &(«(K))=K is in
Rat{X™) by Proposition 2.2. =
The following corollary is interesting:

Corollary 2.10 (Fliess [1971]) Rat(X™" is closed under intersection and

Proof. It suffices to show closure under complementation. Let K e Rat(X™).
Then +(K)e Rat(Z*¥) by Theorem 2.9. Next p(Z*) is regular, thus p(Z*\(K)
is regular. Since (K)<p(Z¥), it follows that 8(p(Z*Nu(K))=X“*"\Ke
Rat(X )by Proposition 2.2. .

It remains to prove Proposition 2.8, For this, we first establish a lemma derived
from Fliess [1971]. Consider an alphabet Y, and let A < Y™ be an arbitrary
language. Define a function A, from Y™ into the subsets of Y* as follows. For
w, w'e Y* w'ed, (w) iff there exists a factorization

W=daoX a5X; " &y X, 4y,
with r=0, ag, a;,...,a.€ A, xi,...,% €Y such that
W=X.% " X

Thus A, (w} consists of all subwords of w obtained by deleting, in w, factors in
A which are separated by letters.

Lemma 2.11 For any A< Y*, and for any regular language K < Y*, A, (K) is
a regular language.

Proot. Let A =(Y, Q, g, Q.} be a finite automaton recognizing K. Set K.,=
{feY*|p-f=q} for p, qc Q. Let 5¢Q, and let B=(Y, QUs,s, Q) be the
nondeterministic finite automaton with next state function defined by

gepx iff xANK,  #& xeY, pqgeQ;
ges-x if AxANK, ,#9 xeVY, gcO.
Next let
Q,z{CA if ANK=g@:
sUQ, if ANK#AJ
Then clearly
Aa(K)=|B|={fe Y*|s  fn O # 2. -

Proof of Proposition 2.8. Choose in Lemma 2.11 A =D¥*=p"%1), and
Y =Z. Then for fe Z*

p(N=Ap:() N p(Z%).

Consequently, for K e Rat(Z™), p(K)}= Ap(K) M p(Z*). Since p(Z*) is regular,
p(K} is a regular language. =
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Exercises
2.1 Show that Rat{M)= ] Rat, (M). Compute Rath(Xaa) for h=0.

h=0

2.2 Let G be a group. Show that K ¢ Rat(() implies K’ e Rat(G).

2.3 Prove the following group theoretic result: let G be a finitely generated group, and let
H be a subgroup of G. If H is of finite index, then H is finifely generated
{(Hint. Use Exercise 1.3.)

2.4 (Anissimov and Seifert [1975]). Prove the following theorem of Howson: The
intersection of two finitely generated subgroups of a free group is again a finitely
generated subgroup.

2.5 Show that for any rational subset K of X™, 8 '(K) is a context-free language.
{Hint (Sakarovitch [1977]). Write K=(K ") -1 and use Exercise 1.3.6.)

2.6 Show that in Proposition 2.8 and in the following statements, p can be replaced by
p" and in fact by p; as defined in Section IL3.

1I1.3 Rational Relations

A relation can be considered as a subset of the cartesian product of two sets, or
as mapping from the first set into the set of subsets of the second. For the
exposition of rational transductions we use in this section the first, “‘static”
aspect, and in the next section the second, more “dynamic” point of view.
Rational transductions (more precisely relations) are defined as rational subsets
of the product of two monoids. Several characterizations are given, The
examples are grouped in Section 5.

Definition et X and Y be aiphabets. A rational (resp. recognizable)
relation over X and Y is a rational (resp. recognizable) subset of the
monoid X ¥ x Y*, )

The family Rec(X*x Y™ of recognizable relations is described by Mezei’s
Theorem 1.5. More precisely we have

Proposition 3.1 (i) Rec(X*x YHgRat(X*x Y™,

(ii) if A, BeRec(X*x Y"), then ABeRec(X*x Y¥).

Thus recognizable relations are closed under product. It follows from the proof
below that they are not closed under star operation.

Proof. (i) Since X*xY* is a finitely generated monoid, the inclusion
Rec(X* x Y*) < Rat(X* x Y*) follows from Proposition 2.4, To show that the
inclusion is proper, let x€ X, y € Y and consider A =(x, y)*={(x", y"):n=0}.

. Clearly A is a rational relation. Assume A is recognizable, let Z={%, ¥}, and

consider the morphism y:Z* — X*x Y* defined by y(%)=(x, 1), v(¥) = (L, y).
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Then v 'A ={fe Z*||fl; =|fl;} is recognizable, thus a regular language. This
yields the contradiction.
(ii) In view of Mezei’s Theorem,

a=URxs, B=URixs,

i=1

with R, RieRat(X™), §, S;cRat{Y™). Consequently
AB=1J U RR|XSS),

i=tj=1
and RRje Rat(X™), §;5;e Rat(Y™). By Mezei’s Theorem, AB e Rec (X* x Y¥). g
We extend the notion of copy defined in Section 1.3 as follows: X*x Y* is a
copy of X*x Y™ if X* is a copy of X™ and Y* is a copy of Y. Then
X*xY* and X™* X Y'* are isomorphic, and recognizable and rational relations
are preserved through the isomorphism by Coroliaries 1.4 and 2.3,
The following characterizations of rational relations are fundamental,
They allow to express rational relations by means of regular languages and
morphisms of free monoid, and thus rely the algebraic definition to more
combinatorial notions. Further, we shall see later that in view of the theorem, a
family of languages is closed under rational transduction iff it is closed under
morphism, inverse morphism and intersection with regular sets.

Theorem 3.2 (Nivat [1968]) Let X and Y be alphabets. The following con-
ditions are equivalent:
(i} AeRat(X*xY™*);
(it} There exist an alphabet Z, two morphisms ¢: Z*—X*, . Z¥* > Y* and a
regular language K = Z* such that

A={(¢h, wh): he K}; |
(iiiy There exist an alphabet Z, two alphabetic morphisms o:Z* — X*,
B:Z*— Y™ and a regular language K< Z* such that

A ={{ch, ph):he K},
(iv) There exist an alphabet Z, two alphabetic morphisms o : Z* — X* g Z* -
Y* and a local regular language K < Z* such that

A={(ah,Bh): heK};
if XO\Y =43, then (i) is equivalent to
{v) There exists a regular language K <(X'\JY)* such that

A ={(mxh, wh): he K},
where my and Ty are the projections of (XU Y)* onto X* and Y* respectively.
A couple (g, o) of morphisms ¢:Z*— X* and ¢:Z*— Y* is called a
bimorphism. '
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Proof. The implications (iv)=>(iii}=>(ii) are obvious. We prove ()= (3.
Define y:Z* — X* X Y* by vh = (¢h, yrh)(h € Z*). Then v is a morphism and
{K)=A. Since K eRat(Z*), A e Rat(X*x Y*} by Proposition 2.2. Next, we
prove (iii)=> (iv). There exist an aiphabet Z’, an alphabetic morphism vy: Z"™* —
Z* and a local regular language K'< Z'™ such that y(K") = K (see for instance
Section I.4). Thus A = {(a(vh"), B{yh"}): h'e K'} and the morphisms acy, Bov
are alphabetic.

Assume now XNY=g, and define w:(XUYY»X**Y* by wh=
(mxh, wyh). Obviously # is a surjective morphism. Thus if A e Rat{X* x Y*)
there exists, by the second part of Proposition 2.2, a regular language K <
(XU Y)* such that #(K)=A. This proves (i)=>(v}.

Conversely, if (v} holds, then w(K)=A e Rat{X*x Y*) by the first part of
Proposition 2.2.

Finally we prove (i)=> (iii}. Assume A e Rat(X*x Y*). If XN Y =@, then (iii)
follows from (v). Otherwise, let X™* x Y'* be a copy of X*x Y*with XN Y=
3, et wy: X*— X", wy: Y*— Y™ be the copy isomorphisms and set
A'={{oxf, ove):{f, g} A}l. Then A’ is a rational relation, and in view of (v)
A'={(mx-h, my-h):he K} for some regular language K <(X'U Y"*. Conse-
quently, A ={{{awx' o mdh, (07 o mp ) he K} ) =

Theorem 3.2 can be used to derive an iteration lemma for rational relations.

Lemma 3.3 (Iteration Lemma for Rational Relations) Let A<
X*xXY* be a rational relation. There exists an infeger N=1 such that any
(f, fyc A with |fl+|f|= N admits a factorization

(f, f={a, a"Wu, u)b, b" auwbeX* o u beY®
such that
(i) 0 < |ul+|u|=< N;
(i) (a, a¥u, u") ¥ (b, b= A

Proof. After a copy, we may assume XNY=¢J and by Theorem 3.2(v},
A ={(mxh, wyh):h € K} for some regular language K. Since |h| = |m¢h|+iw k],
the lemma follows directly from the iteration lemmas for regular languages (see
Section I.4) applied to K. _ w

Remark, Several versions of the iteration lemma for regular languages can be
transposed 1o rational relations. Thus we may assume that in addition to (i) and
(ii), the following holds:

fa+|a'|+iu|+|u|<=N.
The definition of rational relations holds also for arbitrary monoids:

Definition Let M and M’ be monoids. A rational relation over M and M is
a rational subsets of M XM’
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We shall see in the next section how this definition can be used to define
interesting rational transductions. Here we just note the following;:

Proposition 3.4 Let M, M' be monoids. Then A is a rational relation over M
and M’ iff there exist an alphabet Z, two morphisms . Z* - M, B: Z* s M
and a regular language K < Z* such thar A ={(ah, Bh):he K}

Proof. Let AeRat{MXxM). Then A< N, in view of Lemma 2.5, where N is
a finitely generated submonoid of M x M. Thus there exist an alphabet Z, and
a morphism y: Z* — M > M such that v(Z*)= N. Since A < Rat(N}), A = wK)
for some regular language K < Z*. Next define o: Z* — M, B: Z*— M by
Yh =(ah, Bh), (he Z*). This yields the desired representation. The converse is
clear. ]

Exercises

3.1 Let M be a finitely generated, infinite monoid. Show that A ={(m, m):meM}isa
rational and not recognizable subset of M x M.

3.2 Let X be an alphabet with at least two letters. Show that the relation R=
{(f, /}:fe X*} is not rational.

3.3 Give a counter example to the following version of the Iteration Lemma: For
A eRat(X*x Y*#) there is an integer N=1 such that for any (g, g')e A, and for any
factorization

(g &) =(hy, B, Fiha, h3)  with ||+ [f= N,
(f, ') admits a factorization {f, )= (a, a")(u, u')b, b'} such that O<|ul+|u'|=N and
(hy, hida, a')w, wy*(b, B')hy, hi) < A.

3.4 Arightlinearsystemof equations over X*x Y* is a system of equations of the
form

N
&= G&+B,  i=1,...,N,

i=1
where G, B, < X*x Y*. The system is strict iff (i, 1)¢ C; for j=1,...,N. A vector
A=(A, ..., A) of subsets of X*x Y* iz a solution of the system iff

N

A= (GAUB) i=1,....N
j=1

a) Show that a strict right linear system has a unique solution.

b) Show that R < X*x Y* is a rational relation iff R is a component of the solution of a
strict right linear system of equations with C;, B; finite. (Hint. Use the fact that a) and
b) hold in free monoids and apply Nivat's Theorem.)
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IIL.4 Rational Transductions

The “static” notion of rational relation is now transformed into the “dynamic”

notion of rational transduction.
A transduction r from X* into Y* is a function from X* into the set B(Y™)

of subsets of Y*. For commodity, we write 7:X* -+ Y*. The domain dom({z)
and the image im(7) are defined by

dom{t)={fe X*:+(f) = O},

im(t)={ge Y*|Ife X*: g ()}
The transduction 7 is extended to a mapping from R(X*) into B(Y*) by setting

m(A)= 1 7(f) AcX*

feA

The graph of r is the relation R defined by

R={{f,e)e X*x Y*| ger{f)}.
Conversely, for any relation Rc X*x Y™, the transduction r:X*—»Y*
defined by R is given by

r(f)={ge Y*|{f g)c R}
Definition A transduction 7:X*— Y™ is rational iff its graph R is a rational
relation over X and Y.

Let 7:X*-> Y* be a rational transduction, and let R = X*x Y* be the graph
of 7. The monoids X* x Y* and Y*xX* are isomorphic. Thus the relation

R'={gN|(f.e)eR}
is rational, and the transduction =% : Y*— X* defined by R js rational. v is
the inverse transduction of 1. Clearly

T B)={feX*|r(f)NB=£@} BcY*
In general, 7(r""(B))#B, and +"(+(A))# A, (A< X™). The domain dom(1)
and the image im(t} are homomorphic images of the rational relation R, and
consequently are regular languages,
Let 7, 75: X*— Y* be raticnal transductions and let R,, R, be the graphs of
7, and 7,. We denote by t,Ur,, 7,7, and =7 the transductions with gra.phs
R|UR,, R|R;, R7. Obviously, these transductions are rational. They verify:
(U Tz)(f) = 1'1(f) U Tz(f)S (m 72)(f) =f U TI(fl)TZ(fZ);

1fa=f
O =Un) - - n=l fi---fo=fi

¥ dom{r;) Ndom{r,) =&, we also write 1,+7, instead of ;L 7,. Finally, we
associate to 7: X — Y™ a transduction 7: X*— Y* by setting 7(f) = (+(P)y".
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Let R be the graph of 7, and let R be the graph of # Then R-—
I, &)1, g) € R}. The formulas

(AUBY=AUB; (ABY=BA; (A" =(A)" (A, BcX*xY*% -

show that R is rational iff R is rational. Thus the transduction 7, the reversal

of 7 is rational iff = is rational.
Nivat’s Theorem proved in the preceding section can be formulated as follows
for rational transductions.

Theorem 4.1 (Nivat [1968]) Let X and Y be alphabets. The following con-
ditions are equivalent:

D 7:X*—>Y* is a rational transduciion;

(i) There exist an alphabet Z, two morphisms ¢ : Z*— X*, i Z* > Y* and a
regular language K = Z* such that

) =wleINK)  feX™ (4.1)

(iiy There exist an alphabet Z, two alphabetic morphisms o :Z* — X*,
B:Z*— Y* and a regular language K < Z* such that

f)=Bla (HNK)  (feX™);

(iv) There exist an alphabet Z, two alphabesic morphisms a: Z* — X ¥ B:Z¥
Y* and a local regular language K = Z* such that

f)=Bla”(INK) feX™
further if XN'Y =@, then (i) is equivalent to
{(v) There exists a regular language K < (XU YY* such that
(fy=m(m' (INK)  feX¥,
where mx and y are the projections of (XU Y)* onto X* and Y* respectively. m
From (4.1), we deduce immediately that
THe =W (g)NK)  geY*
It follows aiso from (4.1) that
T(A)=vle {A)INK) AcX*
Thus:

Corollary 4.2 Fach rational transduction preserves rational and algebraic lon-
guages. That is, for each rational transduction 1, T(A) is rational if A is rational,
and v(A) is algebraic if A is algebraic. [
Example 4.1 Let X={x, y}, Y={a, b}, and consider the transduction
T:X*— Y* defined by

() ={@ if fe&xty*;

(a*b)*a®"b it f=x"y", n=z=1, m=0.
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Obviously dom(t)=x*y*, im(7)=(a*b) (a®}*h. We claim that the transduc-
tion 7 is rational. This can be shown in several ways. First, let R be the graph of
7. Then

R=({x}xa*b)*(y, a®*(1, b)eRat(X*x Y¥),

Next let Z={r, 5, ¢ u} and define ¢: Z% = X* :Z% - Y* by
or=x, es=1, ot=y, ou=1;
yr=>b, ds=a, Yt=a> Ju=>h.

Let K=(s*r)"t*u. Then oK = x*y*, ¢K = (a*b)"(a®)*b. Further
e Hxmy™yN K={(s*r)"t"u n=1l, m=0,

thus ()= (o~ (YN K) for all fe X*.

Finally, since XN Y =&, we can represent 7 by projections. Consider indeed
the regular language

K’ = xa{a, bxal*b(ya®y*b < (XU Y)*.
Then me(K)=xx*y*. Next if f=x"y™ (n=1, m=0), then

T (ANK =xala*bxa)” 'a*b(ya®)™b,

(AN KDY = ala*ba)  ta*ba®*™b =(a"b) a®b.
As for rational relations, the definition of rational transductions can be
extended to arbitrary monoids.

Definition Let M, M’ be monoids. A rational transduction . M—>M'isa
function from M into (M) such that the graph R =§{(m, m") | m'c+(m)} of T
is a rational subset of M xM',

From Proposition 3.4, we immediately obtain:

Proposition 4.3 Let M, M’ be monoids. A transduction 7: M — M’ is rational iff
there exist an alphaber 7, two morphisms «: Z*—> M, :Z* > M and a
rational language K< Z* such that

7(m)=Ble '(m)NK) me M. o
If A<M, then
7(A}=pla"{A)NK). (4.2)

Thus, if A is a recognizable subset of M, then @ '(A) is recognizable, hence
regular, a”'(A)N K is regular, hence rational, and finally 7{A) is a rational
subset of M’. Note that 7{A) is not necessarily recognizable, and that t{A) is
not necessarily rational if A is rational. This follows from Examples 1.5; 2.4,
since morphisms and inverse morphisms are particular rational transductions.
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We now consider composition of rational transductions. If 7: M — M and

’

defined by
(el m)=7{r(mh= U 7'(m).

m'eTi{m)
First, we settle the case of free monoids.

Theorem 4.4 (Elgot and Mezei [1965]) Let X, Y, Z be alphabets, and let
7 X% = Y* and v Y* — Z* be rativnal transductions. Then the transduction
T or: X* > Z¥ is rational.

We first prove the theorem in a special case. The general case follows then
from this special case.

Lemma 4.5 Ler X, Y, Z be three pairwise disjoint alphabets. Set X' = XU 'Y,
Z'=YUZ T=XUYUZand let

@ :Xl*_) Y*, B :Zr*__) Y*, a: . T*“—?‘X’*, Br: T*'—P‘Z’*
be the projections. Then B 'ea=g'>a"",

Lemma 4.5 is represented in Fig, IIL.1.

(.Xu YuZf*

a X
foa -

ﬁ'wocx =
(Hy¥r— e —— — —— fruzl*

N, A

Fig. 1IL.1

Proof. The mappings 8 ' o and B’ a'™" are morphisms of the semigroup
X" into the (muitiplicative) semigroup R(Y*). ‘Thus it suffices to prove that
they are equal on X'U 1. First

Brea(l)=8"1)=2Z%; Bea W (1)=g(Z* =Z*.
Then for xeX, B 'ea(x}=B"H1)=2Z* and B'ea’' '(x)=p(Z*xZ*)=Z*

Finally, if yeY, then B lea(y)=B"Hy)=Z*yZ* and Blea Y y)=
B(Z*yZ*)=Z*yZ*. This proves the lemma. =

Proof of Theorem 4.4. After a copy if necessary, we may assume that the
alphabets X, Y, Z are pairwise disjoint. Set X’=XU Y, Z'= Y U Z. In view of
Nivat's Theorem, there exists a regular language K < X'* such that

fy=ala '(FINK) feX*, (4.3)

7't M'->M" are transductions, then the composition 7 c1;M—sM" is_
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where m:X™— X* and «:X™*— Y* are the projections. Next there is a
regular language M < Z™ such that
Y@= @NM) geYh (4.4)

where 8:Z'* - Y* and w:Z™ > Z* are the projections. Thus we have Fig.
I11.2. According to Lemma 4.5, B 'ea=§"> a'"! where T=XUYUZ, and

Xn_.__-.-—"x s m o f"
7 ~ AN
™
o - ¥+ o

Fig. 111.2
8', o are the projections of T* onto Z " and X'* respectively. Thus the above
diagram can be completed to Fig. HIL.3.

X,,__“J’__"_ 'S Ir—— 7"
z‘
yﬁ
Xt g
T

Fig. IIL3

Next, setting 7" =" ¢ 7, we have by (4.3), (4.4), for fe X *
(f)=w[( e a)(x (HNK)NM].
Since B loa=8"ca",
()= wl(f s W= (HINK)NM]
=o[B (7o) ()N HKHNM]. (4.5)
Define $=wof : T*—Z* o=wmea’:T*—X* and set K=a""YK), M=
BY(M), N=K'NnM'. Then (4.5) implies
7(f) = w[B ¢ {H VKN M]=w[B (¢ (HNK'NM)]
=gl '()INN). (4.6)
Since N< T* is a regular language, the transduction 7" is rational by (4.6). =

If M, M’', M" are arbitrary monoids, then the composition of fcwo rational
transductions 7: M —> M’ and 7 = M’ — M" is not necessarily rational.
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Example 4.2 Let x, y, z be letters, M = x* M’ = y*x z* M"={y, z}*. Define
T:M—M and : M’ -> M”" by
T(x") =y, 2"),
The graphs R and R’ of 7 and ' are:
R=(x(y.2))*, R'={(n1,9"(Q,?2),2)",

thus 7 and v’ are rational. Next

Ty 25y =y (n k=0).

(r'er)(x")=y"z" n=0.

Since the image im(+'o7) ={y"z" :n =0} is not a regular language, 1’7 is not
rational.

- Despite this example, we have

Proposition 4.6 Let M, M” be monoids, and let Y be an alphabet. If :M — Y*
and 7': Y*— M’ are rational transductions, then ' v is rational.

Proof. In view of Proposition 4.3,
T(m)=Be " H{m)NK) meM
1(g)=8(y " (g)N L) geY*
where X, Z are alphabets, K e Rat{X™), L eRat(Z*), and
a:X*>M B:X*SYH y:ZFSYE S Z* M
are morphisms. It follows that
(Terim)=8[(y " o BT (M)NK)NL] meM

Since v! o B: X* — Z* is the composition of two rational transductions, it is a
rational transduction by Elgot and Mezei’s Theorem. Thus

G eB D =¢le HNN)  feXx*

for some alphabet T, morphisms ¢:T*— X* :T* - Z* and some Ne
Rat(T*). Thus as in the proof of Theorem 4.4,

(o) (m)=(8* )f{a° ) "(m)O (e (K)N NN (L))]

showing that +'° 7 is rational. ]

meM,

It is natural to look for a generalization of rational transductions involving
context-free languages. This can be done by developing a theory of algebraic
sets in arbitrary monoids analogue to the theory of rational sets (see
Eilenberg {1978], also Exercises 4.5, 4.6). This yields an analogue of Nivat’s
Theorem. We prefer in this context to take that analogue as a definition.
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Definition A transduction 7: X* — Y™ is algebraic if there exist an alphabet
Z*, two morphisms «:Z*% > X* B:Z%¥ - Y* and a context-free language
A< Z* such that

r(f)=pHNA)  feX*

it follows immediately that t(L) is context-free if L « X* is regular, and it is
easy to see that +(L) is not necessarily context-free if L is context-free. The
following result is proved in the same way as Theorem 4.4,

Proposition 4.7 Let 7: X*— Y™ and 7': Y*— Z* be transductions. If one of
them is rational and the other is algebraic, then v < 7 is algebraic. "

If both transductions are algebraic, then 7°¢ 7 is not necessarily algebraic.

Exercises

4.1 Give an example of a transduction T:X*— Y*, and of subsets A< X* B< Y*
such that 7 '(v(A)}# A and (" }(B)) #B.

4.2 Prove Proposition 4.7,

4.3 Give an example of two algebraic transductions 7, 7’ such that the composition 7’ ¢ T
is not algebraic.

4.4 Consider the Dyck reduction p: ZF — ZZ. Show that p is an algebraic transduction.
Show that p is not a rational transduction.

4.5 (Eilenberg [1978]) Let M be a monoid and let V be an alphabet disjoint from M.
The set M[V] of words

W= o1y - 1 S,

with k=0, m,,...,m.eM, £,..., &€V is a monoid when multiplication of w with

w'=nof, -+ - L 1s defined by

ww'=mgé - - Slmong)l e L

An algebraic grammar G={V,M,P} over M is given by 2 finite subset P of
VX M[V]. Derivations are defined as in free monoids. The language L (&) generated
by £ is the sets of all meM derived from £ Languages generated by algebraic
grammars over M are called algebraic subsets of M.

a) Show that for any algebraic grammar G ={V, M, P), there is an algebraic grammar
G, ={V, M,, P), where M is a finitely generaied submonoid of M, such that L (£)=
L () for al £ V.

b) Show that A is an algebraic subset of M if there exist an alphabet X, a morphism
¢: X*— M, and a context-free language L © X* such that o(L)= A.

¢) Show that any rational subset of M is algebraic.

d} Show that a transduction 7: X* — Y* is algebraic in the sense given in the text iff its
graph is an algebraic subset of X* x Y.
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4.6 (continuation of 4.5) Show that in a free commutative monoid X®, any algebraic
subset is rational. (This is Parikh’s Theorem. For a proof, see Conway [1971],
Ginsburg [1966].) Show that the same result holds in any commutative monoid. -

4.7 Nivat's Theorem implies that morphisms and inverse morphisms can be represented
by means of projections, inverse projections and intersection with regular sets. Give
such representations explicitely.

4.8 (Elgot and Mezei [1965]) Let 7: X*— Y™ be a rational transduction. Then
T =19+ 1., where

nolfy=7(f), TAf}=8,
rolf}=8, 1Af)=1(f),

Show that 7, 7.. are rational transductions.

it Card(rf)<es;
if Card(sf)=rce.

4.9 Let M, M', M" be finitely generated monoids, and let 7: M — M’, v M — M" be
transductions. Show that if one of them is recognizable (i.e. its graph is recognizable)
and the other is rational, then 7'¢7:M—M"is rational, and even recognizable,
provided M. M’, M" are free monoids. Show that if r and 7" are recognizable. then ' o 7 is
always recognizable.

II1.5 Examples

The explicit description of a rational transduction is a simple method to prove
that certain transformations preserve regular and context-free languages. Ra-
tional transductions can also be used to prove that a given language is
context-free, by representing it as the image of a language “known” to be
context-free. One of the most important applications of rational transductions
will be shown in later chapters: They are used there as a tool of comparison of
subfamilies of the family of context-free languages. The proof of the rationality
of a given transduction is frequently through one of the versions of Nivat’s
Theorem, or eise through a rational expression for the graph of the transduc-
tion.

5.1 The identity mapping f~ f from X¥ into itself is a rational transduc-
tion. This is straightforward by Nivat’s Theorem. The graph of this mapping is
¥

a=i.p:fex=(U x )

5.2 The rational constants 7 : X™— Y* defined for a fixed regular language
K< Y* by 7(f)=K are rational. The graph of 75 is X*x K,

5.3 Any morphism, any inverse morphism is a rational transduction.
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5.4 A rational substitution is a substitution o:X*—Y* such that
a(x)eRat(Y*) for xe X. The graph of o is

E 3
(U paxotn) s

xeX
thus ¢ is a rational transduction.

5.5 The union (and of course the intersection) with a regular language is
performed by a rational transduction. Let K = X* be a regular laflguage, anfi
consider the transduction f~ fUK from X* into X*. Then its graph is

AU(X*XK).
5.6 The product with a rational language: let K £ Rat(X™) and consider the
transduction f— Kf (fe X*). Its graph is ({1} x K)4.
5,7 The (left or right) quotient by a rational language. Let KcX* be a
rational language. The transduction X*-» X* defined by

fre K 'f={ge X*|quecK:ug={}
is the inverse of the transduction of Example 5.6, and consequently is rational.
(This proves that K 'L is context-free if L is a context-free language.)

5.8 The transduction r:X*-> X* with (f)=f"'K={geX":fgeK} is ra-
tional if K< X* is a regular language. Consider indeed its graph

R={{f.g):fec K}
Let X={%|xe X} be a copy of X, disjoint from X, set Z=XU X, and define
morphisms a, B, v:Z¥— X by .
alx)=x, Bx)=1, vx)=x xeX;
a=1, BE)=x y@®=x xeX
Consider the regular language K'=vy (K} ﬂX*X'_* < Z* Any word he K’
factorizes in a unique way into b =fg (fe X™*, ge X™). It follows that
R={(ah, Bh): heK'}.

5.9 The transduction X* — X which associates to any word & X* the set of
its subwords (resp. factors, left factors, right factors) is a rational relation. Let
indeed X, Z, @, y be as above. Then the set of subwords of f is a(y~'(f)), the
set of factors of f is a(y™(f) N X*X*X*), etc. (Note that the set of left factors
of f is f(X*)"'. Thus the rationality of this transduction follows from Example
5.7

510 Let 7:X*— X* be defined for f=x,%,- - x, (n2L,xeX) by 7(f) =
X;X3Xs . .., and 7(1) =1, With the notations of Example 5.8,

() = a(y () N[XX)* U(XX*XT).
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5.11 The transduction 7:x* — {a, b}* defined by

(x") a” n even, ' -
x =
T " nodd,

is rational. Indeed, its graph is (x%, a?* U (x, b)(x2, b?)",

5.2 According to Greibach [1973], the “hardest” context-free language is
the language Lo« X*, with X ={x, x4, %1, %, £ [, #} defined in the following
way. Set T=X\#. Then fe L, iff either

f=1
or f=ug oo\ wiFug oo wodt - -« Hu, [t:] W,
with w, wy, ..o m, W €TF, v, .., 0, €{x), x5, %1, &) and v,0,- - 0, €

€D%*. In order to show that L, is indeed context-free, consider the two
transductions 7, 7,: X*— X*:

TR)=H#T* W T* (k) =T*{eh| T* (heX?*)

In view of Example 5.6, these transductions are rational, Consequently, the
transduction 7’ = 7,7 is rational. Since L,=1U+(Dg¥), L, is context-free.

5.13 The transduction X* — X™* which associates to any f& X* the reversal f
is not rational if Card{X)=2 since its graph {{f,):fe X*} is not a rational
relation (Exercise 3.2). (This is an example of an irrational relation that
preserves regular and context-free languages.)

All the transductions above are unary operations. Some of the examples, like
product, union, ete. are binary operations. Thus we consider them now as
binary transductions.

5.14 The transduction (f, g) ~ fg from X*xX* into X* is rational. Its graph
is indeed

A={(x, 1, x}:xe XI(1, x, x): xe X}*,
5.15 The shuffle fur g of two words f, g X* is defined as

fwg={fig. - fglfi, .o fu g ... g e X* for-fe=fgg=gh

The transduction (f, g) > fu g is rational, since its graph is A%, with A given
as in Example 5.14,

5.16 Finally we show that addition of nonnegative integers in some fixed base
k=2 can be performed by a rational transduction. (For k = 1, this is done by
Example 5.14))
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Let k=2, and let k=40, 1, ..., k—1}. The empty word of k* is denoted by =.
For each f=xgx; -+ * %, (x; €k}, let
(fr= 2 xk
i=0
be the integer represented by f in base k. Then {¢}=0, and for any meWN,
there is a unique fek*\0k* such that (f)= n. The iransduction
D k¥ xk* — KF

which associates to any (f, g}=k* xk* the unique word heck®™\0k* such that
{hy={f)+{g) is rational. The construction is in threc steps. The first step just
adds leading zeros in order to make the two arguments of the same length.
Consider a transduction

1 kE XK — (kXK.

In order to avoid confusion, elements of kxk are noted [x,yl If f=
XX X = ¥1¥2" " Ve (%, i €8, 71 {f, £) is defined to be equal either to

[0, O [x1, 0] - - - [Xn—rr QT Xmmvs ¥s1* * * (X i)
or [0, 010, ya1+ * - [0, Yo d[ %12 ¥monard - 7 - [Xes Wind
according to n=m or m=n. Define R, §, T<k* xik* x (k xk)* by
§={(e, ».[0, yD: yek}* U{(x, &, [x, 0D : x ek},
T={(x, y.[x, yD:x yek}*, R=(e¢[0,0])7ST.
Then R is rational and is the graph of 7. Next, we define
T 2 (kXK YF — [F
to perform the addition step: For
w=[xo, Yol """ [%0 yu),  X0=%0=0, (5.1)
f=Xa "%  8=Yo' " Y

T:(w) will be the word h=2z,--- z, such that {(h)={(f)+{g). For this, we
introduce an auxiliary alphabet {0, 1}xkxkxk composed of quadruples
[7, z, x, y]. During the computation, z +r - k represents the number x +y +.1 or
x+y+0, according to the existence or not of a “carry” [from a previous
computation. Formally, we define morphisms

@1 Y- (k) Y —k*
by QO[T, zZ, X, y]:{xs )’], 'I’[ra z, X% Y]= z [r, Z, X, }’]E Y.




76 Il Rational Transductions

Next, we define a local regular language
K=(UY*NY*V\Y*WY*
V={lrz,x,vliz+rk=x+y}
YAW={[r,z,x, yIIr', 2, x", y]: z+rk =x + y +r).

U={[0# 15 0: 0]9 [05 0: Os 0]}

Then for w given by (5.1),
‘p—l(w)n K=[r0: 20y Xos y()] e [rns Zns Xy Yn]

With,lx" ty.=z. vk, ntytra=zn+ke, (i=n-1,...,0,7,=0). Hence
Pl Hw)NK) =7y w) and 7, is rational, The final step just deletes initial zeros
from the result. It is performed by the transduction

3(h) = (0%) 7 h Ok*\OK*
which is clearly rational. Thus, by Proposition 4.6, the iransduction @ =
T3° T3 ° Ty i§ rational.

(For_ further properties of arithmetic operations considered as rational trans-
ductions, see Eilenberg [1974], and Exercises 3.3, 5.4.)

7y 1k® — k¥,

Exercises

5.3 Let X={x;, x,,..., x}. Define an order on X* by
g =fu forsome ue X* or
f=uxy, g=uxp and i<jf;
this is the lexicographical order. The “radix” order is defined by
{[fl<igl
Ifl=lgl and f<g
Show that the four transductions from X* into itself which associate to f the sets ‘
{gle>ft  (resp{g|g<sh

are rational for both orders. I

f<g =

f<g

5.2 Show that a transduction 7: X™X Y*— Z* is rational iff there are an alphabet T, |
three morphisms

a,: T*— X*, o TF— YT, B:T*—>Z*
and a regular Janguage K < T™ such that
(=B (HNer'@NK)  (fgle X*xY*™

Show that for R=X*, the transduction 7:Y*~>Z* given by 7'(g)=+(R x{gh
(ge Y™) is rational if R is regular, and is algebraic if R is context-free. Use this to
deduce Example 5.5 from Example 5.14.

5.3 Show that multiplication ® from k*xk* into k* is not a rational transductior.
(Hint (Messerschmidt). Compute for k =2 the language @ (10%1x 1*).
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5.4 Show that for fixed q = 1, the multiplication by g :k* -»k* which associates t6 f ek*
the word f' ek*\Gik* such that {f')=q - {f) is rational.

5.5 Let X ={x, y}, and let & be the congruence generated by yxx ~ xyy. Show that the
transduction 7:X*— X* which associates to f the class [fl, ={g|g=f (mod o)} is
rational. (Note that this is not true for all congruences: thus the result does not hold
for the Lukasiewicz congruence A of Section IL.4.)

III.6 Tramsducers

The machines realizing rational transductions are called transducers. As for
transductions, transducers can be regarded either in a static or in a dynamic
way. In the first case, a transducer is a finite nondeterministic aceeptor reading
on two tapes. It then recognizes the pairs of words of a rational relation. In the
second case, the automaton reads input words on one tape, and prints output
words on a second tape. The automaton thus realizes a rational transduction.
Both aspects clearly are equivalent. In the following presentation, we adopt the
second point of view which corresponds to the use of transductions as a tool for
transformation of languages.
Definition A transducer T=(X Y, Q, q_, Q., E} is composed of an input
alphabet X, an cutput alphabet Y, a finite set of states Q, an initial
state q_, a set of final states Q,, and a finite set of transitions or edges
E satisfying

EcQxX*xXY*xQ. {6.1)
The terminoclogy stems from Elgot and Mezei [1965] and Eilenberg [1974]
Ginsburg [1975] uses the term ‘“‘a-transducer”, the letter “a’ emphasizing the
presence of accepting states. Transductions are defined by means of transducers in the
paper of Elgot and Mezei [1965]. They prove then that a transduction is realized by a
transducer iff its graph is a rational relation.
Transducers have a graphical representation very similar to the usual represen-
tation of finite automata. Each state g is represented by a circle, labelled q and
to each transition e =(g, 4, v, ') is associated an arrow directed from g to g'
and labelled w/u. The initial state has an arrow entering in it, and final states
are doubly circled.
Example 6.1 Consider the transducer given by X=Y={x, v}, Q={a b},
g.=a, Q,={b}, E={(a,x*v,1,a), (0.1, 1. 0), {b,x, x, b), (b, y, y, b)}. lts rep-
resentation is shown in Fig. 1114,

(2 L ‘ Xy

e

Xl ¥y
Fig. Il1.4
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We now introduce some supplementary definitions. Consider the free monoid
E* generated by the set E of transitions. The empty word of E* is denoted by
&. Given a word

e=(py, 41, U1, §1) "~ (Pay Uns Vs )y (6.2)

the label of e is the pair of words |e|=(f, g) defined by f=u, - u,, g=
v; - - - v,. By convention, |¢{=(1, 1). Clearly the function e~>|e| is a morphism
from E* into X* X Y* which can be decomposed into two morphisms « : E* —
X*, B:E* — Y* defined by |e| = (ce, Be). ae and Se are the input label and
the output label of e The word e given by (6.2) is a path or a
computation in T from p, to g, iff g =p,,,, (i=1,...,n—1). For p, ge Q,
Alp, q) is the set of all paths from p to q. By convention, ¢ € A(p, p) for all
pe Q. We extend this notation by setting

Alp, Q)= LéA(p, q) Q<=qQ.
qe)

Finally, define
T(p,q)={lel:ecAlp,q)}  T(p, Q)={le|:ec A(p, Q).

A path e from p to ¢q is successful iff p=gq._ and g e Q,. Thus, the set of all
successful paths is A(g_, OQ.).

Definition The transduction |T]: X™ — Y* realized by T is defined by
ITI(fy={ge Y*| (£, 8)e T(q-, Q.)}. (6.3)

Thus g €{T|{f) iff there exists a successful path in T with label (f, g). With the
morphisms « and 8, (6.3) can be reformulated as

IT1() =Bl (DN Al Q). (64
Example 6.1 (continued). The set of successful paths is

Ala, b)=(a,x*y, 1, aY*(a, 1,1, B)}{(b, x, x, B), (b, y, y, B)}*.
The set of labels of successful paths is

T(a, b)=(x*y, D*{(x, x), {y, yI}*.
The transduction 7 realized by the transducer is

(=K',

Theorem 6.1 A transduction 7:X*-> Y* is rational iff 7 is realized by a
transducer.

with K =(x*y)*.

Proof. Let T=(X Y, Q,q_, Q,, E) be a transducer. The rationality of |7
follows immediately from (6.4), provided A(g_, Q.) is a regular language. To -
show this, it suffices to show that the set A(p, g} of all paths from p to g is
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regular. This follows from the fact that
Alp, )= QUUE*NE*V,\E*WE",
where U,={(q.uv,@)eE|q=p}, V,={laq,uv.q)eE|a=4}
W={(q,, 1, v1, q1)do, th2 02, BV E*[ g1 # g}, 2=Alp, )" {e}.
Conversely, let 7:X¥ — Y™ be a rational transduction. After a copy, we may
assume X NY=gJ Thus
f)=my(n (HNKY  feX™,

with K< (XU Y)* a regular language and mx, 7y the projections of (XU Y)*
onto X* and Y* Let A={XUY, Q, g_, Q. be a finite automaton recognizing
K, and define a transducer

T:<X, Y; Q, q_, Q+: E)
E={(g mx(z). m(2),q - 2)| g€ Q, ze XU Y. (6.5)

Then T realizes . ®

We easily obtain the following corollary
Corollary 6.2 Any rational transduction 7:X*— Y™ can be realized by a
transducer T=(X, Y, Q, q_, Q., E) such that
EcOx(Xu{1lhx(Yu{lhxQ (6.6)
and further Q. consists of a single state q.#4q., and (p,u,v,q)€E implies
p#q. and g#< q_.
Proof. The condition (6.6) is fullfiled with F satisfying (6.5). Next, add to QO
two new states q° and q', and to T the new transitions
{(@° u v, qY (g, u v, )€ B},
{(awv,q9) (g uvq)eEand ¢g'€Q.}
and (q%1,1,4) if q-eQ..
Let T' be the transducer obtained in this way with initial state g° and unique
final state g*. Then obviously 7=|T"|. =
Remark. If (1)=&, then (6.6) can be replaced by
Ec(QxXx{1}xQuU(Ox{1}xY*xQ).

Note that the proof of Theorem 6.1, and equation (6.4) give an effective
procedure to construct a transducer from a bimorphism and conversely. For the
construction of a bimorphism, it is frequently easier to take as alphabet the set
of labels of transitions instead of the set of transitions itself.
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Example 6.1 (continued). Consider the alphabet Z composed of the three
“letters” x*y/1, x/x, y/y. Define morphisms ¢, & from Z* into X* by ¢{ufv) =
u, y{u/v)=v. Then R
T(a, b)={(¢h, ¢h) [hec R}  with R=(x>y/1)*{x/x, y/y}*.
Example 6.2 Consider the transduction 7: X* - Y* with X = {x, vl Y={q b}
of Example 4.1 defined by
o i feExty™;

T(f) = + 2 5 iy ,m +., %
(a*B)Y'a*"b if f=x"ymexty*

Fig. IIL3

With the notations of that example, a finite nondeterministic automaton for
K=(s"r)"f*u is given in Fig. ITL5. Thus we obtain the following transducer
realizing r (Fig. IIL.6).

17

]

3 /b oD 1/h

/a yin®

Fig. IIL6
Exercise

6.1 Let T be a transducer realizing 2 transduction . Show how finite automata
recognizing dom{r) and im(7) can be obtained from T.

I11.7 Matrix Representations

Matrix representations are another equivalent definition of rational transduc-
tions. They constifute a compact formulation of transducers, obtained by
grouping in one matrix ail output words corresponding to a fixed input word by
considering all pairs of states. The multiplication of matrices corresponds then
to the concatenation of paths in the transducer, and to the union of the sets of
output words of these paths.
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Let § be a semiring, and let Q be a finite set. Then the set $2*2 of all
Q X Q-matrices with entries in S is again a semiring for addition and multipli-
cation of matrices induced by the operations in S (see Section 1.2). The identity
matrix is denoted by L

Let X be an alphabet. A morphism p:X*— §9%? is a monoid morphism
from X* into the multiplicative monoid $2~°. Thus

w(fe)=pf ng figeX™ (7.1)
pwl=1L (7.2)

If only (7.1) is verified, then u Is a semigroup morphism. In this case,
w{X*={uf:fe X*} is a monoid of Q » ()-matrices with neutral element g1,
and wpl is idempotent {(ul- pl=p1) by (7.1). We are interested here in
matrices whose entries are regular languages over an alphabet Y. Thus the
semiring § is Rat{ Y*}. Consequently, the identity matrix I is given by

I _{1 if p=g;
Mg i p#g

For simplicity, we frequently write 0 instead of .

Definition A matrix representation M=(u, Q, q_, Q,) from X* into Y*
is composed of a finite set of states Q, an initial state q_, a set of final
states Q,, and a semigroup morphism u:X* — Rat{(Y*)?*<, The trans-
duction |M|: X* — Y* realized by M is defined by

M ()= U ufyq (7.3)
qeQ., .
For p, g€ G, note p,, the transduction f — uf,.. Then (7.3) can be written as
M= U ngo
qed,

Example 7.1 Let X be an alphabet and x,eX. Set Q={1,2}, and define a
monoid morphism g : X* — Rat{ Y*)22 by

00 01
wmly o] mexiewmlg )

Then {.Lf=[8 ?] if fexX* f=1,
and ,u,f=[g ?] if f=x0g

Thus for M=(u, Q 1,{2}), IM| (f}= ufi = x;*f, (fe X*).
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Theorem 7.1 A wansduction 7:X*— Y* is rational iff there exists a matrix

representiation M ={u, Q, q_, Q. ) realizing 7. Then the following hold:

(i} if 7(1)=0 or 7(1)=1, then p can be chosen to be a monoid morphism;

(i) Q. can be assumed to consist of a single state q, # q_, and pf,, = pf, ,=0
forall fe X", qeQ:

(iii} if 7(1)=0, both (i) and (ii} can be satisfied simultaneously.

Note that u cannot always be chosen to be a monoid morphism. Indeed, in this
case 7{1)= |J w1, . is equal to 1 or 0 according to q_c Q, or q_€ Q.. The

qeQy
fact that semigroup morphisms are necessary is equivalent to the possibility for
transducers to have transitions with the empty word as input label. This

complicates the proof of the theorem.

Proof. We first prove the existence of a mairix representation. Let T=
(X, Y, 0 q_, Q,, E) be a transducer realizing . In view of Coroilary 6.2, we

may suppose that Q,={q.}, 4. #4q-,
EcOx(Xu{lhxY*xQ,

and moreover (g, u, v, ¢ e E implies ¢ #qg_, q#q,. Let a:E* - X¥* and
B:E*— X* be the input and output morphisms as defined in the preceding
section, Then

7(f) = Bla ()N Ala_, q.)). 7.4
Next note that for p, g, re Q,

Alp, q)= UOA(p, nNA(r, q).

Since « is an alphabetic morphism by the assumption on E, we have o™ '{fg) =
a'(HNa'(g) for f, ge X*. Consequently

a '(fR)NAlp, q)= Uo(a“(f) N A(p, N e Hg) N A, q)). (7.5)

Define a mapping w: X*— B(Y*)°*C by
o =Bl ' (NN AP, @)  p.geQ feX* (7.6)

In view of (7.5), w is a semigroup morphism, and by (7.6), Ufpq 15 a regular
language. Let M =(u, Q, g_, g.}. Then by (7.4)

1M1 ()= wfy 0, = 7(F).

This proves the existence of a matrix representation. Furiher, since A(g, g_)N
ET"=A{g,q)NE =& for ge Q by the assumptions on T, condition (ji}

III.7 Matrix Representations 83

holds. Next, define the (monoid) morphism g by

af=pf (feX?), @l=1I
and M={j, Q,q_, q.). Since q.#q.,, |M|=r in the case where 7(1)=0. This
proves (i} in that case and proves also (iii}. It remains to prove (i) in the case
where (1) ~= 1. For this, consider i given by (7.6), let go ¢ @, set P=g,U (2 and
define

M: . X* — Rat( Y*)PXP
by p'1=1I and

55/ if pgeQ;
Wha=6fea i P=qo, geQ; (feX™)
; otherwise.

Then p' is easily seen to be a morphism, and

7(f) = ' a0a. U I fasao (fe X™).

Thus 7 is realized by the matrix representation (&', P, 4o, {gn, g..}).

Conversely, let 7:X*—Y* be the transduction realized by a matrix
representation M= (i, Q, q_, Q.). In order to prove the rationality of 7, we
proceed in several steps.

First we show that Q, can be assumed to consist of a single state g, #g_. Let

indeed s¢Q, set P=sUQ and define a semigroup morphism v:X*—
Rat(Y*)"* for ue 1UX by

Dl = pld,, (P geQ)

vilg, = vl =0 (geQ)

vy = | pug, {geQ).

peQ,
Then these formulas hold for any word fe X™*. This is obvious for the two first
formulas; the third follows by induction from:

v{fg), = EJQ phvgs = U U pfopg, = ) 2

pel, reQ ey

Thus  (f)= UJ wf,,=of,..
pedd;

Consequently, we assume Q,={q.,} and g, #q . Next. define the monoid
morphism @ : X% — Rat(Y*)?*? by jix=ux(xeX). Then af, . =ufqq. =
7(f) for fe X", and &1, , = @. Thus

r=mUr
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where T is the transduction realized by (&, Q, q_, q,), and where 7,: X* > Y™
is defined by 7 (1)=p1,,, crat(Y*) and = (fi=0 for fe X*. Since 7, is
obviously a rational transduction, it suffices to show that 7 is rationai.

Thus we may assume that p is a monoid morphism and 7(1)=0. Let Z=
QxXxQ and define the strictly alphabetic morphism ¢: Z* — X* by

elp, x, q))=x.
Let K=[(q.XxXxQ)Z*NZ*Qx Xxq)\Z*WZ*
with  W={(g,x,¢)p,y, e Z?| ¢ #p}.

Then K is a local regular language, ¢ (DNK=@, and for f=x%, - x,,
(x € X),

(P_l(f) N K={(q-= 15 ‘11)('511: X2, 612) e (qn—h Xns Q+) I G500 qn1 € Q}c (77)

Define a rational substitution o: Z* — X* by

a{(p, x, @)= ux,,

Then ol ' (WNK)=@=+(1) (7.8)
and, in view of (7.7),

oo (ANK)Y=pf,q.=7) (feX™) (7.9)
Consequently, .t is a composition of rational transductions and therefore is
rational. n

The proof of Theorem 7.1 yields the following corollary which is another
variation of Nivat’s Theorem.

Corollary 7.2 Let 1: X*— Y™ be a transduction with 7(1)=0 or 7(1)=1. Then
T is rational iff there exist an alphabet Z, a stricily alphabetic morphism
@:Z*—=X* a rational substitution o:Z*— Y™ and a local regular language
K< Z* such that

(H=ole ' (HNK)  (feX™). (7.10)

Proof. Let r be given by (7.10). Then 7 is clearly rational. Conversely, the
conclusion holds if 7(1) =0 in view of (7.8) and (7.9). If 7(1}=1, then it suffices
to replace the language K of the preceding proof by KU 1. [

Fig. IIL7
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Example 7.2 Consider for X ={x, y}, ¥ ={a, b}, the transducer of Example 6.2
(Fig. 11L7). Formula (7.6) gives the following semigroup morphism u:

1 a& 0 0 a*b a*tbat (¢ 0

0 a* 0 0 a*b a*ba* a*bh a*p?
pl= pux =
0 0 1 b 0 0 0 0
0 0 01 0 0 0 Q
0 0 90 0
_ 0 0 0 ]
=10 0 a2 a%
00 0 0

Theorem 7.1 shows a relationship between rational transductions and formal power

series: In the terminology of Eilenberg [1974] or Salomaa and Soittola {1978], a

transduction 7: X* — Y™ is rational iff the formal power series ¥ 7(f) - f with coeffi-
fex*

cients in the semiring Rat(Y™*) is reoogniiable. The following theorem is the analogue to
a well-known characterization of recognizable formal power series.

Proposition 7.3 A transduction 7: X* — Y* is rational iff there exist a finite ser
Q, a monoid morphism p: X* —Rat(Y*)°?*? a row Q-vector A, a column
Q-vector p with entries in Rat(Y™*) such that

r(fl=Aufp  (feX™). (7.11)
Proof. Let 7 be given by (7.11). Then

(= U Aptfoaps
pr.qeQ

By Theorem 7.1, the transductions w,, : f+» uf,, are rational. Since A, p, are
regular languages, the transductions fe— A uf,.p, are rational. Thus 7 is ra-
tional.

Conversely, let T be realized by the matrix representation M=({v, P, q_, {q.})
with g_#q.. Let s¢ P, set Q =sU P and define a monoid morphism u: X% —
Rat(Y*)?*? by

Mqu:vqu p,qEP (xEX)
BXoy =0 p=s or gq=s

Then clearly

v ,qge P
R (Fex*)
7] p=s or g=s
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Next define the Q-vectors A and p by

A=l . p={l}, A_={1}, p,={1} i

Ay = p, = & otherwise.

Then Aplp=Ap=Ap =7(1), Apfo = A i a.pq. = 7() fex’. =

Example 7.3 Let X={x}, Y={a,b}, Q={1,2,3,4}, let & be the monoid
morphism defined by

0 a 00

L lf 0 00

PX=1o 0 0 »

0 0 b 0

A=[1,0,1,0] p=

—_o O -

A simple computation shows that

{[a", 0, 6", 0] if nis even;

Aux" =
B 70, am,0,6"] i nisodd.

a” R even;

Thus  Auxp ={b“ n odd

We conclude this section by considering a useful technical notion.

Definition Let M={u, OQ,g_, Q.) be a matrix representation from X* into
Y*. Then M is trim if the following condition is satisfied. For any g € Q, there
exist f, ge X*, g, Q,, such that

pfa =@ and pg, # @ (7.12)

Proposition 7.4 Let 7: X*— Y* be a transduction with dom{7) = &, and let
M={u, Q q_, Q.,) with u a monoid morphism be a matrix representation
realizing v. Then there exists a trim matrix representation M’ ={v, P, q_, P,)
realizing v with P<c Q and P.=Q,NP.

Proof. Let P< Q be the set of states such that (7.12) holds. Since dom(r) % &
and g is a monoid morphism, we have g_€ P and P, = Q. N P# & Moreover,
for any g€ Q., q& P, iff uh,_,# £ for at least one word h € X*. Consequently

M= | gy = LIJ, Raa (7.13)
qeP,

qe,
Define a monoid morphism v : X* — Rat{ Y*)**F by

BXpy = Xy, p.qeP, xeX

In order to prove the desired result, it suffices to show that

Ve =ttfps D.aeP, feX* (7.14)

II1.8 Decision Problems 87

since then in view of (7.13)
IM'|= U voo= U paq=IMl

qeP. qeP.
To show (7.14), we first verify that for p,qe P, re Q\P,
pfp =6 or pg,=0 (7.15)

for any pair of words f, g. Assume the contrary. Then there exist words f, g
such that both pf,.# & and pg.,# €. Since pc P, there is a word f' such that
wft o # @, and similarly pgl,, # @ for some word g’ and some g, €Q,. But
then @ uf; uf, < pff,, and @ ug, 18, <wnggl,. and by (7.12), reP
contrary to the assumption. This proves {7.15).

Now (7.14) is true if {f|=<1. Arguing by induction, let h ¢ X*, x ¢ X. Then for

p.qeP,
(phx)y, = Lé why, s, = L‘L TR
re re.

by (7.15). Consequently
(phx),, = UP vh,vx,, = (vhx),,.

Exercises

7.1 Show that M={u, Q,q_,Q,) is irim iff for any q e Q, there exist g,.eQ., and
f, g € X* with |f], |g| =card Q such that uf, ,# @ and pg.,, #0. .

7.2 A transduction 7:X*—>Y* is faithful if +7'{(g) is finite for all ge Y*, and is
continuous if 7{f}< Y* for f= X", Show that a rational transduction 7:X*— Y™ is
both faithful and continuous iff

Hi=wle (HNK) feX*
for some alphabet Z, K e Rat(Z¥), ¢ :Z*— X* a morphism and ¢: Z* — Y* a strictly
alphabetic morphism. (Hint. Apply Corollary 7.2 to 7~".) Show that the composition of
two faithful (continuous} transductions is still faithful {continuous).

7.3 Let ® be the least family of subsets of X*x Y* closed under union, product and
the plus operation, and containing &, {(1, 1)}, and the relations {(x, y)} for ue1UX,
yeY.

a) Show that RS, SRe @ for all Re@® such that (1, 1)¢ R, and $e Rat(X*x Y*).

b) Show that Re & iff the transduction with graph R is rational, faithful and continu-
ous.

L8 Decision Problems

We show in this section that most of the usual questions are undecidable for
rational transductions. We shall see in the next chapter that some of these




88 III Rational Transductions

questions become decidable for rational functions. The results of this section
are mainly from Fischer and Rosenberg [1968].

The proofs of undecidability are “relative” in the following sense: We give
(without proof) a particular undecidable problem (Post’s Correspondence
Problem) and we prove that some property is undecidable by showing that the
existence of a decision procedure for this property would imply a decision
procedure for the Correspondence Problem.

Post’s Correspondence Problem Given an alphabet X with at least two letiers,
and given two seguences

Uy, Uy, ...,u, and 05, 05...,0, (8.1)
of words of X*, decide whether there exist indices iy, i, .. ., i, (k> 0) such that
Uj Uy, o0 Uy = 050500 Uy (8.2)

Theorem 8.1 (Post’s Correspondence Theorem) Post’s Correspondence
Problem is undecidable.

For a proof, see for instance Davis [1958] or Schnorr [1974]. The theorem
means that there exists no algorithm that has as input the two sequences (8.1),
and yields as output “yes” or “no” according to the existence or the non-
existence of a sequence i,..., i such that (8.2) holds.

First we give two decidable properties. As usual for decision problems, the
word “given” in the statement should be interpreted to mean that an explicit
description of the object, here of the rational relation R is provided. This can
be done in the present context by a rational expression, by a matrix representa-

tion, by a transducer or by a bimorphism. From the constructions of the -

previous sections, it should be clear that any of the above descriptions of a
rational relation can be obtained effectively from another one.

Proposition 8.2 Given a rational relation R = X* x Y* it is decidable whether R
is empty and whether R is finite.

Proof. R is empty iff one of the two projections mx(R) and (R) on X*
and Y™ are empty, and R is finite iff both projections are finite. Each projection
is a regular language, and an explicit description of these languages is readily
obtained from any effective description of R. Since emptiness and finiteness are
decidable for regular languages, the conclusion follows. =

We now prove a lemma which will be of use later, Let X ={a, b}, let Y be an
alphabet, and let uy, u,, ..., u, € Y*. Define

U={(aba ul): (ab2$ u2): ey (abp, up)}'

Clearly U, hence IJ" is a rational relation over X and Y.
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Lemma 8.3 The relation (X*x Y*)\U™ is rational.

Usually, Rat(X* x Y*) is not closed under complementation, thus Lemma 8.3
has to be proved.

Proof. We show that W= (X*x Y*\U" is a rational relation by writing W
as a union of four rational relations. First the relation H composed of all
(f, gy e X* X Y* such that

féiab, ab®, ..., ab™}
is rational and even recognizable since
H=(X"\{ab, ab>, ..., ab?}")x Y*.
Next (f gleW and f,e)¢ H
if and only if

f=abbagb®- . gb" forsome r>0, 1=i,...,i<p (8.3)
and g% U Uy, ot U (8.4)
Now (8.4) holds iff one of the three following conditions hold

gl <lu,ue, - - - u (8.5)

|g|>|ul—]ui2 R (8.6)

lgl= o2, - - - i, (8.7)
and there is a factorization g=g'hg” and k<{1,..., p} with

lg'| =l - -+ w, |, h|=ug], h# u,, "=, - - ).

Define the following relations which are clearly rational:

(=

F

ab'x Y G={) ab x(Yhw) = F\U;
i=1

1

C~

P
D= ab'xYMY*=F-(IxY"); C=

i=1 i

ab'xyY,
1

with Y, ={ue V*:|uj<|ul}.
Then CF = FC, DF=FD, and

{(f, @) | (f. g) verifies (8.3) and (8.5)} = C*F*;
{(f. 2| {f. g) verifies (8.3) and (8.6)} = D*F*;
{(f. &) | {f, g) verifies (8.3) and (8.7)} = F*GF*.

Thus W=HUCYFFUD'F*UF*GF*cRat(X*x Y™, =




90  III Rational Transductions

Theorem 8.4 Let X, Y be alphabets with at least two letters. Given rational
relations A, B< X*x Y*_ it is undecidable to determine whether

@ ANB=¢g, -
(i1) AcB;

{iii) A =B;

(iv) A=X*xY*,

v) (X*X Y*N\A is finite;

(vi) A is recognizable.

Proof. We may assume that X contains exactly two letters, and set X ={a, b}.
Consider two sequences

Up Mg, ..., U, and 0, 05,..., 1, {8.8)
of words of Y* and define
U={(ab, )}, ..., (ab" u,)}, V={lab, v1), ..., (ab", v,)}

Then U™, V* are rational relations, and by the preceding lemma, U=
(XFXY*N\U* and V=(X*x Y*\ V" are rational relations,

(i) Let A=U", B=V". Then A NB# @ iff there exist integers iy, ..., i such
that w, «- -, =v; -+ v,, thus iff the Correspondence Problem {8.8) has a
solution. Thus if the emptiness A N B =@ would be decidable, Post’s Corre-
spondence Problem would be decidable. This proves (). .

{ii) Let A=U", B=V. Then A<B iff U'NV*=¢. Thus (ii) follows from
(i).

{iif) is a consequence of (iv} since X*x Y* is rational.

(iv) Let A=UU V. Then A=X*XY* iffi X*X Y"\A=U"NV* = Thus
{iv} is undecidable by (i).

(v) Let again A=UUV. Then (m, u)e X*x Y*\A iff there exist i, ... L
such that m=ab"---ab> and u=u, --- U, =v;, ---v,. Thus (m, u)e
X*X Y™ A implies (m" u*)e X*}XY™A for any k=1. Consequently,
X*XY*\A is finite iff X*x Y*\A is empty, and the last property is undecid-
able by (iv). ’
(vi) Let again A =7 U V. Then A is recognizable iff X* x Y™NA=U"NV*is
recognizable since Rec(X™x Y™) is closed under complementation. We shall
see that U"N V" is recognizable iff U'NV*=@, Assume U*NV™* recog-
nizable. Then by Mezei's Theorem,

U'NV*=PxQ,U--- URXQ

for Py,...,PeRat(X*), Q,....QcRat(Y*). Next assume (m, u)e
U'N V™. Then (m*, u*)e UTN V™ for k=1, thus there exist integers r, s,
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{(r>s =1) such that
(m”, u"}, (m*, u)e P, < Q

for some j, (1=<j=<I). Then (m°, u")e P, xQ, but (m*, u ) U ' M V" since s#r.
Thus U'N V™ =4, and (v1) follows from (i). =

Exercises
8.1 Show that all properties of Theorem 8.4 are decidable for recognizable relations.

8.2 Show that for a rational relation A cX*xY* the word problem:
{1, v)€ A can be solved in O(n) steps, where r = [u|+|v]. (For connections with the same
problem for linear languages, see Proposition V.6.5.)

8.3 Let M={u, Q,q,0Q,): X*>Y* be matrix representation. Show that a trim
matrix representation realizing |M| can effectively be constructed.

8.4 (continuation of Exercise 4.8) Assume that a rational transduction 7: X% — Y* is
effectively given. Show that the transductions 7, and 7. can be computed effectively.




IV Rational Functions

The present chapter deals with rational functions, i.e. rational transductions
which are partial functions. Rational functions have remarkable properties.
First, several decision problems become solvable. This is shown in Section 1.
Then there exist special representations, called unambiguous representations
for rational functions. They are defined by the property that there is at most
one successful path for each input word. Two different methods for construct-
ing unambiguous representations are given in Section 3 and 4, the first by
means of a cross-section theorem due to Eilenberg, the second through
so-called semimonomial representations and due to Schiitzenberger. Section 2
is concerned with sequential functions which are a particular case of rational
functions. In Section 5, bimachines are defined and are used to show that any
rational function can be obtained as a composition of a left sequential followed
by a right sequential function. In Section 6, we prove that it is decidable
whether a rational function is sequential.

IV.1 Rational Functions

In this section, rational functions are defined and some examples are given.
Further a decidability resuit is proved. A more detailed description of rational
functions will be given in Section 4 and 5.

Definition A rationalfunction a:X*-> Y* is a rational transduction which
is a partial function, i.e. such that Card{ef)=<1 for all fe X*.

In order to simplify statements and proofs, we first make a general observation,
Given any transduction

T: X% Y*

define two transductions 7, 7, : X — Y* by
() =7(1); 7(1)=6;
nN=@; =)=} feX"

Then r=7,Ur, {and even v=1,+7.), and 7 is rational iffr, and =, are
rational. Further, any transduction 7': X* — Y* with . =7, is rational iff 7 is
rational and 7'(1) is a rational language. Thus, rational transductions can
always be considered “up to the value T(1)”. Therefore we stipulate that in this
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chapter, 7(1) is always equal to & or {1}. Then, according to Theorem IIL7.1,
the morphism of a matrix representation M =(u, Q, q_, Q) realizing r can
always be chosen to be a monoid morphism.

Further, we recall that if 7(1)=0, then we may assume that Q. ={qg,} and
q+#4q_, and that uf,, =uf, =0 for fe X", ge Q. As a result of the above
discussion we thus may assume that this relation also holds if +(1) = 1, and that
Q. ={gq.q.}. Then indeed 7(1)=u1,, =1, and (f) = pf, ., if fe X"

A maitrix representation which satisfies the above conditions and which is trim
is called normalized. Normalization clearly is effective,

Proposition 1.1 Let 7:X™— Y™ be the transduction realized by a normalized
matrix representation M={u, Q,¢_, Q.). Then r is a partial function iff
Card(uf,,) =1 for any fe X*, {p,qe Q).

Proof. If the conclusion holds, then Card(uf, ,)}=1 for any fe X", thus
Card(r{f))=1 for fe X* Conversely, assume that Card(uf, )=2 for some
feX* (p,ge Q). Then fe X since p1 is the identity matrix. Since M is trim,
wh,_ ,,#Q and ph!, # @ for some h, h'c X*. Then

T(hfh') = w(hfh'), o = why pfepmhl,.,

and thus Cardr(hfh')=2. [
Let a:X*— Y™ be a rational function realized by a normalized matrix
representation M =(u, Q, q_, Q,). Then we associate to M the transducer
T=<‘X= },5 Qs q-, Q—H E) WIth

E={(p, x, ¥, @) | P, a€ Q, x € X, px,, # O}.

Thus ECcOXXXY*xQ, and for any (p,x, g)e QXX xQ, there is at most
one he Y* such that (p, x, h, ) c E. Conversely, if E satisfies these conditions
then the formula

{h it (px h q)eE;
Xy = .
0 otherwise

defines a matrix representation M ={u, Q, q_, Q). The transducer T and the
matrix representation M are called associated, and we sometimes identify
them. Thus we speak of a normalized transducer, of a path in a matrix
representation and so on,

Example 1.1 Let a:x®* — {a, b}* be given by
(x™) {a" H  even;
X =
* b n odd.

Then a is a rational transduction {Example I11.7.4), hence a rational function.

&
i
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Example 1.2 Let X ={x}, Y={b} and consider the transducer in Fig. IV.1
/b ¥/ )

1 ©) x/b

1

Fig. IV.1

corresponding to the matrix

0 b1
15 =[D 0 1:|.
0 0 b

The transduction « realized by this transducer is given by «(1)=0, a(x")=
5!, (n=1); hence « is a rational function.

Example 1,3 (Choffrut) Let again X ={x}, Y={b}, and consider the trans-
ducer in Fig. IV.2. Let « be the transduction realized. It is easy to see that

b

Fig. V.2

there are 3 nonempty paths from state 1 to itself without internal node 1. They
are of length 3 and 4 and have labels (x% b%) and (x*, b®). Thus if e(x")#0,
then @(x")=5h>", and thus, @ is a partial function. Further dom(a)=
TUxPUux*Uxsx®

The above example shows that it is not always easy to determine whether the
transduction realized by a transducer is a (partial) function. However. this
property has been shown to be decidable by Schiitzenberger [1975]
{see also Blattner and Head [1977]):

Theorem 1.2 Let 7: X* = Y* be a transduction realized by a normalized mafrix
represeniation M ={u, Q, q4_, q,), and let m =Card(Q). Then 7 is a rational
function iff Card(pf,,)=1 for all pgqeQ and all feX* with |fl<
I+2m(m—1).

Proof. By Proposition 1.1, the condition is necessary. Assume the converse is
false, Then, still by Proposition 1.1, Card(uf,,)=2 for some fe X¥ and p, g Q.
Choose a word f of minimal length such that Card(uf,,)=2 for some p,gc Q.
Then lf|>14+2mim—1). Set f=x,---x, with x;,...,x,€X There is a

&
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sequence of n+1 pairs of states (g, qf), (j=0,...,n) such that qy=q{=p,
4, =q, =g, and such that with

W= (J.ij )f'h'fi':fj’ v = (;.ij )u.’ e

the words u=u, - - - u,, v=v, - v, are two distinct elements of uf,. Since f
has been chosen of minimal length, ¢, # g} for j=1,...,n—1. Indeed, assume
q; =g} for some j. Then either w, - -~ w7 v, - 0; OF Uy " " U, E By * U,

Next, since n—1>2m(m —1), there are three indices 1=<i<j<k=n—1 such
that

(4 q!) = (4 q]) = (qw. q0)- (1.1}
Define

fisxir % L=xa X, fimxa o X fam X X3

Ay = Uy Uy QT Uiy "t " Uy Ba= Uy - Yy, A=y ;" Uy

bi=vy o, By=wgcy, bi=vp0 0 g, by=vp41 - v

Then by (1.1}

O18a, Bibag p(fifa)pe; aiaa4, bibobye w(fifafdpas
Qa3 bibabs € wif fafa) pa-
By the minimality of f, we have
. =biby, aya:0,=bbybs, a,asa,=0b;byb,. (1.2)

We shall deduce from (1.2) that u = v, in contradiction with the assumption. By
symmetry, we may suppose |a,|=|b,|, hence b, =a,w for some we Y*. Then
the first of the equations (1.2) implies a, = wh,. Reporting this in the two other
equations (1.2) yields: a,w =wb, and a;w = wh. It follows that:

U=a,0:8304 = A 838,Why = @ aywhsb, = a,whyb b, =v. -

Given two rational functions o, 8: X" Y¥*, we write e <8 if a()=0=>
alf)y=pB{f), (fe X™).

Corollary 1.3 Given two rational functions a, B:X*— Y, it is decidable
whether « < 8, and whether o = f3.

Proof. Clearly ¢ = 8 iff the two following conditions hold;

i dom(a) = dom(f):
(ii) a U B is a rational function.

Condition (i} is decidable since dom(a) and dom(g) are regular languages.
Condition (ii) is decidable by the previous theorem. Next a =g iff a # and
8 < a, thus equality of functions is decidable. =
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Exercises
1.1 Show that it is decidable whether a rational function « is recognizable (i.e. its graph is

a recognizable relation).

1.2 Show that it is undecidable, for rational functions o, 8:X* — Y*, whether there
exists a word fe X™* such that a(f)=8(f).

IV.2 Sequential Transductions

For practical purposes, a rational transduction is required not only to be a
partial function, but also to be computable in some sequential way. Such a
model is provided by sequential transductions. In fact, the transducers which
are used for instance in compilation are more general, since there is usually an
output after the lecture of the last letter of the input word. In order to fit into
the model of sequential transducers, the input word is frequently considered to
be followed by some “endmarker”. Another way to describe this situation is to
add a supplementary output function to a sequential transducer. This is the
definition of the subsequential transducers.

In this section, we define sequential and subsequential transductions and give a
“machine independent™ characterization of these particular rational functions.
Sequential transductions are among the oldest concepts in formal language
theory. For a complete exposition, see Eilenberg [1974]. Subsequential
transductions are defined in Schiitzenberger [1977a). A systematic exposi-
tion can be found in Choffrut [1978].

Definition A left sequential transducer (or sequential transducer for

short) L consists of an input alphabet X, an output alphabet Y, a finite

set of states (O, an initial state g_< Q, and of two partial functions
§:0xX—-Q, ATOQXX—=>Y*

having the same domain and called the next state function and the output

function respectively.

We usually denote & by a dot, and A by a star. Thus we write q - x for 8{g, x)
and g * x for Ag, x). Then L is specified by
L={X.Y,0,q).

With the conventions of Section 1.1, Q can be considered as a subset of R(Q),
and ¢ - x is undefined iff g - x =& {or q - x =0, by writing 0 for ¢). Further
0 - x =0for all x € X. Thus, the next state function can also be viewed as a total
function from QU{0} x X inte QU{0}, and O can be considered as a new,
“sink™ state,

A sequential transducer is called a generalized sequential machine {gsm) by
Eilenberg [1974] and Ginsburg [1966].
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The next state and the output function are extended to Q X X by setting, for
feX* xeX
q-1=q; q-{()=@-f-x;
g=l=1;  g=x(fx)=(g=f)q-N=x).

The parentheses in (2.1) can be omitted without ambiguity. We agree that
concatenation has higher priority than the dot, and that the dot has higher
priority than the star. For f, g€ X* {gec Q), the following formula hold

q-fg=@q-f-g; (2.2)
qg*fg={(q=fiq- fxg). (2.3)

Indeed (2.2) is clear, and (2.3) is proved by induction on ig|: the formula is
obvious for |g|=0. If g=hx with he X* xecX, then

q*fg=q=fhx=(q+fh)q - fh*x)
=(q=q-f*hX(g - f) h=x}={q+fi(q  frhx)=(q*f)q - f*g).
The partial function |L|: X* — Y* realized by L is defined by
LI(i=q.=f  (feX™.

Definition A partial function a:X*—Y* is a (left) scquential
transduction or (left) sequential function if « =|L| for some sequential
transducer L.

If & =|L| with L as above, then
a()=1 (2.4)
a(fg)=a(f)q - f+g). (2.5)

By (2.4), dom(a) is nonempty. Say that a partial function o:X*— Y*
preserves left factors if (2.4) holds and if further

(2.1)

al(fg)# 0> alfe)ea(f) Y.

Then by (2.5}, a sequential function preserves left factors. Note that this is a
rather strong constraint. In particular, the domain of such a function is
prefix-closed, i.e. it contains the left factors of its elements, Of course, this is
due to the lack of final states.

To each sequential transducer L =(X, Y, Q,q ) we associate a transducer
T=(X,Y,0Q,q,0,, E) by setting Q. =Q and

E={{q,x,q*x,q x}|qeO,xeX, q - x#0}.
Then clearly |L|=|T}. Thus

Proposition 2.1 Any sequential function is rational. =
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Example 2.1 Any morphism is a sequential function.

Example 2.2 Let X ={x, y}, Y={a, b}, and define a: X * > Y* by
af' i fexX®,

bl otherwise.

a(f)={

Then « is a sequential function realized by the following transducer (Fig. IV.3).

Fipg. Iv.3

Example 2.3 The function 7:x*— {a, bY* defined by

i a”® n o even,
Tl )_{b" n odd,

is rational, but not sequential, since it does not preserve left factors. Some-
times, it is useful to have some “reversal” of a left sequential transducer.

Definition A right sequential transducer R=(X| Y, Q,q.}) is given by
objects X, Y, Q, q_ which have the same meaning as for left sequential trans-
ducers, and by two partial functions

Xx(Q—Q; XxQ—Y*
with same domain, called next-state and output function and denoted by a dot
and by a star respectively.
As above, these functions are extended to X™ x Q by setting

l-g=q; xfrq=x( q;

1xg=1;  xf*q=(x=f- q)f*q).
Then the “reversal” of formulas (2.3), (2.4) hold:

fe-a=f-(g-a)h fexa=(f*g-ag*a). (fgeX™
The partial function |R| realized by R is defined by

R|(N=f*a- (FeX™),
and a partial function realized by a right sequential transducer is called aright
sequential transduction or right sequential function.

Proposition 2.2 Let a: X*— Y* be a partial function, and define 8:X *Y*
by B(H) =[a(PH] (fe X*). Then a is left sequential iff B is right sequential.
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Proof. Note first that a(f)=[B(H)], (f € X*). Thus it suffices to show that if &
is right or left sequential, then g is left or right sequential. Assume that o is
realized by some right sequential transducer R ={X, Y, Q, q_), and define a left
sequential transducer L =(X, Y, Q, 4_) by setting

q-x=x-q; g*x={x*q).
Then q-f=f-q and g=f=(f+q),
since by induction, for he X*, xe X,
q-hx={(q-h)-x=x-(h q)=(hx) - q,
qrhx=(q*h)(g - h=x)=(h*q) (x*h - q)
=[(x#h - @iix )] =[(hx) =47

Thus |L| (A =[|R| (/)] for all fe X*, and g8 =|L|. 5
Corollary 2.3 A right sequential function is rational.

Proof. Let a:X*-> Y™ be a right sequential function, and let 8 be defined
by B(f)=[a(HT. Then B is sequential, hence rational, and its graph B is a
rational relation. Let A be the graph of . Then A ={(f, g) | (f, )€ B}, and A is
rational (see Section I11.4). »

Example 2.2 (continued). The function « is not right sequential since it does
not preserve right factors.

Example 2.3 (continued). For the same reason, the function 7 is not right
sequential.

Example 2.4 The basic step for addition in some base k is realized (see
Example I11.5.16) by a function & which associates, to two words u, vek® of
same length, the shortest word w such that {u)+(v)={w). The number {u) can
be defined, for u = xox; - - - x,, {x, €k) either as in Example II1.5.16, or by

{uy=xo+x k+-+x.k"

This is the “reversal interpretation” which is more convenient when the input
is read from left to right, as will be done here. Since u and » have the same
length, o can be considered as a function & :{(kxK)* = k* If v =yoy, " * y,,
then the argument of a is f={(xg, yo)(x1, ¥1) - (X, y,). For simplicity, we
write indistinctly a(x, v) or «(f). By Example ITL5.16, « is known to be
rational, but « is neither left nor right sequential. Consider for instance k = 2.
Then

«(11,10) = w, =001 @{11111,10010) = w, = 000101.
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The word f,={(L1)1,0) is both a left and a right factor of f,=

(1,1){1,05(1,0)(1,1)(1,0), but w, is neither a left nor a right factor of w,. Now

consider the following (left) sequential transducer (Fig. IV.4) and Jet 8 be the
{1340

00119 {allio
; (1040
G0 D) s
@on
Fig. [V.4

sequential function realized. Then
B(f) if g--f=q
(= Poaim
BHL it q.-f=q
Thus « is “almost” a sequential function. This leads to the following definition.
Definition A (left) subsequential transducer §=(X, Y, Q,q_, p) is com-
posed of a sequential transducer (X, Y, Q, g_) and of a partial function p: Q—
Y*. The partial function |8|: X*-» Y™ realized by § is defined by
IS} (f)=(q-*Pela-- ). (2.6)
A subsequential function is a partial function realized by some subsequen-
tial transducer.
According to the discussion at the beginning of this section, p(g_ - f) has the
value 0 in (2.6) whenever g - f=0.
Example 2.4 (continued). The function « is subsequential with p(g_)=e,
plg)=1
Example 2.5 Any sequential function is subsequential: it suffices to define p(q)
to be the empty word for all ge Q.

Example 2.6 Any partial function with finite domain is s'ubsequential (this is
not true for sequential functions). Consider indeed a: X*— Y* and suppose
dom{e) is finite. We define a subsequential transducer § =(X, Y, Q,q-. p} as

follows: Q =dom{a)(X*)™" is the set of left factors of words indom{a); g_=1.

The next state and the output function are defined by

{ux if uxeQ; [1 i wxeQ;
U XxX= ukx=

0 otherwise. 0 otherwise.
ucQ, xeX.
Finally,
o) = {a(u) if ued.om(a) cO.
otherwise.

Then clearly a =|8|.
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Example 2.7 The function r of Example 2.3 is not subsequential. Assume
indeed that 7=|§| for § as in the definition and set K =max{|p(q)|:p(q) #0,
g Q}. Let n be even. Then

S| (x")=(g_*x")plg_ - x")=a"
IS] (x"") = (g_*x"}q_- x" * x)p(q. - x"*1) = p"*".

If n>K, then w=g_=*x" is not the empty word, and wea™Nb™, which is
impossible.

Proposition 2.4 A subsequential function is rational.

Proof. Consider a subsequential transducer § =(X, Y, Q, q_, p} and define a
morphism g X* — Rat{ Y*)9*9 by

* X if - X=q;
HXp g = {p P q (xcX) 2.7

0 otherwise.

Then an obvious induction shows that (2.7) still holds if x is replaced by a word
fe X*. Next consider p as a column Q-vector, and define a row vector A by

A= {1 it g=q;
4 (} otherwise.
Then: Apfp= LEJQ o ae(@)=(g-*Pplq- - ) =8| (f).

Thus |§7 is rational by Proposition I1IL7.3. =

Note that the matrices pf of the preceding proof are row monomial, i.e. for
each pe Q, there is at most one g Q such that pf,,#0. Thus the transduc-
tions f— uf, .. {ge Q) have disjoint domains, and the same holds for the
transductions f— uf, .0(q).

Proposition 2.5 Let a: X™*— Y™ and B: Y™ = Z% be subsequential functions.
Then Bea: X*— Z* is subsequential. If further o and @ are sequential (right
sequential}, then Bea is sequential (right sequential).

Proof. Consider two subsequential {ransducers
S:<X, Y7 QJI—aP)a T=<Y9ZaP9p—so->

realizing & and B respectively. Elements of the product Px Q are noted [p, g]
for easier checking. Define

T-8=(X.Z, PxQ,[p_q.], o)

[p.ql: x=[p-{gq=x).q - x] (2.8)
[p.ql=x=p=(g#x) peP, qecQ, xeX . (2.9)
o(lp. gl = (p*p(@ap - pla)). «fa?;,\ (2.10)
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We prove that (2.8) and (2.9) remain true if x is replaced by a word fe X*.
This is clear for f=1. Arguing by induction, consider f=hx, with he X*,
xe X, and set -
w=g*h, w=g-h=x.
Then ww'=g*hx =g=*f by (2.3). Next
[p.ql-f=[p-(g%h).q-hl-x=[p-wq-h] x
=[p-w-(q-h*x),q k- x]
=lp-ww',q-hx]=[p-(q*f).q"f}
[, q1*f={p, ql*h)}p, q1- h*x)={p=(@=R)N[p - (g*h).q - h]*x)
={pxwi{(p- w,q - hl*x)
=(p*wlp-wx(g- hxx))=(*w)p - wsw)=p*ww’
=p=(g=f).
Finally
o(p_.q-} fi=alp--{q-*f).q.- fD
=(p_- (g *f)xplq - Nolp_-(q-*f) - pla_- )
=(p-- (@-*f)*plg-- No(p-- alf)).
Consegquently
IT=81(H = (p_. g1+ Hw(p-. 41 f)
={p..*x{q-*=fNp- - (q.=H*plq- - No(p-- alf))
=(p-#(g-*flp(g-- No(p- - a(f))
=(p-*a(a(p- - a(f)) = Blalf).

Thus [T<8|=B7a. If both « and f are sequential, then p and ¢ can be
assumed to have always the value 1. Then by (2.10), o{(p, g =(p*De(p - 1) =
1 and Bea is sequential. For right sequential functions, the result follows from
Proposition 2.2. =

If one of the two partial functions « and B is left sequential and the other is
right sequential, then Bra is a rational function. It is quite remarkable that
conversely any rational function can be factorized as a composition of a left
and a right sequential function. This will be proved in Section 5.

A sequential function preserves left factors. We show now that a subsequential
function which preserves left factors is sequential.

Proposition 2.6 Let a : X* —> Y* be a partial function. Then o is sequential iff
the following conditions hold:

(i) « is subsequential;

(i) « preserves left factors.
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Proof. Clearly the conditions are necessary. Conversely, assume that «
satisfies (i) and (ii}, and consider a subsequential transducer § =(X, Y, Q, 4., p}
realizing «. We first put § into some standard form. Consider a state g Q. If g
is not accessible, i.e. if there is no word u such that g.. - u = q, then the state g
can clearly be deleted. Thus we may assume that all states are accessible. Next,
if p(g)=0, then a(u)=0 for all ueX™® such that q_-u=gq, and further
a(uv)=0 for all ve V* since a preserves left factors. Consequently, if the
next-state function and the output function are modified by setting g¢'- x =0,
g'=x=0 for all (g, x) such that g¢'- x =4, then the new subsequential trans-
ducer realizes the same function. Thus g can be deleted (since it is no longer
accessible), and condequently we can assume that p(q)#0 for all ge Q.

Next we claim that for all g€ Q, x € X, there exists A{q. x)& Y* U{@} such that
p(q}r{q x)={g*x)plq - x) (2.11)
Ag. x)#0 = g=x#0. (2.12)

Indeed (2.12) follows from (2.11) since p{g)# 0 for all g € Q. Next in order to
prove {2.11), let u be a word such that g_-u=gq. I g=x#0, then

a(ux)=(q-#u)q*x)p{q - x)#0,

and since « preserves left factors,
a(ux)=alu)g={(q_*u)p(q)g

for some word ge Y*. Thus
plqlg =(g*x)p(g - x),

showing that g is independent of w. We define
A(q,x):{g it gex20;

0 otherwise.

Then A has the same domain as the output function of §.
Consider now the sequential transducer L =(X, Y, , q_) with the same next
state function as 8, and with output function A. We claim that « =L}, L.e. that
a(fi=alq_, ) for fe X*. By (i), this holds for f= 1. If f~ hx, with ke X¥,
xe X, then
Alg-, H=A(g-, K)A(g_- h, x)=a(h)A{g- - h,x)

=(q-*h)plq_ - h)A(q.- h, x)

={q_=h}q-- h=x)p(q_ - hx) = a(hx). B
Subsequential functions preserve left factors only if they are sequential. How-

ever, they satisfy a property which is closely related to the preservation of left
factors. Consider indeed a subsequential transducer § =(X, Y, Q, q_, p}, and
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let @ =|8|. If u;, u, € dom{e} are “near” in the sense that u, = uv,, u, = uv, and
fogl+v,| is “small”, then afu;), a(u,) are also near, since

aluv)=(q_*u)q_- u=v)plq_-up)  i=12,

and the length of the words (q_- u=v)p(q - up;) are bounded by some
function of |v,| and |u,|. This obseivation expresses some topolegical property.
In order to explain it, we introduce some definitions.

For words u, v e X¥, we define
u n v =the greatest common left factor of u and v.
More generally, if A is a nonempty language, define
A A =the longest word which is a left factor of all words in A.

The notation is justified by the following remark: Define a relation =< by: u<viffuisa
left factor of ». Then = is a partial order, sometimes called the “prefix order”. Since
u=viff unv=u X*is a semi-lattice, and u A v is the greatest lower bound of u and v.

Definition The (left) distance of u and v is the number
let, o) = |ul+ o] —2 Ju Al

Thus |lu, o] is the sum of the length of those words which remain when
the greatest common left factor of u and v is erased. In order to verify that we
get a distance, we first observe that ||u, v]|=0 iff |u[+|v|=2uAv| Since
|uav|=|ul,|v], this is equivalent to |urv|=|u/=jv], Le. to u=v. Next we
verify that ’
i, ol =, wl|+]w, o] w0, weX*
A straightforward computation shows that this inequality is equivalent to
luAw|+|wAv|<|w|+]|uaul

Since uAw and v A w are left factors of w, either uAw is a left factor of v A w,
thus of u and of v, and |u Aw|<|urv|, or bAw is a left [actor of u and of v,
and |o A w{=|u A v|. Both cases give the desired inequality.

From |u ~v|={ul, [v|, we obtain immediately
Hul=loll=lw ol woeX™ (2.13)

Another useful inequality is the following: if A< X®, A, and w=A A,
then

[w, ul= max |If, g  ucA. (2.14)
f.geA
Indeed, for any u € A, there is some v € A such that u » v = w, (since otherwise

w would be a proper left factor of all u'Av, (ve A) for some u'c A, thus of all
ve A). Consequently |w, ul|=|lu o, ul|<|v, u||sfma§ If. 2li.
< BE.
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Definition A partial function « : X* — Y* has bounded variation iff for all
k=0, there exists K =0 such that

u, v e domia), lu, vk =2 jlalu), a(v)lj<K
Example 2.8 A subsequential function has bounded variation. Let indeed
a=|8|, with $=(X, Y, Q, g_, p), and set

M=max{lg=x|:qe O, xeX, g=x#0},

N=max{lp(q)l:qe Q, p(q)#0}.
If wvedom(a), then a{uv)=(q_*udq_ u*v)p(g_-uv). Thus |a{uv)|=
lg_#ul+lv]- M+N.
Let k=0, and define K=k - M+2N. If u;, u,cdom(a) and |lu;, u,| <k, then

uy=uv,, u,=uv, with |oj|+|v.]=<k Consequently a(uv,}=(g_=u)w,,
af{uv,) =(g_*u)w, and

llarCuv,), a(uoa)l|<w|+[wal < (o] + o )M+ 2N < K.

Note that for M’ =max(M, 2N}, we have the stronger inequality:
lleeaty), ex(up)ll == M'(1+||uay, wsl).

The following result gives a characterization of subsequential functions.

Theorem 2.7 (Choffrut [1978]) Let a: X*— Y™ be a partial function. Then
« is subsequential iff

(1} @ has bounded variation;

(il) for all LeRat(Y™), a '(L)ecRat(X™).

This theorem is-an extension of a characterization of sequential functions:

Theorem 2.8 (Ginsburg, Rose [1966]) Let a: X*— Y™ be a partial func-
tion. Then « is sequential iff

(1) « preserves left factors;

(ii) there exists an integer M such that, for all ue X*, xe X:

ux edom(e), a{ux)=a(u)g imply lg|<M;
(it} for all rational languages L = Y*, a (L) is a rational language.

Proof. In order to deduce Theorem 2.8 from Theorem 2.7, it suffices to show
that @ has bounded variation. The desired conclusion then follows by Proposi-
tion 2.6. Let k=0, and let uv,, uv,edom(a) be such that v;Av,=1, and
leew, uos||= |01 +|va) = k. Then aluv,)=a(u)g, aluv,)=alu)g, and, by (i),
&5l <|vs| M, {g2| <<|vs| M. Consequently, {ee(uv;), a(uv,)|<[g| +[g|<kM =

Proof of Theorem 2.7. The proof is an adaptation of the proof of ihe
Ginsburg-Rose Theorem, as given for instance in Ginsburg [1966] or in
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Eilenberg [1974]. Since a subsequential function verifies (i) and (ii), we have
to prove that these conditions are sufficient.

The proof is in four parts. We first associate to « a finite set R of partial
functions from X™ into Y*, We then prove that a certain family A, (re R) of
subsets of X* is composed of regular languages. This enables us to construct a
machine realizing «, which works like a subsequential transducer excepted that
the output function has its values in the free group Y generated by Y. The
last step consists in replacing this transducer by a sequential transducer
satisfying our definition. We use the following abbreviation:

If Z is an alphabet and n=0 is an integer, then
' ZW=1UZU---UZ"=2Z"\Z"Z",

Let e:X*— Y™ satisfy (i) and (ii). Then dom{a)=«"Y*) is a regular
fanguage by (ii). Let N be the number of states of a finite automaton
recognizing dom{«). Then we note, for later reference, that

uX*Ndom(e)# & iff uX™PNdomia)=d. (2.15)

Indeed, if u»edom(w} and |v|z N, then there exists, by the Iteration Lemma
for Regular Languages, a word ¢’ such that {v’|<|o| and ut' e dom(a).

For ue X* define
Ju)y={oe X™ | afuv) =0},
and define a partial function g:X*-— Y* by
0 if J(u)=47;
B ={ 0
Ma(uo):veJ(u)} otherwise.

Thus Bu)# 0iff J(u) = & iff tX“'Ndom(a)# &. In this case, there exists, for
each veJ(u), a word r,(v)e Y* such that

a(uv) = B{ur,(v) (2.16)

.and further there are v, v, € J(u) such that

r(vi)rr(v)=1. {2.17)

{Note that (2.17) holds even if J(u) is a singleton v, since then r, (v)=1.) We
complete the definition by setting 7, (2)=0 for ve X"N\J(u). Thus for any
uc X*, there is a partial function r, from X™ into Y* satisfying (2.16), with
domf(r,) = J(u). Further a(w)Z0iff 1e J(u) iff r,(1)#0.

a) We prove that there exists an integer M such that max{|r, (v)|: v € dom(r,)} =
M for all ue X™. For this, consider vy, v,€J(u). Then [luv,, uv,||=<|v;|+|v,)=
2N. In view of condition (i), there exists an integer M such that .

le(uwy), a(uu =M vy, vae J(u).
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Consequently by (2.14),
(=18, atul|=_ max [a(uw), alu,)| <M

for all v e J(u), Thus each r, is a partial function X™ — Y™ and the set
R=ir,ucX*,

as a subset of the finite set of all partial functions from X® into Y™ is itself

finite. We note O the partial function X™ — Y™ with empty domain.

b) For reR, define A, ={ueX*|r,=r}. We claim: the languages A, are
rational. To prove this, define for i=0,...,2M and he YM:

D, ={ge Y*:lg|l=i(mod 2M+1)and{ge Y*h orh € Y¥g)}.

{Note that there is at most one geD,, such that he Y*g) Clearly the
languages D, are rational. Consider a fixed re R and define

Loiw=[o YD r{tHp™ for vedom(r)
K, =[X*\dom(a)]v™! for »eX™N\doml(r).

By (if), these languages are rational. Set
M
K= N K.: Li,k: n Lyins Br:Kn(U U Li,h)'

reX®Ndom(r) vedam(r) i=0hey™

‘Then B, is a rational language. We show that A, = B,, which proves the claim.
Consider first u e B,. We must show that r, =r. There exist ie{0,...,2M},
heY™ such that ucKNL, Thus if vedom(r), aluv)e D, ,r(v), and if
v € X"\ dom{r), then a(un)=0. Thus dom(r}=doml(r,). If r=0, then r=r,.
Next if dom(r) is a singleton v, then since r =7, for some u' e X*, r(z)=1 by
the remark following (2.17), and r=r,. Thus assume Card(dom(r))=2. Then
for each v edom(r), there is a word g, € D), such that

a(uv) = Blur,(v) = gr{v), (2.18)

and it suffices to show that g, = B(u) for vedom(r). Let v, v'edom(r). By
{2.13), we have

lgo] =] 2] = e (uo)l — | (uo")| + jr(p")] — ()| < |a(u), aluv )i+ M<2M,

thus [|g.|—|g.]|=2M. Since further lg,|=l|g,4(mod 2M+1), it follows that
lg,|=ig.| for all v, v"edom(r). Let n be the common length of the words
g,(v edom(r)).

Since r =r,. for some u’' € X*, there exist, by (2.17), words v,, v, € dom(r) such
that r(v,) Ar(v.)= 1. Consider (2.18) for these words. This shows that {B(u)|=
n. Next let v, v, be two words in dom(r) such that r(vyan(u)=1 By
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(2.18) there are two words g, g, of the same length such that
rdvd=gir(v1), (o) = gar(vy).

Therefore |g,|=|g,i <M, and g;, g, are both right factors of h. Thus g, = g,.
Since r()arn(v)=1, g1=g =1 and [B(w)|=n. Thus uc A,.

Conversely, let ucA,. If r=r, =0, then L, =X* for all i and all h, and
clearly u € K. Thus u € B, in this case. Thus assume dom(z) # &, and let i be the
integer such that 0=i=<2M and |8(u)|=i(mod 2M+1). Next let k be either
the unique right factor of length M of B(u} if |8(u)|=M, or any word in
YYN Y*B(u) otherwise. Then a(uv)e D, r(v) for all vedom(y), and conse-
quently u e 1,,. Since clearly u € K, we have ueB,.

¢) Let §'=(X, Q', q_) be an accessible semiautomaton recognizing simultane-
ously all A,(re R) {for the construction, see Section 1.4). Then for each re R,
there is a subset Q, of Q' such that

A =80N={ueX*|q -uec Q.

Clearly the Q, are pairwise disjoint, and Q"= |} Q.. Next set

reR

R.={reR[r()#0}, O.,= U O.

reR,

Then O¢ R.. and dom{a)=]8"(Q.,)|. Observe that

UEAp «= 4 -ueQp <« Bu)=0 (2.19)
and that further, in view of (2.15)

ueAp < uX*Ndomfa)=@ < uXMPNdom(a)=@. (2.20)

Thus ueAg implies uX™*< Ag (in other terms, Ao is a right ideal). Thus
g€ Qp implies g - fe Qg for ali feX¥, and further g_& Qp, since otherwise
« =0 and there is nothing to prove.

Define §=(X, Q, q-) by setting Q=0Q\Qp, and by defining the next state
function of § to be the partial function obtained by restriction of the next state
function of §" to Q. Thus ¢ - x=0in § iff g - x € Q, in & Then for qgeQ,<Q,
xeX: .

g-x=0 iff dom{(nNaxX™ V=g (2.21)

Indeed, let ueX* be such that g -u=gq. Then by (2.20), g x=0 iff
uxX™" U Ndom(a) =@, and this holds iff dom(r)NxX™"D=gJ. After these
preliminaries, we now construct a subsequential transducer realizing «, but
with output function into the free group Y* generated by Y. (Since each word
of Y* is reduced, Y* can be identified with its image in Y™, and hence Y*
can be viewed as a submonoid of Y™, In particular, if u, ve Y* then u='v is
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always a welldefined element of Y™, and u v is in Y™ iff u is a left factor of
©. See also I1.3.) Consider a new stale gq, and extend the next state function of

8 by setting

Qo X=g "X (xe X)
Next define

qo* x=B(x) (xeX),
and for g€ Q,, xeX,

{0 if g-x=0

arx= {r(xv)r’(u)’1 it g-xeQ,, v edom{r) NxX®,
First we verify that the definition is correct. If g-x=q'€Q,, then
dom(r) M xX™ ™Y £ by (2.20). Thus if < X™ is such that g_- u =g, then for
v e dom(r) N xX™-1,

03 w(uxo)= plu)r(xo) = Blux)r'(v), (2.22)
showing first that r'(v)#0, and next that r(x)r' (o) ' =) Blux) is an

: : N—T)
element of Y™ which is independent of the choice of v in dom(r) 1 xX" v,
Thus the next state function and the output function have the same domain.

We claim:
qoru=pu  ueX" (2.23)
This holds for |u|=1. Arguing by induction, consider u € X*, xe X. If B(u)=0,

then ueAg, and uxcAo. Consequently go* ux=0=pg(ux) by (2.19). If
B(u)#0, then g, - u=gq for some g€ Q, (re R\Q). Then by (2.22),

t] if g-x=0
B(u)B(w)) 'Blux)  otherwise.
Since by (2.19), g-x=0 iff B(ux}=0, (2.23) is proved. Finally define
p:goUQ— Y™ by plqo) = (1), and
0 if q¢Q.
plq) i[ . R

r(1} if gqgeQ, and reR..

Then (g, * u)p(go - ) =a{u) for all ue X*,

d) Tt remains to transform the above transducer into a subsequential trans-
ducer which agrees with our definition. For q = QUq,, set

%*M=HMM*ﬂ:{

geQ

U, ={ueX* | qo-u=qt
or(q) = the longest right factor common to the words go * u, (ue U).

Then for all ue U, there is a word 6(u) such that B(u)=g,* u=~euwolq)
Extend the definition by setting €(u)=0 whenever g,-u=0. Then
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8:X*~— Y™ is a partial function with same domain as 8. Let g€ QU go, and
let ue U, and suppose there is a letter x such that g - x#0. Then

do* ux = 8()o(q)(q * x) = B(ux)o(q - x). -

Since qo* u, go* uxc Y* and q * x € Y™, there are words f, g, he Y* such
that 8(u)o(q) = fh, h™'g = q * x. The last relation shows that h, g are indepen-
dent of the choice of u in U, Thus h is a common right factor to all
o * u(u € U,). Consequently o(q) = th forsome t € Y*,and o(g)(g * x) = we Y*
with w =thh™'g =tg. Thus

Bu)w = 8(ux)or(q - x) uel,

Assume. ]w|<|cr(q_ . x)| Then the words #(u) have a nonempty common right
factor, in contradiction with the definition of o(q). Thus [w|=|s(q - x)], and
there is a word A(g, x)e Y* such that ’

u)A{g, x)=60(ux) (ues ). {2.24)

Deﬁqe A(q, x) =0 whenever q - x =0, and consider § equipped with the output
function A. A and the next state function have the same domain, further
Mqo, 1)=1 and by (2.24), 6(u)=A{gy,u) for all ueX* Define
T:QUge—> Y™ by 7(q) = o(q)p(q). Then

a(u)=pu)p(qgo- u)=Xr(go, W)r(go-u) ueX*

and « is realized by the subsequential transducer § =(X, Y, QU i
output function A. XX oo ) Wlﬂ.l

Remark. Consider a partial function o:X*— Y* realized by a
“generaiized” sequential transducer defined as a sequential transducer, but
with an output function from X* into the free group Y™. Such a transducer
can erase a right factor of an already computed output word, and can replace it
by another word. The last part of the preceding proof shows that such a
tran§duc§r can be simulated by a subsequential transducer working without
erasing, i.e. a is subsequential.

Exercises

21 Leta :.X *.--> Y™ be a partial function, and let # be a new symbol. Show that a is
subsequential iff there exists a sequential transduction B:{(XU#*— Y* such that
a(u)=B(u#) for all ue X*,

2.2 I_..et a;, @;:X*—> Y* be sequential functions. Show that if o, Ue, is a partial
funetion, then o, U ; is sequential. Show that &, U, is not necessarily subsequential, if
o, o, are subsequential. '

2.3 Let a:X*— Y* be a subsequential function, and let R<X* be a rational
language. Show that the restriction «|g is subsequential,
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The following theorem is due to Eilenberg [1974]. It will be used in the next
section in order to construct special representations for rational functions.

Theorem 3.1 (Cross-Section Theorem) Let a:X*— Y™ be a morphism.
For any rational language A = X* there exists a rational language B< A such
that « maps bijectively B onto a(A). ‘
Set C=a(A). The theorem asserts that in each class ANa '), feC) a
unique word  can be chosen in such a way that the language B = fu | fe Clis
rational. The language B is called a cross-section of « on A. We shall see
that the proof is effective. Thus given a and A, a cross-section of @ on A can
be constructed effectively.

Proof. We shall factorize a in morphisms of special form. Therefore we first
verify that if 8: Y* — Z* is a second morphism, and if the conclusion holds for
« and B, it also holds for Boa: X*—> Z*. Indeed, let A = X* be raticnal, and
let B be a rational cross-section of « on A. Set C=a(A}=a(B), and lei
D < Y* be a rational cross-section of g on C. Define E=BNa~'(D). Then E
is rational, e is injective on E, and a(E)=D. Since p is injective on D, it
follows that j8  a is injective on E. Further # ° a(E)= (D)= B(C)=pB calA).
Thus E is a cross-section of 8 °a on A.

Next note that if « is injective, the conclusion holds trivially by taking B = A.
Since any morphism ¢ :X*— Y* can be factorized into a=pg°y, where
y:X*— Z* is injective and B:Z*— Y™ is alphabetic, it suffices to consider
the case where @ is alphabetic. Further, any alphabetic morphism factorizes
into projections and strictly alphabetic morphisms. Thus if suffices to consider

the following two cases:
X={xy .0, %} Y={x;,..., %} (n=2)
a(x)=x i=1,...,n—1
alx,}=x,1 or e(x,)=1.
Define the lexicographical order on X™ by setting u<<v if either of the
following cases holds
v =uw ' with w#1l
u = fxg, v=fag with <]
Next define a transduction 7: X*— X* by setting
r(uy={v|v>u and a(®)=a(w)},

and set
B =A\T(A).
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Thus for each u e A, the smallest element of o *a(u)NA is sclected, and B is
the set of all elements so selected. thus B is a cross-section of & on A.

To prove that B is rational, it suffices to show that the transduction T is
rational. This will be done by constructing transducers realizing +. If a(x,}=
Xn—1. we define a transducer by Fig. IV.5 with V={x/x:i=1....,n}. If

Fig. IV.5 Fig. Iv.6

«(x,)=1, then we consider the transducer in Fig. IV.6. Then it is easily seen that
these transducers realize 7. =

Note that any morphism can be factorized into an injective morphism followed
by a projection (Exercise 1.3.3). Thus in the above proof, the case a(x,)=x, _,
can be skipped. We conserved it since in the construction of unambiguous
representations for rational functions, precisely that case appears, and it is
casier to handle directly than through an additional decomposition.

We emphasize the fact that the cross-section B can be obtained effectively from
A. Assume a(x,)=x,_;. Then we can proceed as follows, Let y and z be new
letters, define Z =X U{y, z}, and let ¢, : Z¥ — X* be the morphisms

(P(xi)zl:t‘(xi):xi i:lav"!ns (3.1)
e)=d(z)=x1.  @l2)=dly)=x,

Then for A c X,
TA)=d(e(A)NK) (3.2)

where K is the rational language over Z recognized by the automaton in Fig,
IV.7. Thus if A is given by a finite automaton, finite automata recogmzing
¢ (A), ¢ (A)NK, (A) and A\T{A) can be effectively constructed.

O——0O

X 7
Fig. IV.7 Fig. IV.8

Example 3.1 Let X ={a, b} and let «:X*— a* be the morphism given by
a(a) = ¢(b)=a. Further, let A < X* be given by Fig. IV.8. The lexicographical
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order is given here by a <b. Then
T{A)=bX"
and the desired cross-section is
B =A\1(A)=aba*Ub.
Example 3.2 Let X={q, b, ¢, d}, let a: X*— a* be the morphism given by
a(X)=a, and let A < X* be recognized by Fig. IV.9 Thus

A =[(bdb U bc U ch)aT.

Fig. IV.9

Define a factorization & =a;¢ a, e a;:
@, & @
X* B {as b’ C}* —2> {as b}* _3> ﬂ*

by a{d)=c, ac)=b, a.(b)=a, the other letters being unchanged. We
compute a cross-section of o on A.

First A;=a,{A)={(bcbiUbcUchlaT",
and «, is injective on A. Next

Az = a(Ad=[(b" U b%al".
We have b <c, and

Al=[(bebUbc)aTt = A,

is a rational cross-section of @, on A,. Then

Az = a(A) =[a*Ua?T*.

Since a < b, the construction of the proof vields
Aj=(h2ay*(1Ubau (PPa)®

as rational cross-section of a; on A,. By backward computation
AT=A[Naz; (AL =(bca)*(1U bcha U {(bcha}?)

is a rational cross-section of e, a, on A,, and
B=ANa (A ={bca)*(1U bdba \J (bdba)?)

is a rational cross-section of @ on A.
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Exercise

3.1 Replace « in Example 3.1 by: ef{a)=a(b)=>b, and compute a cross-section of &
on A. )

IV.4 Unambiguous Transducers

We use the Cross-Section Theorem to construct particular representations for
rational functions. An alternative construction is also presented which allows
a direct computation of these representations.

In this section, a transducer

T={(X,Y,Q.q_. Q. E)

is assumed to satisfy the two conditions
EcOxXxXY*x0, 4.1
(px. b, (px. k. q)e E>h=h. (4.2)

Definition The transducer T is called unambiguous if any word fe X* is
the input label of at most one successful path e in T.

Let 7 be the transduction realized by T. If T is unambiguous and if f € dom{r},
then there exists a successful path e in T with input label f. Let g be the output
label of e. Then +(f) =g. Thus

Proposition 4.1 The transduction realized by an unambiguous transducer is a
partial function. -

Conversely, we have

Theorem 4.2 (Eilenberg [1974)) Let 7: X* — Y™ be a rational function (with
7(1)=0 or 7(1)=1). Then there exists an unambiguous transducer realizing .

Proof. By Corollary IL7.2, there are an alphabet Z, a strictly alphabetic
morphism «:Z*— X*, a rational substitution o:Z*— Y*, and a regular
language K < Z* such that

(f) =ala {(HINK) fe X*

Clearly we may assume Z minimal, i.e. each letter ze€Z has at least one
occurrence in a word in a % X*) K. Then o is a morphism, since 7 is a partial
function.

Since dom(t)=a(K), there exists, by the Cross-Section Theorem, a rational
language R < K that maps bijectively R onto dom(r). Let

A={(Z,Q,4q-,0.)
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be a finite automaton recognizing R, and define

T=(XY,Q,q.,Q..E}

E={(g,az,02,q9 z)|qeQ, 2z Z}.
Note that T satisfies (4.1) and (4.2). Indeed, since « is strictly alphabetic,
az e X for z e Z Next consider two successful paths

e={q_, Uz, 01> @1} " * (Guers Uy Vs §)

e =g, ui, 1,41} ** (Gu-1s Uhns Vi, )

and let z;, z;€ Z such that az,=u, (1<i<n), ez;=u}, (1sj<m). Assume
that e and ¢’ have the same input label f=ah=ah’' with h=z,--- z,,
h'=z{---z}.8Since h, k'€ R and « is injective on R, it follows that h =h' and
e =e'. This shows that T is unambiguous. =

Corollary 4.3 Let 7:X*— Y* be a rational function. Then there exists a
normalized unambiguous transducer realizing .

Proof. Let T=(X Y, Q, q_, Q., E) be an unambiguous transducer realizing
7. Add two new states g,, q; to Q, and the transitions

{(qO’ x7 ha q) l (CI—-» x’ hs q) € E} U{q> x7 h’ ql) , (q! x! h! q+) € E! q+ € O+}

to E. Take g, as new initial state and {g.} or {gq, g} as final states, according to
1(1)=0 or =1. Next the resulting transducer can be made trim by deleting
unnecessary states. Clearly it is unambiguous. ]

Example 4.1 Consider a left sequential transducer. Any path starting at the
initial state is successful, and two distinct successful paths have distinct input
labels. Thus any left sequential transducer is unambiguous.

Example 4.2 Let X ={x}, Y={a, b}, and consider the transducer in Fig. [V.10

Fig. IV.10
realizing the function
a” neven;
b= n odd.

The transducer is unambiguous since if n is even the only successful path leads
to state 3, and if n is odd the only successful path leads to state 2.

() =
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Example 4.3 Consider the transducer of Example 1.2 (Fig. IV.11). This
transducer is ambiguous. Take as alphabet Z the labels of the transitions:
Z={(x/b), (x/1}}, and consider the morphism &:Z*— x* defined by

Fig. IV.11 Fig. Iv.12

a((x/b) = a((x/1))=x. Then, up to a renaming, we are in the situatieniof
Example 3.1. Thus B = {x/b)}x/1){(x/b)* U (x/1) is a suitable cross-section, giving
the unambiguous transducer in Fig. [V.12.

%8

Fig. IV.13

Example 4.4 Consider the ambiguous transducer of Example 1.3 (Fig. IV.13).
Take again the alphabet Z ={(x/b), (x/b?), (x/b®), (x/b*)} and the morphism &
mapping all letters onto x. Then, after a renaming, we are in the situation of
Example 3.2. Thus the language

B =[(x/B)(x/BH)(xfbTH(1U (x/ B xfbH (xf D) xf b2 U [/ BYx/ b (e BY x/ B2 )

is a suitable cross-section. This gives the unambiguous transducer in Fig. IV.14.

The simpler transducer in Fig. IV.15 cannot be obtained in that way.

§%) e x/B X/t ¥/h 20t
@000

X/ x

x5

Fig. V.14

©)

2 X8 V2
O @ D

? 2 -
. X - Xl @ X

Fig. IV.15
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Let T={X, Y, Q,q., Q., E) be a transducer satisfying (4.1) and (4.2). Define
a matrix representation M={u, Q,q_, Q.) by

{h if (p.x h.qleE;
LA
Hpq 0 otherwise.

Proposition 4.4 Assume T trim. Then T is unambiguous iff M satisfies the two
condifions:

(i) For p, qeQ, f, f'e X*, there is at most one re Q such that puf, #0 and

“_',ﬂq #0.
(i) dom{p, o) Ndomipu, . )= for q,, g€ Q., g, # 4.

Proof. If T is unambiguous, then (ii) is clearly satisfied. Next, since T is trim,
for any p, g Q, there are h, h'e X* such that ph, ,#0, ph,, #0 for some
q.€ Q. Thus if (i) fails for some p, g€ Q, f, f'e X¥, then hff'h’ is the input
label of at least two successful paths.

Conversely, consider two paths e, and e; from g_ to some final states ¢; and 4.,
and assume they have the same input label f. Then q, = ¢, by (ii), and e, = e, by
(i} a

If M is normalized, then (ii) is satisfied by definition. Thus the unambiguity of
T is equivalent to condition (i).

Definition A morphism p satisfying condition (i) of Proposition 4.4 is called
unambiguous.

Example 4.5 If the matrices uf, (f € X™) are row monomial, then w is unam-
biguous. Similarly, if the matrices pf, (fe X™) are column monomial, then p is
unambiguous.

An unambiguous morphism u:X* — Rat(Y*)®*? is also called a (0, 1)-morphism
{Schiitzenberger [1976], Nivat [1968]) for the following reason. Associate to each
matrix pf, (f€ X*) a Q xQ-matrix Gpf with integral entries by

T if pf,#0;

0 otherwise.

73 :{

Then 8 is a morphism iff g is unambiguous. Thus a product of two such matrices,
computed in N7*?, js still a2 matrix with entries O or 1.

Row monomial and column monomial matrix morphisms are special cases of a
more general construction.

Defipition Let p:X™ - P(Y*)?*? be a morphism. Then g is called
semimonomial if the set O is of the form Q= V x P, and if for any x € X, the
following hold:
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(i) For any ve V, there is at most one v'e V such that the submatrix

(F'x)u XPo <P (”’x(u phiv.p ))p pek -

is nonzero.
(i) any submatrix (px),wp.«p 1S column monomial.

Thus the matrix px, considered as VxV matrix whose entries are PXP-’

matrices, is a row monomial matrix, and each P X P-block is column monomial.
Clearly, the product of two semimonomial matrices with same index set VX P
is also semimonomial.

Example 4.6 For V={1,2,3} and P={1, 2, 3}, the following matrix is semi-
monomial

- 0 b 1}
0 oo O
0.0 0!
T L t0 0 0
0 { 0 joo01
000
"""""""""" 00 0
0 + 0 000
o 0 b

Any semimonomial morphism p is unambiguous. Consider indeed two words f,
f', and assume

”'f(u.p)(u'.p') #0 and nufZU',n')(u".p”) #0.
Then v' is uniquely determined by v in view of condition (i), and p’ is uniquely
determined by p” in view of condition (ii).

The following theorem asserts the existence of a semimonomial representation
for any rational function.

Theorem 4.5 (Schiitzenberger [1976]} Let 7: X* — Y* be a rational func-
tion. Then there exists a matrix representation M =(u, Q, q.., Q) realizing 7 such
that . is semimonomial and

T= Z Hg_q,-

q+e0y

{Recail that we use the symbol 3, when the domains dom(g, ,.) are disjoint.)
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Proof. Let M={u, Q, q_, O,) be a normalized matrix representation realizing
a. The proof is in two steps. First, the usual powerset algorithm for the
determinization of an automaton is employed to obtain the set V. Then,
“unnecessary” entrics in the matrices ux, (x € X} are deleted to get the row

. monomial part.

Let V be the family of subsets of Q defined by
veV <« there exists feX* suchthat v={qeQ|puf, %0}

Thus, v e Viff v is the set of states accessible in M by paths starting in g_ and
with input label f. A “next state” function VXX - V is defined by

v-x={q'eQ|3qev, px, 0}

This function is extended to VX X™ by setting, as usual, v-1=v, v-fx=
(v f)-x, (fe X* xeX). Then clearly

v fg=(v-f)-g figeX™

For each veV, xeX, define a QX Q-matrix gx in the following way. Set
v'=v-x, and for each q'ev’, let p(g’) be an arbitrary element of v such that
PX paq # 0. Then

(x)ee=0 qeQ, q¢vs 4.3
Wxpana I q=plg’); -

i 4.4

(Pt {0 it g#p(@). T°° (4

By definition, &.x is column monomial. It is obtained from px by deleting all
but one nonempty element in each column g’ ev’, and by setting equal to zero
the other columns.

Next, let S = VX Q, and define the morphism
A X*— Rat(Y*)5~S
by blocks for v, v'e V, xe X

0 if v'#v-x;
A xOho'x :{ - ’
( x)v Q, Q ﬁux lf

v'=v-x
Then the matrices Ax are semimonomial. Further, if f=x,x,---x, (r=1,
x; € X), then clearly
0 if o'#v-f,
e (4.5)
EoX o Xt X, 0 =0,
where D, =0 " Xq,..., 0 =0,y X, and v' =10, - X,.

Next, we prove that for v_={q_}, fe X", v=0v_-f,
Af(u a-hivay ”'fq_q q € Qa (4-6)
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For |fl=1, (4.6) results from {4.4). Arguing by induction, let f=gx with
geX*, xeX, and let v'=v_-g Then v=1v":x and

(AgX)ew_qriva = U #8a (AX)ir 00

since (Ag)w g0 = K&y r =0 for rév’. Next if g v, then (@, x), = px, =0
for rev’ and pf, , =0. Thus (4.6) holds if g v. If g € v, then there is a unique
p v’ such that (I, X)pq = WXpe = 0. Thus
(Af)(u,.q—).(mq) = U ptXpg = qu,q-
This proves.(4.6). Finally, set V., ={ve V|q,e V} and let
{V+X{Q+} it Q+={Q+};
(Vix{g, hU(v_, q-) it Q.={q_.q.}
Then (A1}, 448, =0 or 1, according to (v_,q_}¢ S, or {v_,q_)e$,, and for
feX*:
()-f)(v_.q_).& = U Af(uf,q,,).(mqﬂ = F'qufqy (47)

veV,

+

Indeed, {4.7) holds if v_- fe V, (by (4.6)). Ifv_-f¢ V,, le. if g. &v_-f, then
tfoq, =0 and (Af),_, s, =0 by (4.5). Since there is at most one ve V, s_uch
that v =v_-f for any fe X7, the functions A(,_, 4. have disjoint domains.
This achieves the proof. -

Example 4.7 Consider the rational function « :x*— b* of Example 4.3, with
matrix

0 b 1
,ux=|i001:|
0 0 b

We first compute V:v, =v_={1}, vo=0v;-x=1{2,3}, va=0v, - x={3}=0v;-x.
The matrices {; (we write {; instead of g, ) are:

0 b 17} v 0 00 00 0
gZix=l0 0 0 ﬁzx—|:0 0{1’]} v, or ﬁ2x=[0 0?0]
[0 ¢ ol 0 004 0 0:b
Uy U3
0 0 0
gx={0 0 0
L0 Oi:,i} Uy

__w‘
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Thus, there are two possible choices for @,; each choice yields another matrix

Ax:
0 &4y O
Ax = [0 0 ,J,zx]
0 0 jisx

With the first matrix fi,x, the matrix Ax is the matrix of Example 4.6, Next,
V. =1{v2, v3}. Thus S, ={(v;, 3); (vs, 3)}. In the usual notation, these are the
columns 6 and 9. For both morphisms A, the row with index {v_, 1) of Ax" is:
(0,0,0;0,b,1;0,0,0)
{0,0,0:0,0,0;0,0, ™1
Note that A is not trim. The trim transducer associated to A for the first choice

of f,x is given in Fig. IV.16. Thus we get the same transducer as in Example
4.3.

n=1;

n=2,

Fg. IV.16

Semimonomial morphisms are particular unambiguous morphisms. Clearly, an
unambiguous morphism is not necessarily semimonomial. There is nevertheless
an interesting relation between unambignous and semimonomial morphisms:
any unambiguous morphism can be obtained from some semimonomial morph-
ism by choosing in that morphism some fixed rows and by collapsing columns.
This yields some procedure for constructing unambiguous morphisms.

Definition Let g : X* — Rat{(Y*)?"? and A : X* — Rat( Y*)°*S be two morph-
isms. Then g is summed up from A if there exist two functions [: Q — § and
¢: 0 — 2% such that

n“qu =)‘f1(p).C(q) (: L-g )’\ff(p).r) (P, q€ Q= fEX+)-
reclg

Thus g is obtained from A by conserving just one row of A for each peQ, and
by summing up elements of that row according to some rule which is indepen-
dent from p.

Proposition 4.6 Let M={u, Q,q_, Q.) be a trim malrix representation from X*
into Y*. If y is unambiguous, then p is summed up from some semimonomial
morphism.
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Proof. Assume w is unambiguous. We shall verify that p can be extracted
from the semimonomial morphism A constructed in the proof of Theorem 4.5.
We keep the notations of that proof. First, we claim that for the matrix [,x
defined by (4.3) and (4.4), we have

() _{quq' if gev, q'€Q; 48)
Hotlea =1 it géov, g Q.

Thus {,x and px have same rows with index q € v. Indeed, ({i,X),q =0 for qé v
by (4.4), and ({ix)eq = ey =0 for g€v, ¢'e Q\v' by definition of v'=v - x.
Next, for any ¢’ €', there exists a unique p o such that wx,, #0, since for
any f such that v_ - f=v, one has pf, ,#0 and px,, #0, and thus p is unique
by Proposition 4.4(1). Therefore (1,X),, = X, for that p, and (F,%), = MX gy =
0 for all gev\p. Thus (4.8) is proved.

Next, we prove that for fe X", ve V, v =v"f,

(uh i pev, qeQ; 4.9)
(Af)<u,p>,<u',q>“{0 if péov, qeQ.

For |f|=1, (4.9) holds by (4.8) in view of the definition of A. Arguing by
induction, let f=gx with ge X™, xe X, v"=1v - g, thus v'=v" - x. Then clearly

Af)oproa =0 if pgv, qeQ.
Thus assume p € v. Then

Awprw.a = UQ()\g)w,p),(u".r>()¢x)<v",r).<v'.q)7
and since AX,y g =0 if rév”, it follows from (4.8) that

()\f)(u,p),(v’.q) = U" Mgp,nu’xr.q = y’fpﬂ'

Note that in view of (4.5)
Af(up),(v’,q) =0 if v'#v: f (P, qe Q).

Thus it follows from (4.9) that

/Jpr.q = ‘UV/\f(u.p)(v',q) (p € ’U). (410)

Now define a function |: QO — § as follows. For any p € Q, choose a ve V such
that p € v and set I(p) = (v, p). Such a v exists since w is trim. Next, define ¢ by

c(q)={(v',q):v'e V}§
Then by (4.10)

pr,q = )‘fl(p),C(q)'
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For a more exhaustive treatment of related questions, especially in connection
with codes, see Bo& [1976], Boé, Boyat et al. [1978] Césari[1974], Perrin
and Schiitzenberger [1977].

Exercises

4.1 Compute the trim transducer associated to the second of the two semimonomial
morphisms A of Example 4.7.

4.2 Use Exercise 3.1 to give a second unambiguous transducer for the transduction of
Example 4.3, and compare with the transducer of Exercise 4.1.

4.3 A partial function B:X*~» Z* is length preserving it Bf#0 implies |f| = |Bf].
Show that any rational function « : X* — Y™ can be written in the form « = v o B, where
B:X*— Z* is a length preserving rational function and v:Z*%— Y is a morphism.

4.4 YLet M be a monoid. The family of unambiguo us rational subsets of M is the least
family of subsets of M containing & and the singletons {m}, (m € M) and closed under
the following operations: unambiguous union, unambiguous product, unambiguous star.
(A union AUB is unambiguous if ANB=@. A product AB is unambiguous if a,
a'eA, b, b'eB, ab=a'b' imply a=qa' and b=5'. A star A* is unambiguous if A* is a
free submonoid freely generated by A.)

Show that if & : X* — Y™ is a rational function, then the graph of @ is an unambiguous
rational subset of X¥x Y*,

4.5 (Choffrut) Show that for any rational function «:X* — Y* there is a rational
subset C of dom(a) such that & maps bijectively € onto a(X*)=im(a). (This is an
extension of the Cross-Section Theorem to rational functions.)

4.6 (Choffrut) Show that for any rational function o : X* — Y* there exists a rational
function B: Y™ — X™* such that a0 :a(X™) — a(X™) is the identity function (Hint.
Use Exercise 4.5.)

4.7 (Choffrut) Use the previous exercise to show that if @ : X*— Y* and B:Y*—> 2%
are partial functions, and if @ and Boa and B are rational, then the restriction B lacxe is
rational. Show that if Boa and 8 are rational, then o needs not to be rational.

IV.5 Bimachines

Bimachines are, in some sense, simultaneously left sequential and right sequen-
tial transducers. We show that a partial function is rational iff it is realized by a
bimachine, and use this fact to prove that any rational function can be obtained
as the composition of a left sequential function followed by a right sequential
function,

Definition A bimachine B=(Q,q_,P,p_,y) over X and Y is composed of
two finite sets of states Q, P, two initial states q.e Q, p_e P, of two partial
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next state functions Q X X — Q and X X P — P denoted by dots, and a partial
output function y: O x X XP — Y™,

The next state functions are extended to QX X™ and X*X P in the usual wa;/
by setting:

q-1=gq, L-p=p

q-(fx)=@-rx &H-p=x-(fp
for qe Q, peP, fe X* xeX. Next the output function v is extended to
OxX*XP by

v(g 1,p)=1;

v fx,p)=vq f.x p)vlq-f xp)
for fe X* xeX, qeQ, peP. Then it is easily verified that

v fe.p)=v@a.f.g-p)v@-f.&p)  (f,geX™),
and if f=x;%," " X, (x; € X), then

Y(Q7 .ﬁ p):’Y(Q7 xla x2 to xn ! p)’y(q : x]) x2> x3 o 'xn : p)

U V(q ‘ x] e xn‘lv xns p)'

The partial function X*— Y®* realized by B is defined by

IB|(f)=v(q-. £, p).
If P={p_}, then B is, up to considerations concerning the domains, a left
sequential transducer. Similarly, if O ={q_}, then B is a right sequential

transducer.
Bimachines were introduced by Schiitzenberger [1961b]. See also Nivat

[1968].
Example 5.1 Let o :x*— {a, b}* be given by

a" if »n even;
b" if nodd.

Consider P={p_, p;}, QO ={q_, .} and define the next state functions by x - p_=
P, X - p1=p_, and .+ x =¢y, q; - X = q.. Further, let vy be given by the table

a(x"):{

pP- ™M
q-| b a
9 a b

Then a simple calculation shows that a(x")=vy(q_, x", p_) for n=0.

Note that in the above definition, no assumption was made about the domains
of the next state functions and <. Call a bimachine state complete if both
next state functions QXX — Q and X XP— P are total functions.
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Theorem 5.1 (Eilenberg [1974]) Let a: X*— Y* be a partial function with
a(1)=1. Then « is rational iff it is realized by some bimachine over X and Y.

We shall see that a rational function can always be realized by a state complete
bimachine.

Proof. Let B=(Q,q_, P,p_, v) be a bimachine over X and Y, define §=
Q X P, and consider the transducer T with set of states S, and set of transitions
Ec8SxXXXY*xS given by:

(g, p), x, h,(q',p))€E
iffq-x=q', p=x-p’,and h=v(q, x, p') #0. Consider any path

((qla pl)a xl: hb (q{7 p;)) o ((Qnr pn)> xm hm (q:n prg))
in E‘s Wlth f:xlx2 e xm g: h1h2 T hn' Then Clearly ql : f:q',u pl :f ‘ pr/v
and g = v(q1, . p.). For any qe Q, peP, define the rational transduction
Tap X = Y* by

Tap (f) =8

iff there is a path from (q_, p) to (g, p_) with input label { and output label g,
and set 7,,(f) =0 otherwise. Then T, (f)=8#0iff g=v(q_, f, p_), and

a = Z Ta.p-

(a,p)eS
Thus « is a rational function.

Conversely, let « be realized by an unambiguous normalized matrix represen-
tation M ={(u, Q, q-,{g_, q.}). Define two families V, W of subsets of O as
follows:

veV o FfeX*:v={qeQ|pf, =0}
weW <« dfeX™:w={qeQ]uf, #0}
Then define functions VXX — V, XX W — W as follows:
v-x={q'eQ|3gev:ux, #0} veV;
x-w={q'eQ|Iqew:pux,#0} weW.
Extend them to words in the usual way by setting:
vel=v,  v-(f)=@-f)x;
1l-w=w, xf)w=x-(f-w)
for fe X*, x e X. Then clearly for fe X*
v f={q'eQ|3qev: pf, #0} vevV;

f-w={q'eQ|3qew:uf,,#0} we W. (5-1)
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Next we prove
Card(vNw)s1 for veV, weW. (5.2)

Assume indeed r, #'evMNw. By definition, there exists a word f such that
pf,#0, uf, . #0, and similarly there is a geX™ such that ug, #0,
©g,q, #0. Then r=1¢" by Proposition 4.4.

Define a partial function

YIVXXEXW— Y
by v(v, 1, w)=1,
and for fe X7,

0 it vNf-w=@ or v-fNw=g;
(o, f, )= s f 5.3)
Pfog if vNf-w=p and o-fNw=gq.
We claim
v(v, hh', wy=y(v, h, h' - w)y(v - h, h', w) h h'e X, (5.4)

Clearly, (5.4) holds it h =1 or h'=1. Thus we may assume h, h'e X Next, if

vNhh' - w=@ or v hh'Nw=, then both sides of (5.4) are empty. If
p=v0hh'-w and g=v - ki’ Nw, then by definition y(v, hh', w) = phh!, #0.
Since p is unambiguous, there is exactly one re Q such that

pwhht, = ph, phi,. (5.5)

Thus by (5.1) rev-h and reh’- w. Consequently r=v-hNh'-w by (5.2),
and therefore (v, h, i’ - w) = ph, and y(v - h, h', w) = ph,,. Thus (5.4) follows
from (5.5).

Define v_={qg_}, w,.={g.}. Then in view of (5.4),

B=(V,o_,W,w,,v)

is a bimachine over X and Y, and by construction B is state complete. Next let
feX™ . Then by (5.1)

g.€v_f <« uh,#0 = g ef w, = fedomle).
Thus (5.3) implies
v, fw)=pfe,  feX)
Since  y(v_,1,w,)=1,
it follows that a =|B|.
We conclude this section by the following nice “decomposition theorem™.

Theorem 5.2 (Elgot and Mezei [1965]) Let o : X* — Y™ be a pariial function
with a(1)=1. Then « is rational iff there are a left sequential function
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X:X*>Z% and a right sequential function p:Z*— Y¥ such that a=peoA.
Moreover, ) can be chosen to be total and length preserving (i.e. |X(N|=|{| for all
feXxX™.

Thus in order to compute a(f) for some fe X*, one first reads f sequentially
from left to right and transforms it into a word g by some left sequential
transducer; then the resulting word g is read from right to left and transformed
into a(f) by a right sequential transducer.

Proof. It @ =poA, then « is a partial function and « is rational since the
composition of two rational transductions is a rational transduction.
Conversely, consider a bimachine B ={(Q, g_, P, p_, v) over X and Y realizing
a. We may assume that B is state complete, i.e. the next state functions
QXX — Q and X XP—> P are total. Set Z =0 XX, and define a left sequen-
tial transducer

L=(X,Z,0,q9.)
as follows. The next state function of L is the next state function @ X X — Q of
B, and for qe Q, xe X,

q*x=(q, x).

Define A =|L|. Then A is length preserving.
Next define a right sequential transducer

R=(Z,Y,P p.)
by (g, x)*p="(q x p)
0 it v(qg, x,p)=0;
(g, x) p= .
X.p otherwise,

where x - p is the next state of p in B. Thus the next state function and the
output function of R have same domain. Set p =|R)|.

Let f=xx- - x,, (n=1,x;,€X). Then
M) =g x )@= X1 % %)+ (G XyXp " " " Xy ¥ X,)
= (g x)(q1, X2) * * * (Gurs %),
where g =q_-xx-x for i=1,...,n—1L
Consequently,

pA()=Ar({)*p-
= ((CI—, xl) * an)((ﬁh’ X2) * pn—Z) e ((qn—29 xn~]) * pl)((qnfb xn) * p—-)

where p; = (Gu-p Xn-iz1) " " Guo1, X,)  p-for i=1,...,n—1. Thus
p(/\(f» = ’Y(q‘s X1, pn-l) e y(qn—ls Xns pf) :a(f)
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(This computation holds also if a(f)=0 with the usual convention that x - 0=
0.) Thus e =p e A, and the theorem is proved. ;

There exists another characterization of rational functions by a property similar
to bimachines. See Schiitzenberger [1977b].

Exercises

5.1 Prove that a partial function «:X*— Y* is rational iff a=Mxop, where
p: X*— Z*is a right sequential function and A : Z* — Y* is left sequential.

5.2 Let x, y be letters. A partial function « : x® — y™* can be viewed as a partial function
a:N-—N by identifying a word with its length. Show that «:N—N is rational iff
a =q,+ -+, where each «; is a partial function with domain kN +s, (1, s; €N) given
by a;(rn+s)=rin+sj, (neN) for some rj, sieN.

IV.6 A Decidable Property

In this section, we continue the investigation of sequential and subsequential
functions started in Section 2.

Theorem 6.1 (Choffrut [1977]) Given a matrix representation M from X*
into Y*, it is decidable whether |M| is subsequential, and whether |M| is

sequential.

According to Proposition II1.7.4 (and Exercise 111.8.3), M can be supposed to
be trim. In view of Theorem 1.2, it is decidable whether |M]| is a rational
function. Further, the results of Section 4 show that then an unambiguous
representation realizing |M| can effectively be constructed. Thus we may
assume that the representation M in Theorem 6.1 is unambiguous and nor-
malized.

We use the notations and definitions of Section 2. We consider Y™ as a
submonoid of the free group Y™, according to the discussion of Section IL3.
Let M={u, Q, q_, Q,) be an unambiguous normalized matrix representation
from X* into Y*, and set & =|M|. Then in particular Q,={q_, q,} or Q, =
{q.} according to 1edom(e) or 1¢dom(a). First we define a property on M
which will appear to express that & has bounded variation.

Definition Two states q;, g, € Q are twinned iff for all f, u e X* the following
condition holds:
07‘5a1=,u,fq_q, 0¢b1:“zuqq} — —
! “ biai' = ayb,a3’ 6.1
0% = pfg g 0% by=pitg,, Z aibiai = axba; 6.1)

M has the twinning property if any two states are twinned.

IV.6 A Decidable Property 129

A pair f, ue X* which satisfies the hypotheses of (6.1) is called admissible
?for 491, G». The conclusion of (6.1) can be formulated as follows without use of
inverses.

Proposition 6.2 Let a,, a,, by, by Y*. Then
aibiait = a,b,a5t (6.2)

iff one of the following conditions is verified:

® bi=by=1;

(ii) by# 1+ by, and there exists e Y* such that either

(ii.1)  a,=a,e and eb,=bye: or

(ii.2)  a,=a.e and eb,=b,e.

Pﬂroof. Assume (i) holds. Then (6.2) is obvious. Next, suppose for instance
(iL.1). Then a,ba3' =a,ebe™'ai = a bee a;' =a,bya;l.

Conversely, suppose that (6.2) holds. Then b, =1 iff b,=1. Thus assume
bi#1, by#1, and let a be the longest left factor common to a; and a,. Set
@;=ac,, a;=ac,. Then (6.2) becomes: ¢;bici = cybye;". If ¢, =1, then (ii.1)
holds Wlth e=cy; if ¢, =1, then (ii.2) holds with e = ¢,. If both ¢y, ¢, # 1, then
they differ by their initial letter by definition of a. Thus the equation ¢;b,cy' =
¢abyes ! implies by = b, =1, contrary to the assumption. ®

Example 6.1 Consider thev following unambiguous normalized transducer (Fig.
IV.17). The function a:x*— {y, z, t}* realized by this transducer is given by

a(D=1; a(x®™)=tlzy)", n=1; a(®> ) =t(zy)"*!, n=0.

*izy

Fig. V.17

In order to verify that the matrix representation M associated to the transducer
has the twinning property, it suffices to show that the states 2 and 3 are
twinned. For this, let f=x*"*, u=x>" be an admissible pair for 2, 3. Then
ar=pfia=t(zy)", by=pun=(2y)", and a,=ufi.=tz(yz)" =1(zy)"z = a,e
with e = z, and b, = puz; = (yz)™, whence eb, = bye. Thus a,b,a7!= aybya3’ by
Proposition 6.2, and 2, 3 are twinned.
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We note the following corollary.

Corollary 6.3 Let ay, a», by, bye Y*. If a;bfai" = a,bbas’ for some k>0, then
a.batt =axbra3’. B
Proof. We may assume b;, b,# 1 and for instance |a,|=la,|. Then there
“exists, in view of Proposition 6.2, a word e€ Y* such that a,=a,e, and
eb% = bke. We prove that this implies eb, = b,e by induction on |e|, the case
le|=0 being immediate. If le[=<|by|, then b,;=ef for some word f, hence
ebk = (ef)¥e = e(fe)*. Therefore b,=fe and eb,=efe=>be. If |e|> |b,], then
e =b,e' for some ¢'. Next ebs =b,e'bs = bib,e’, thus e'b5 = bfe’ and e'b, = bye’
by induction. Thus eb, = b;e.

We note also that if a;b,a7!=a,b,a3’, then for all ¢;, ¢,
(6.3)

llaibycy, azbacoll=llascy, axcall.

Indeed, (6.3) is obvious if b; = b, = 1. Otherwise, we may assume by Proposi-
tion 6.2 that for instance a,=a,e, and eb,=b,e for some word e. Then
a,b, = a bye, and consequently |a,b;c; A aybsc5|=]a,b,|. This proves (6.3).

Proposition 6.4 The two following conditions are equivaleni:

(1) M has the twinning property;
(ii) o has bounded variation.

Proof. Assume that M has the twinning property. Let n be the number of
states of Q. Consider an integer k=0, and define

K :max{“a(fl)a a(fz)“ 3f1,f2€d0m(01), lfla f2||s k, ‘fl )\fztg ”2}‘

Note that [f,, foll=k and |f; A fol =< n? imply |f2| +|f2|= k +2n? Thus K is finite.
We prove that |[f;, fll<k and fi, f>edom(a) imply: |la(f,), a(f)|<K. This
holds by definition if |f; Afy|<n? Arguing by induction on |f; Afa|, we assume
|fi A fo]>n? Then there exist words g, hy, hy with g=finfs, fi=gh, i=1, 2,
lgl> n>. Consider the successful paths in M with input labels f, and f,. Since
lg/>n?, there exist a factorization g = wuv, |u|>0, and two states ¢, g, such
that a(f,) = abc;, where a; = uw, g, bi = Wlgq, & = (VA 4q., (i=1,2).

Since g, and g, are twinned, we have by (6.3),

lalfi), a(fll=llaci, as ¢l =lla(f1), a(f5)l

where f]=woh,, f4=woh,edom(a). Further f{a f5=wo is strictly shorter
than g. Consequently [la(f,), a(f2)|< K and « has bounded variation.

Conversely, let g, g, be two states in M, and consider a pair f, u of words
which is admissible for ¢., g, i.e. satisfying the hypotheses of (6.1). Since M is
trim, there are words h;, h,eX™ such that ¢ =(uh), #0 for i=1, 2.
Consequently fu™h, € dom(a) for m =0, i =1, 2. Next [|[fu™h;, fuhol|=llhy, ol
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and since « has bounded variation, there is an integer K such that
laibTcy, asbTe|<K m=0.

Conseguently, there exist words d,, d,, with |d,|+|dy|<K, such that d, is a
right factor of aqb/"c;, (i =1,2) for an infinity of exponents m. In particular,
there are integers p=0, k>0 such that:

a,breidi = asbie,ds (6.4)
aibiPeid; = ab5eydy (6.5)

(6.5) can be written as:
ko1 —1 ;- -
a;biat a bic,;dT = asbias a,bEc,d;

In view of (6.4), this implies:

a;bfay' = a,bka;’,
and by Corollary 6.3, a;b,a7'=a,b,ay’. Thus g, and g, twinned. This
completes the proof.

"6Fhe following proposition yields the main argument for the proof of Theorem
1

Propesition 6.5 Let n =Card(Q). Then M has the twinning property iff for all
91, 42 € Q, (6.1) holds for all pairs f, ue X* with |fu|<2n.

Proof. We argue by induction on [ful, i.e. we assume that (6.1) holds for all
91, 42€Q and for all pairs f', u' of words admissible for q,, g, such that
\[f'u'|<|fu|. Consider g,, q, € Q, and consider a pair f, u of words such that the
hypotheses of (6.1) hold. Clearly we may assume |fu|=2n? and |u|>0. Next
ellther Ifl>n?or [u|>n? If |f|=n?+1 then there exist a factorization f=fivfs,
with v#1, and ry, €Q, ¢, dy, e, ¢, dy, € Y* such that a,=c,d,e,,
a, = c,d,e, and

Cq :M‘(fl)qfns d; FHUrrs € :'U“(fZ)”q"
Cr = M‘(fl)qfrzv d2: [‘Lvrzfz’ €= “'(f2>r2q2‘

Thus f, v is an admissible pair for ry, r, and fif,, ¥ is an admissible pair for
q1, 9. Consequently by induction

o 1 -
cidicT = codyes and crethieT ey = crenbae; ' c5
o . P P
Hence a,b;a;'=(c,dci )(Clelblellcll)(cldllcll)
_ -1 -1 — -
= ¢ydye,bpe5d5 e5 = aybya5 .

N§xt, assume |u|=n?+ 1. Then similarly, there exist a factorization u = u,ous,
with v#1, and r, RLeQ, ¢, di, e, ¢, ds, es€ Y* such that b, =c¢ dye;,
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b, = cyd,e,, and
Ci= M(%l)qlrls d] = I‘Lvrlr\a €= M(uz)rlqp
Cr = M(ul)qzrga dZ = M‘Drzrzf 62 = M(uz)rzqz'
If u,=1, then r,=q,, 1,=0,, e;=e,=1. Thus (f, u,) and (f, v) are admissible
pairs for g, ¢», and by induction
a,c,a7! = area5t and a,dail =a,d,a3’.
Then a,bia7' =a,¢c;diay’ =(acaiMaydyaih) = (asc,05")a,dra57)
=a,b,a;".
Finally if u,#1, then f, u,u, is an admissible pair for gy, ¢,, and fuy, v is an
admissible pair for ry, r,. By induction
a,¢10,07 = axcre,a5" and a,cidcilart = ayc.dyrcstast
It follows that
abyai =a cidesay’ =(ac,dici T arNacie a7t
= (a0,d5¢5" a5 Wazcze,05 ") = aycodreras ' = asbya;
Proposition 6.6 If M has n states and has the twinning property, then o preserves

left factors iff «(1)=1 and for any fe X* with |[fl<n® and for any xe X,
a(fx)#0 implies a(fx)e a(f)Y*.

Proof. The conditions are obviously necessary. Conversely, let fe X*, xe X
such that fxedom(a). Arguing by induction, we may assume that |f]>n”
There exists a factorization f = f,vf, with v= 1, and qy, g, € Q, a4, by, ¢4, ay, by,
¢, € Y™ such that

alf)=a,b¢q, alfx)=a,byc,,

alz(“‘fl)q,q,a bl :qulqp Clzgu(fz)q‘qp

as = (f“’“fl )qfqu b2 = KUg,q. 2= M(fZX)qﬂr'

It follows that a(f,f,) = a¢q, a(fifox) = a,c,. Since M has the twinning prop-
erty, and since f,, v is an admissible pair for q,, ¢,

a.b,av! =a,bas’. (6.6)

Next since |f,f>] <|f|, there is a word ue Y* such that
ac, = alfif2x) = alfif)u=acu 6.7)
Combining (6.6) and (6.7), we obtain

a(fx) = asb,c, = arbra3'ac, = aybiai ajciu = abiciu = o(fu. &
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Proof of Theorem 6.1 Since « is realized by M, o is rational. Consequently
o' Y*— X* is a rational transduction and by Corollary I11.4.2, a™! pre-
serves rational languages. Thus in view of Theorem 2.7, « is subsequential iff o
has bounded variation, and by Proposition 6.4 this holds iff M has the twinning
property which is decidable by Proposition 6.5. Thus it is decidable whether «
is subsequential, Further « is sequential iff M has the twinning property and o
preserves left factors. By Proposition 6.6, this is decidable. Thus the proof is
complete, L




V Families of Languages

This chapter introduces basic notions on families of languages. Rational cones
are defined in Section 2, and closure properties of cones are derived from the
examples of Chapter III. The second important type of families of languages
considered in this book, namely full AFLs, is defined in Section 4. The next
section contains basic facts about substitutions in relation with cones and full
AFLs. In Section 6, we study the family of linear languages which is shown to
be a principal cone, but not a full AFL. In the last section, we prove the
incomparability of some special languages.

V.1 Definition

A family of languages should contain all languages having the same, or
similar “structure”. This structure does not depend of the alphabet chosen to
represent the language. More precisely, if X is an alphabet and A < X*, and if
A’ is a copy of A on an alphabet X', then A and A’ have the same structure.
We thus require a family of languages to contain “all” copies of its elements,
with the necessary set-theoretic precautions to avoid any paradox. We there-
fore introduce 2 fixed infinite alphabet I, and restrict alphabets, languages and
the above requirements to subsets of 2 and I*.

Let ¥ be a fixed, infinite alphabet. In the sequel, an alphabet is a finite,
non-empty subset X of 3. A formal language L is a set L =X, where X is
an alphabet. For any language L, we denote by X; the least alphabet such that
LeX¥ ¥ L=¢ or L={1}, then X, is an arbitrary alphabet. Whenever, in
the sequel, new letters are used or constructed, they will be assumed to be in Z.

Definition A family of languages % is a nonempty set of languages, distinct
from {7}, and satisfying the following property:

ifLe%,andif L'isacopyof L,then L' e £.

Recall (see Section 1.4) that L' is a copy of L if L'=a(L), where a is an
isomorphism from X7 onto XF.

Example 1.1 We introduce some fundamental families of languages. Rat is the
family of all regular or rational languages; Alg is the family of context-free or
algebraic languages; Lin is the family of linear languages (see Section 6). There
are several simple families of languages which will be used to represent some
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closure properties by means of substitution. The family Elm consists of all finite
subsets of Z, that is of all alphabets and of the empty set. The family Fin is the
family of all finite languages (including @ and {1}).

Example 1.2 The set of all languages is a family of languages. We denote it
by .

Let & be a family of languages. Then < is finite if there exist finitely many
languages L, ..., Ln such that any language L of ¥ is a copy of one of the
languages Ly, ..., L. In this case, we write £={L,,...,L,}. If all languages
of & are copies of a single language L, that is £={L}, then & is said to have
just one element.

The union of an arbitrary number of families of languages is a family of
languages; the same is true for intersection, provided the intersection is
nonempty and distinct from {J}. Families of languages are ordered by inclu-
sion. Two families & and . are incomparable if neither ¥ < 4 nor 4 < <.

Exercise

1.E Describe the minimal families of languages with respect to the inclusion order.

V.2 Rational Equivalence, Rational Cones

Rational domination and rational equivalence are the basic tools for compari-
son of formal languages. These relations are transformed into inclusion and
equality of families of languages of a special type, called rational cones. Two
languages are rationally equivalent if each one can be transformed into the
other by a rational transduction. Since these transformations involve only finite
memory, the “‘essential” features of two rationally equivalent languages are the
same in a sense which will be precised in Chapter VIII. Rational cones are
families of languages closed under morphism, inverse morphism and intersec-
tion with regular sets. Further closure properties follow from the properties of
rational transductions.

Deefinition Let L and L' be languages. Then L' isarational image of L, or L
dominates rationally L' iff there exists a rational transduction r: X¥— X%
such that L'=7(L). We then write L=L' or L'<L.

The composition of two rational transductions is still a rational transduction;
thus = is a preorder. If L=L' and L'=L, then L and L' are rationally
equivalent. We denote this fact by L~L’, and the contrary by L#L'. We
write L.> L' when L=L"' and L# L' and say that L strictly dominates L',
and we write LZL' for: not (L=L'). Finally, L and L’ are (rationally)
incomparable, if neither L=L' nor L'=L.
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Example 2.1 The languages S_{a"h"|n=0} and A ={(x"y)"z"|In=0} are
rationally equivalent: S_=~ A. Indeed, A is obtained from S.. by the rational

substitution which maps a into x™y and b into z. The converse transformation-

is performed by the following transducer with initial and final state 1 (Fig. V.1).

x/a

Fig. V.1

Example 2.2 Let S.={a"b™|0=n<m}. Then S_>S.. Indeed, S_ is the
image of S. under the substitution which substitutes a to a and
b™ to b. The nonequivalence of the two languages will be shown in Section 7.

Example 2.3 Let S.={a"b™ |n=m=0}. The languages §. and S. are
rationally incomparable. This will be proved in Section 7, too.

Definition A family of languages ¥ is a rational cone, or shorter a cone, if
it satisfies the following condition:

Le¥ L=L"imply L'e&.

Thus, a rational cone is a family of languages closed under rational transduc-
tion. A rational cone is called a “full trio” by Ginsburg [1975], since it is
closed under three operations: morphism, inverse morphism, and intersection
with regular sets. Conversely, a family of languages closed under these three
operations is, by Nivat’s theorem, also closed under rational transduction. Note
that in order to prove that a given family of languages is a cone, it suffices to
show that it is closed under projection, inverse projection, and intersection
with rational languages. This frequently simplifies the verification.

Example 2.4 The families $, Rat, Alg, Lin are cones; neither Elm nor Fin is a
cone.
The cone Rat is the least cone, since the following property holds

Proposition 2.1 Any rational cone contains Rat.

Proof. Let & be a cone, and Le%, L=, Let KeRat. The transduction
T Xi— XE defined for weXF by m(w)=K is rational (sec Example
111.5.2). Since 7 (L) = K and £ is a cone, it follows that K e £. &

By this proposition, the intersection of a family of rational cones is nonempty;
it is easily seen to be again a rational cone.

Definition Let ¥ be a family of languages. The cone generated by & is the
intersection of all cones containing £, that is the least cone containing £. It is
denoted by £T. If ¥={L}, we write LI" instead of {L}I"
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Propesition 2.2 Let £ be a family of languages; then
Fr={L"|L'sL forsome Le%}.

Proof. Set M ={L'|L’'<L for some L €%} Then M< ¥I since ¥I is a cone.
In order to show the converse inclusion, it suffices to show that . is a cone,
since <M. Let Me, and M such that M= M'. There exists L € ¥ such
that L = M, and since = is transitive, this implies L = M’ and thus M’ € 4. Thus
AL 1s a cone. B

Proposition 2.3 Let & and ¥' be two families of languages; then
Fo ¥l FoF >IN LT, LIT =9T.
We now summarize some closure properties of rational cones.

Proposition 2.4 Let ¥ be a cone; if Le ¥ and K € Rat, then
LK, KL, LK™, K71, LUK L\Ke¥.

Proof. Let X be an alphabet such that L, K < X*. The transduction w— wKk
from X* into X* is rational by Example I11.5.6; thus L=ILK and LK c %.
Similarly, KL €%. The transductions w+—>K 'w and w—wUK are also
rational (Examples I11.5.7 and 5). Finally L\K = L N (X"\K) e &. &

We single out a special case of proposition 2.4 which will be of constant use in
the sequel.

Corollary 2.5 Let ¥ be a cone, let L be a language and # a letter not in X ;
then

Le¥ « H#Le¥ < L#cZ. B

Drefinition A rational cone & is principal if there exists a language Loe ¥
such that any language of & is a rational image of L, that is if ¥=L,I" The
language L, is a cone generator of &.

Two generators of a cone & are rationally equivalent. More precisely, L =L’
holds iff LI' = L'T’, and the languages L and L’ are incomparable iff the cones
LI and L'T" are incomparable families of languages.

In general, a cone is not closed under union (Exercise 2.3). For principal cones
we have

Proposition 2.6 A principal cone is closed under union.

Proof. Let L, be a generator of a principal cone &, and let L, Me ¥. Let X
be an alphabet such that L, M < X™, and set Y = X; . There exist two rational
transductions 7, 7": Y*— X* such that »(Ly)=L, v'(Ly)=M. Then the trans-
duction 7" =7 U~7'isalsorational,and +"(Ly) =L UM;thus LUMe L, =%. =
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Exercises
2.1 Show that Rat is a principal cone and that any nonempty rational language is a.
generator of the cone Rat.
2.2 Show that the union of a family of cones is a cone.
2.3 Let ¥ and 4 be two cones, and define
FvM={LUM|Le¥ Me i}

a) Show that £ v is a cone, and that LU M < L v A.

b) Show that FUMZL L v M if & and A are incomparable (Hint. Show that there are
languages L e A\t and M e #\F such that M X, Lc X{, X, NX, =, and take
the language A =L UM.) Conclude that if ¥ and . are incomparable, then £U 4 is
not closed under union.

¢) Assume that & and J( are principal cones; show that #U 4 is principal iff &£ and %
are comparable.

24 Let X={a, b}, and @ ={=, #, =, =, > <}. The language of Goldstine {from
Goldstine [1972]) G, is defined, for 8¢ @ by:

G ={a™ba“b - a™b|p=1,n=03j1<j<p:noj}.
Let . be as in Example 2.1.

a) Show that S_= G, for 6 € @ (This shows that G, is context-free.)
b) Show that S_.~G_, G.~G., G~ G..

V.3 Rationally Closed Families

The second important class of families of languages is the class of rationally
closed families. Rational closure means closure under the three “rational”
operations, namely union, product and the star (or the plus) operation. In
connection with closure under rational transductions, this leads to the notion of
full AFL defined in the next section.

Definition A family of languages & is rationally closed if the following
conditions are satisfied:

(D Ge¥ {llesf:
(ii) LMeS=>LUML Mc¥,
(ii1) Le¥=>L e,

Conditions (i), (if), (i) imply that L*={1}UL"e ¥ for L e ¥; conversely, if
(i) holds, then L, L*c L imply L™ =LL*c %,

The above definition slightly differs from the definition of Eilenberg[1974] by the fact
that we require the additional condition (i). This difference is not essential but simplifies
alternative representations (see Proposition 3.2).
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Example 3.1 The families Rat, Alg, S are rationally closed and Lin is not
rationally closed (see Section 6).

The intersection of a family of rationally closed families of languages is again a
rationally closed family of languages. The rational closure of a family & is
the intersection of all rationally closed families containing ¥, and thus the least
rationally closed family of languages containing £. The rational closure of &
is denoted by £ Rat. Clearly, we have

Proposition 3.1 Let £ and &' be two families of languages; then
Fc¥Rat; Fof>LRatc¥ Ra;,  FRatRat=SLRat. &
Let & be a family of languages and let o : X*— Y™ be a substitution. Then o is

a $-substitution if o(x)e £ for all x € X. The following result links together
rational closure and ¥-substitutions.

Propesition 3.2 Ler & be a family of languages; then
¥ Rat={0(K) | K € Rat, o a ¥-substitution}.
Proof. Set
M={o(K)| K € Rat, o a F-substitution}.

We first show the inclusion & Rat< ., by proving that # contains ¥ and is
rationally closed. Let Le¥, let x be a letter, and define o:x*—X¥ by
o(x)=L. Then o is a -substitution, and x € Rat, thus L =o(x)e#. This
shows that ¥ < M.

Next, consider L, M € #, and let Y be an alphabet such that L, M < Y*. There
exist two P-substitutions o, : XF— Y* and o, : XF— Y* such that L =0,(K}),
M =a,(K,) for some K, K, e Rat. After a copy if necessary, we may assume
X,NX,=@. Set X =X,UX, and define a substitution o: X*— Y™ by

oi(x1) if x,eX;
o5 (x5) it xeX,.

o(x) ={

Then o is a $-substitution, and L =o(K,), M = ¢(K,). This implies
LUM=0c(K,UK,), LM =o(K,K,), L =co(K})e A

Since ¥ = o(@), {1} =0c(1)e M, the family M is rationally closed. In order to
prove the converse inclusion # <% Rat, consider the set & of all languages K
such that o(K)e ¥ Rat for any Y-substitution o. By definition £ Rat>
{o(K) | K e N, o a ¥-substitution} and it suffices to show that Rat<.N.

Clearly N is closed under copy and thus & is a family of languages. Next
¢, {1}eN and {x}e N for all xe 3. Assume now K, K'e N, Set X =X, U Xy
and let o:X*— Y* be an arbitrary Z-substitution. By assumption,
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o(K),o(K'Ye £ Rat: thus KUK', K- K', K*eX since ¥ Rat is rationally
closed. This shows that & = Rat, and proves the inclusion. i

Proposition 3.2 is very useful for proving properties of families of languages
constructed by substitutions. We give now an example of this fact.

Definition A language A has no infinite rational subset if KeRat and
K < A imply that K is finite.

Such a language is said to satisfy the IRS-condition by Greibach [1975].

Example 3.2 The language {a*""b"cPd”** | k, p, n =1} has no infinite rational
subset; on the contrary, the language S. ={x"y™ | 0=<n <m} contains infinite
rational languages, for instance y™.

Propesition 3.3 Let A be a language having no infinite rational subset, and let
£ be a family of languages; if A e ¥ Rat, then A is a finite union of products of
languages in &£.

Proof. Since Ae¥Rat, there exist a rational language K, and a %-
substitution o : X%— X% such that A = (K). We always may assume that
o(x)#1 for any letter xeXy. Indeed, let X,={xe X :o(x)=1}, set Y=
X\ X, and let w be the projection of X3 onto Y*: then A = g'{w(K)) where
o' is the restriction of o to Y¥; ¢'(x)# 1 for x € Y and m(K)e Rat.

We have to prove that K is finite. Assume K infinite; then by the iteration
lemma, there exist words a, u, b such that au™b < K and u#1. Let feol(a),
wealu), geo(b); since o(u)# 1, we can choose w# 1. Then fwig< A and A
contains an infinite rational set, contrary to the hypothesis. &

Exercises

3.1 Let ¥ be a family of languages. Show that
{o(K) | K € Elm, o a £-substitution}

is the least family of languages containing ¥ U{J} and closed under union. Show that
{o(K)| K € Fin, o a ¥-substitution}

is the least family of languages containing LU{, {1}} and closed under union and
product.

3.2 A language A is said to contain no infinite product if for any two languages
L, L' such that LL'< A, either L or L' is finite.

a) Show that a language which contains no infinite product contains no infinite regular
set; show that the converse is false.

b) Show that if A contains no infinite product, and if A €% Rat, where &£ is a cone,
then A is a finite union of languages in .
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V.4 Full AFLs

Families of languages wlich are both rational cones and rationally closed are
called full AFLs. In this section, we prove some general properties of full
AFLs. The main “decomposition” theorem stating that any full AFL is equal
to the rational closure of a rational cone will be proved in Section VL4,

Definition A family of languages &£ is a full AFL if ¥ is a cone and is
rationally closed, that is:

F=%I and ¥=%LRat

A family & is a full AFL iff it is closed under the following six operations:
morphism, inverse morphism, intersection with regular sets, union, product,
and star or plus operation.

The term AFL is an abbreviation of abstract family of languages. The adjective “full” is
used to distinguish these families from AFL which are required to be closed only under
continuous (g-free) morphisms instead of arbitrary morphisms. This distinction is
necessary for instance if context-sensitive languages have to be included into the general
theory, and leads also to further refinements of the theory (see Ginsburg [1975]). In
this book, we restrict ourselves to full AFL.

Sometimes, it is convenient to consider a notion which is intermediate between
cones and full AFLs:

Definition A family of languages ¥ is a full semi-AFL if it is a cone and is
closed under union.

Example 4.1 The families Rat, Alg, 3 are full AFLs.
Example 4.2 Any principal rational cone is a full semi-AFL.

The intersection of a family of full AFLs is again a full AFL. The full AFL
generated by a family of languages £ is the intersection of all full AFLs
containing %, that is the least full AFL containing &. It is denoted by #T.

Proposition 4.1 Let £ and £' be two families of languages; then
sy, Ycy>9lcyl;, LIT=9l E

The six operations defining full AFLs are not independent.

Propositior 4.2 Let &£ be a rational cone closed under union and plus-
operation; then ¥ is a full AFL.

Thus a family of languages is closed under product provided it is closed under
the other five of the six AFL operations. For other relations between the six
axioms for full AFLs see Ginsburg [1975].
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Proof. Let L, L, be languages in . We have to show that L,L,c%. Set
X=X, UX;, and let #,b be two new letters. Then L,#, L,p e &% by Corollary
2.5, and Li# UL, (Li#ULp) €% by the assumptions on £. Since £ is a~
cone, it follows

L=(LAULY) NX*#X e 2.

Now L =L,#L,b. Consider the projection o : (X U# Ub)*— X*. Then w(L) =
LL,eZ.

Definition Let &£ be a full AFL. Then Zis a principal full AFL if there exists
a language L, such that £= Lol The language L, is a full AFL generator of
&£.

Full AFL generators and cone generators must be carefully distinguished.
Consider indeed a principal full AFL %, and let L be a full AFL generator of
&£; thus LI'=2. Since % is a full AFL, it is also a cone.

Consider the cone LI" generated by L. Then LI'c ¥, and in general the
inclusion is strict. On the other hand, we shall prove that any full principal
AFL £ is also a principal cone (Proposition 4.4 below). Let L' be a cone
generator of £:L'I"'=%. Then ¥=L'I'<L'['=%. Thus any cone generator of
a principal full AFL is also a full AFL generator. It is quite remarkable that
the converse is also true in the special case of substitution-closed full AFL, and
thus for the family Alg. This will be shown in Section VIL3.

We first prove the following:

Proposition 4.3 Let & be a finite family of languages; then the full AFL £I°
generated by & is principal.

Proof. Let #={Ly,L,,...,L,}, set X=X UX, U---UX,, and let
#i, #as ., #a€ X be n new letters. Define

Lzﬂl#lUL2#2U' ) .ULn#n;

Each language L#; is in I" by Corollary 2.5, thus L eI and LI'c ¥F" In
order to show the converse inclusion, note first that

Li#i:LnX*#i;

thus L;#; e LT and LiAeLFA by Corollary 2.5 for i =1, ..., n. This implies that
F< LI, and hence $¥I'< LI
Note that Proposition 4.3 also holds for full semi-AFL, but is false for cones
(Exercise 4.1).

Theorem 4.4 (Ginsburg and Greibach [1970]) Let L be a language, and let
# be a letter not in X ; then

LE=(L#'T.
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This theorem supplies explicitly a cone generator for any principal full AFL.
For the proof, we need two preliminary results.

Proposition 4.5 Let L, M be two languages, and let # be a letter not in
X, U Xy if L= M, then (L#)" = (M#)".

Proof. Let 7: X¥— X3, be a rational transduction such that 7(L) =M, and let
R e Rat{X*x X¥) be the graph of 7. Consider now the relation

S (X U * X (X U #)*
defined by $ =R - {(#, #)}. Then § is rational. Let
XU #V* = (X U#)*

be the rational transduction defined by S. Then 7(w)# & only if w=w'# for
some w'e X7, and then

Fw'#) = T(w)H. (4.1)
Consider now the rational tranduction 7% defined by §*. Then

fe (w)
W W= w Awadt - wa# for some n=1, wy, wa, ..., w, € X7, and by (4.1):

fer(w)#r(wa)# - (W, )#-
This shows that #7((L#)") = (M#)" and achieves the proof.
Lenuma 4.6 Let L be a language, and let #,$ be two letters not in X, ; then
(L =[(L#"$T.
Proof. Set Y =X, U#, consider a third letter » not in Y, and define a
morphism
(YU *—Y*
by setting 8(y) =y (ye Y), 8} =#. Then 6 is strictly alphabetic, and
67 [(L#)" ] =(L# UL,
thus O '[(LA TN #)* X b ] = [(LA)* Lo]".
Hence (L#)"=[(L#)*Lv]". (4.2)

Consider now the morphism

(YU — (YU S$*
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defined by
Ply)=y(yeY), b =#3%
Then (LA Lo =[(LALA#S] =[(L#)"$T";
together with (4.2), this shows that (L#)" =[(L#)"$]".
Proof. of Theorem 4.4 Clearly (L#)*eLl’, and thus
(L#YT<LI
In order to prove the converse inclusion, we first note that L e (L#)"T since
(LA =(LH NX#=L#=L.
Thus, it suffices to show that (L#)"I is a full AFL. Now (L#)'I is already a
principal cone, and closure under union follows from Proposition 2.6 In view of
Proposition 4.2, it suffices to show that (L#)'T is closed under plus operation.
Let Me(L#)'T, and let § be a letter not in X, U X, U #. By Proposition 4.5,
we have
(LA 8T = (M%),
and by Lemma 4.6, (LA =[(L#A)*$]"; thus
(L#)" =(M$)".
Clearly (M3$)" =M™, showing that M*e(L#)*T" Thus (L#)*I is a full AFL,
and the theorem is proved.

Exercises
4.1 Show that Proposition 4.3 remains true for full semi-AFLs, but not for cones.
4.2 Let & and 4 be full AFLs.

a) Show that LU is closed under plus operation.
b) Show that LU is a full AFL iff & and 4 are comparable.
¢©) Show that ¥ U4 is closed under product iff & and # are comparable.

4.3 Prove the formulas
(£,U %) Rat = (¥, RatU %, Rat) Rat;
(EAVESIEICNNVEN T

4.4 Show that the converse of Proposition 4.5 is false.

4.5 Let L,, LY, L,, L} be languages and let # be a new letter. Show that if L.=L1,
L,=L5, then Li#L,=L #L}, and give an example showing that the conclusion
LiL,=L L% is in general false.

4.6 Give an example showing that L, =L, does not imply LT=L},
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V.5 Substitution

Substitutions are a fundamental tool for transformation of languages. They are
essentially independent of rational transductions, and can be used to represent
other operations such as closure under union or rational closure. Full AFLs
closed under substitution (like the family Alg) have quite remarkable proper-
ties. Here we give only some basic definitions and results on substitutions.
More properties are proved in Chapters VI and VIIL.

First, we recall the following

Pefinition Let 4 be a family of languages. A J#-substitution is a substitution
o X% — Y* such that o(x)e M for all xe X

Let & be a family of languages. Then we denote by o4 the set of all
languages obtained from languages in ¥ by applying #-substitutions. Thus

FoM={o(L)| Le¥, o:XF— Y* a M-substitution}.
Clearly £ot is closed under copy, and thus © is a binary operation on families
of languages. Sometimes, it is convenient to dispose of an unary notation, when

one of the two operands & or # is some standard family of languages. We
introduce the following equivalent notations:

EoM=LM=MZL.

Thus /4 is an operator, parametrized by .#, and acting on the tamily %; and &
is an operator acting on .. These notations will be used in the next chapter,
where an operator calculus is developed involving only unary operators.

Example 5.1 The notation fits with the notation for rational closure of Section
3. Indeed, in view of Proposition 3.2,

Ratv¥ =Rat £ =¥ Rat
is the rational closure of £
Example 5.2 For any family of languages %,
Elms¥=Elm £=%Elm and Fino¥ =Fin ¥ =% Fin
are the closure under union and the closure under union and product
of £.

Example 5.3 Substitution is not commutative. A Rat-substitution substitutes a
rational set to each letter and thus is a rational substitution, a Elm-substitution
substitutes a finite set of letters to each letter. In particular, any cone is closed
under rational substitution:

#oRat=% Rat=Rat £ £T,
but Rat =% usually is not contained in £I.
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Example 5.4 The family Rat is closed under rational substitution, thus
RatsRat = Rat;
we also have Algo Alg = Alg since Alg is closed under context-free substitution.
The following formulas are clear; let ¥, &', 4, A be families of languages:
MM D> Fo e Lo (5.1)
FoL' >LoM=F M, (5.2)
further, if {x} e & for at least one letter x €2, (and hence for all letters since &
is a family of languages), then
M= LoM, M ML (5.3)

To see the first of the inclusions (5.3), consider M e 4, {x}c ¥, and define a
A-substitution o : x*— X7 by o(x)= M. Then o(x)=M e ¥24. For the sec-
ond inclusion, define o': X5— X¥, to be the identity. Then o'(x)={x}e ¥ for
all xe X,,. Thus ¢'(M)=Me M=ZL.
Relation (5.2) can be completed by
(U )rit= U (0, (5.4)
AeA AeA
where (b%,\))‘EA is any set of families of languages.
The following theorem is important.
Theorem 5.1 (Associativity) Let &£,, &£,, ¥ be families of languages; then
L1 Ln ) = (£ 7 L) P

In unary notations, the associativity relation has the expressions:
LK) = (E£382)E, o (£18:)E5 = £\ (£o55).

Proof. We show first the inclusion (¥,2%)r %, ¥ 9(¥%,7%5). Let Ae
(£,0%,)0%,. There exist a language Be¥,7%,, and a %;-substitution
o XE—>X*% such that ¢(B)=A. Since Be % n%¥,, there exist a language
Ce¥,, and a %,-substitution 7:Xg-—>X§ such that »(C)=B. Let p=
o o 7: XE— X% For each letter z € X,

p()=o0(r(2)) e £0%;,

thus p is a ¥,0¥5-substitution. Since A = p(C), we have A € &, (¥,7%5). This
proves the inclusion.

We now establish the converse inclusion. Let A € ¥,c5(¥,2%;). There exist a
language Ce %, and a ¥, %;-substitution p:Xg— X% with p(C)=A. For
each ze X, p(z)e £,n¥,; consequently there is a language B, €%, and a
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Z4-substitution
o, X5 — X%

such that p(z) =0, (B,). By the closure under copy of ¥,, we may assume the
alphabets Xp_(z € X) pairwise disjoint. Set .

Y: U XBzy

zeXe

and define a substitution o : Y*— X% by
o(y)=o.(y) iff yeXs.

Then o is a ¥-substitution, and p(z)=o(B,) for all z € X.. Finally define a
substitution 7 : X&— Y* by 7(z) = B, for z € X. Then 7 is a &,-substitution, and

p(z)=a(B,)=0ao7(z) for all zeXe.
Now 7(C)e #,0%,, and

A=p(O)=a(x(C)e(F 0Ly ¥s. z
By induction, we immediately obtain the following
Corollary 5.2 Let £ and M be families of languages; then

(o (Erd)odl)e . . oM=L (Mo M) - M)

k times k times

or equivalently £(40)* = LA .
Finally we note the following rule
Corollary 5.3 Let &£, M and N be families of languages: then

NLM=NME.
Proof. NEM=(LoN) oM =Fr(Noal)=Lo(N )= NMZL.

The set of all families of languages equipped with the substitution © is a
semigroup but not a monoid (Exercise 5.1). The operation © is not a binary
operation between languages since the result (L) depends of L and of the
Card(X,) languages o(x)(x € X;). There exists a special kind of substitution
called syntactic substitution which depends only on two languages. This sub-
stitution is very important for two reasons: first, any substitution can be
represented as the composition of a syntactic substitution and a rational
transduction; in this sense, syntactic substitutions are “generic”. Second, syn-
tactic substitutions lead to “‘decompositions” of certain families of languages;
results of this kind are the converse of closure properties. They will be exposed
in Chapter VIL
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Beﬁgﬁﬁ@n Let L and M be languages. The syntactic substitution of M in
L is the substitution

O”M3Xf"9(XMUXL)*
defined by
o (X) = Mx (xeX;).

We use also the symbol 1 for syntactic substitution, defined by

ItM = op(L).
By definition,
LM ={myxympx, - mx | r=1,my, .. . meM,
XX €XpL % % e LYUINL), (5.5)

Syntactic substitution is frequently used with the supplementary assumption
that the alphabets X, and X, are disjoint; sometimes 1¢L, 1&M are also
required. The notation is justified by the following formulas which are similar
to formulas for exponentiation:

g1 M=, 1T M=1, x P M=Mx (xe3); Lt1=L;
FOTM=(1MTtM); LiM=Uf}M;
feL

(LUL) T M=L, 1 MUL,{ M; (LyLo) t M =(L, { M}(L, t M).
Note also that

M = U1 "M = U1 (Mc)" =(Mc)*, ces.
Thus, Theorem 4.4 may be rewritten in the form

LI'=(c*{L)[,  for ce3\X,.
Note that oy, is not a {M}-substitution, but if L e % and Me# and A is a
cone, then LTM e %M.

Proposition 5.4 Let 4L be a family of languages. Any M -substitution o - X*— Y™
can be factorized into o=7tooy where on:X*=Z* is a syntactic
substitution, Ne # Elm end v: Z*— Y™ is a rational transduction.

Proof. For each xe X, set M, =o(x), and let N, be a copy of M, over an

alphabet Z, in bijection with Y by a mapping 6, :Z, — Y. We choose the

alphabets Z,, (x € X) pairwise disjoint and disjoint from X. Then set
Z=XuUl Z,

xeX

V.5 Substitution 149

and define a morphism §:Z%— Y™ by
8(x)=1 (xeX) 8(z)=0,(z) (z€Z,).
Set N=U N. (5.6)

xeX
Then the syntactic substitution oy : X™ - Z* satisfies
on()=Nx= Nx (xeX).
veX
Define the transduction 7:Z%—> Y™ by
rH=6(fNK) (feZ¥)
where K :(U_ZfX)* e Rat(Z*%).

xeX
Clearly 7 is rational. Further
Teay(D=7()=1=0a(1),
and for w=x;%,+ " x, r=1, x, € X, we have
Toan(w)=8(Nx;Nx, - -« Nx,NK)
= G(N, Xy Ny Nex ) =M, M, -+ M, =a(w).
Thus 7 o0 = 0. By (5.6), N € 4 Elm. This achieves the proof.

This proposition can be used to verify that a full semi-AFL is closed under
substitution. First, we give a definition.

Definition Let & and # be two families of languages. Then ¥ is closed
under M-substitution if oM< ¥, and £ is closed under substitution

if $oFLc.
Example 5.5 Any cone is closed under rational substitution:
F=FI> ¢ =% Rat.

Example 5.6 The families Rat and Alg are closed under substitution. The
family Lin is a rational cone, but not a full AFL (see next section).

Thus Lin is not closed under substitution in view of:
Proposition 5.5 A rational cone closed under substitution is a full AFL.

Proof. Let & be closed under substitution. Then =¥ < ¥. If & is a rational
cone, then Rat<.% by Proposition 2.1. Thus

FcocFRat=RatnFc gn¥c g,

and & =% Rat.
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Proposition 5.6 Let & be a full semi-AFL. Then & is closed under substitution
iff & is closed under syntactic substitution.

Proof. Let ¥ be closed under substitution, Me%¥, and let
ot X (X, UX)™® be a syntactic substitution. Then o, (x)=Mxe ¥ for
x € X since £ is a cone. Thus oy is a F-substitution, and £ is closed under
syntactic substitution.
Conversely, let o be a £-substitution. In view of Proposition 5.4, there exists a
factorization

O =To0N,

where oy is a syntactic substitution, and Ne ¥ Elm=.%. Since ¥ is closed
under syntactic substitution, on(L)e¥ for Le¥, and r(oy(L))=0o(L)e
I =2.

Exercises
5.1 Show that therc is no neutral element for the operation ©.

5.2 Let L and M be languages over disjoint alphabets and let ¢ be a new letter.
Show that

LA M)~ (L1c¢™) T M.

5.3 Let L,M, K be languages over disjoint alphabets. Show that LNKTM)<=
(LTK)t M. Discuss the converse inequality.

5.4 Let L, M, M' be languages over disjoint alphabets. Show that M=~ M’ implies
LtM=~L1M'. Show that the implication M=M=>>M{L~M 1L is gener-
ally false.

V.6 Example: The Cone of Linear Languages

In this section, we study the family Lin of linear languages. We show that Lin is
a principal cone, and we give generators of this cone. We also prove that Lin is
not a full AFL.

Definition A context-free grammar G =(V, X, P) is linear if the right side of
each production contains at most one nonterminal symbol:

E—aeP > laf, =1

A language L is linear if there exists a linear grammar generating L.

We denote by Lin the set of all linear languages. Clearly, Lin is a family of
languages.

V.6 Example: The Cone of Linear Languages 151
Example 6.1 The symmetric languages S, over n letters. They are
defined over the alphabet
Z, =X, UX,
where X, ={x,,...,x}, X, ={%,...,%} are two disjoint alphabets of n
letters, and they are generated by the grammars with productions

g
& L X €%, + 1.
K1

Clearly feS, iff f=gg where g=x, - x, € X} and

g
Example 6.2 Let X ={a, b}, and @ ={=, #, >, <, =, <} The language S,
(8¢ @) is defined by

:fi e X
p

i

Se={a"b™ | n,m=0 and ném).
All these languages are linear. They are related by

S_.=8S.b"=S8_b; S.=8S_US_=8_b7";
S.=a*"S_=aS.; S.=8S_US_=a'S.;
S,=85.US_; S_US, =a*b*,

Of course, S_ is equal to the symmetric language S;.

The following lemma is useful.

Lemma 6.1 For any linear grammar G =(V, X, P) there exists a linear grammar
G'={V', X, P’y such that V' 2V, further Lo(o)=Lg(o) for all o€ 'V, and all
productions of G' are of one of the following forms (¢, ne V', x e V):

] E—xm or E—nx;
(ii) E—x or &1,

The proof of the lemma is left to the reader. A grammar G’ of the above form
is said in canonical form.

Theorem 6.2 The family Lin is a rational cone: Lin I"=Lin.

Proof. Let G be a linear grammar, and consider the constructions of the
grammars ¥G, ¢ 'G, Gy given in Section IL.2. By inspection, G and Gy are
linear grammars and ¢ G is not a linear grammar. Thus Lin is closed under
morphism and intersection with regular sets. In order to prove closure under
inverse morphism, a special construction is necessary. Restricting ourselves to
inverse projection, we show that the insertion of a new letter can be done just
by moving sequentially in the right side of a production by remembering the
number of the production in an auxiliary symbol.
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Let LeLin be generated by the linear grammar G =(V, X, P) in canonical
form, let ¥ =X and let 7 be the projection of Y* onto X* We may assume
Card(Y\X) =1, since the general case results by composition of such projéc-
{1ons.

Let z=Y\X. and number the productions from 1 to n=Card P. Define a
grammar G =(V, Y, P) as follows:

V=VUlw,..., o
where the o; are new symbols. Further, if the p-th production of G is
E—=xm  (or é~>mx)
then put into P the productions
E—w,, W, > Zw, X7
(or é—w,, w,—> w,z +nx).
If the p-th production of G is
§—x  (oré—=1)
then put into P the productions
E—w,, @, = zay, + W,z + X
(or £ = a,, w, —> zw, +1).
The grammar G obtained by this construction is linear, and it is easily seen that
Lo =7 (Ls(§)  for eV
Thus if L = L (o) for some o e V, then 7 (L) is in Lin.

We shall prove that the symmetric languages S, are generators of the cone Lin
for n=72. First we prove

Propesition 6.3 The languages S,(n=72) are rationally equivalent; further S, = §,.

We shall prove later that §,>S,. A direct proof is possible, but rather long; a
simple proof will follow from general properties of iterative pairs developed
in Chapter VIIL

Proof. Since

Snfl :Sn mzf—l ('122)7
it follows that S, =S, _, for n=2.
Conversely, let n=1, and define a morphism

£
a:Z¥ 7%

by a(x) = x,x5, o(%) = X5%, Isk=n
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Then fe S, Na(Z%) iff f=1 or

f=xixbx x5 - xxbexbex, o X5 R,
with 1=k <nfori=1,...,p. Thus
a”H(S, ﬁa(zf)):a“1(§2)23m
and §,=8, forn=1. &

The method used to prove this proposition is an encoding of the alphabet X, in
an alphabet of two letters. This is a quite general method which will be used

several times.

Theorem 6.4 Lin is a principal cone, and any symmetric language S, (n=2) isa
generator of Lin:Lin =S T

Proof. Since §,€Lin and Lin is a cone, we have S J < Lin for all n=2.
Further §,I'=§,.I" for n, n' =2 by the preceding proposition. Thus to prove the
theorem it suffices to show that any linear language L belongs to S,.I” for some
n=2.

Let L < X™ be a linear language, and let G =(V, X, P) be a linear grammar in
canonical form such that L = L5(0) for some o e V. Number the productions
from 1 to n =Card P, and define a morphism « : ZF— X* in the following way:

a) If the p-th production is
§—xn  (or §—mx),

then set a(x,)=x, a(%,)=1; (or alx,) =1, a(%,) =x).
b) If the p-th production is

§—x  (oré—1),
then set a(x,)=x, a(x,)=1 (or a(x,)=a(%,)=1).
Define the local rational language
K =(AXINXIB\XICXE
by x, € A iff the left side of the p-th production is ¢
x,€ B iff the right side of the p-th productionisin X U 1

x,%, € C iff the left side of the g-th production is equal to the
unique nonterminal in the right side of p-th production.

We now prove
L=a(S, NKX™. (6.1)
Indeed, consider a derivation

T—> W= Wy W, =W (6.2)
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from o into w € L in the grammar G. This derivation is uniquely determined by
the sequence (py, pa, ..., p,) of the numbers of the productions used in the
derivation. By construction, the word x,x, --x, is in K, and w=
a(xmxpz XKy Ky,

Conversely, if x, %, -+ - %, %, -+ %, €S, N KXY, then there exists a derivation
(6.2) for which py, ps, ..., p, is the sequence of numbers of the productions,
Moreover, w = a(x, %, * " " X, %, <" X,).

Note that by formula (6. 1) the above construction yields an analogue of the
Chomsky-Schitzenberger Theorem for linear languages. In fact, a weaker
property can be shown for any principal cone (Exercise 6.1).

The rational cone Lin is principal, thus closed under union. We shall see that
Lin is not closed under product and thus is not a full AFL. First we show how
linear languages are linked to rational relations. The following proposition is in
Rosenberg [1967].

Proposition 6.5 A language L < X* is linear iff there exists a rational relation
A < X*xX* such that

L={fg|(f.g)e A}

Proof. Let L<X™ be a linear language, and consider a linear grammar
G =(V, X, P) in canonical form such that L = Ls(¢) for some o e V.

Define a transducer T=(X, X, Q, 0, q., E) by O=VUgq, with q, ¢V, and E
composed of the transitions

(gv X, ]> 7’?) for g_.%xn EP (§> X, 13 Q+) fOr é:%x GP
(¢1,x,m) for £—mxeP (§1,1,q,) for é—1eP.

It is easily seen that each computation e =ee, « - - ¢, from & to n eV (resp. to
q.) with label |e| = (f, g) determines a derivation &> fng (resp. £ f3) and vice-
versa. Thus L ={fg | (. g)e T(o, q.)}. Conversely, let +: X*— X* be the trans-
duction with graph A e Rat(X*xX™) and let T=(X, X, Q,q_,q., E) be a
transducer realizing 7 and satisfying the conditions of Corollary I11.6.2. Define
G=(V,X, Py by V=Q\q, and

P={q—uq't|(quvq)eE q#q.}U{q—ut|(q u v q.)cE}.

Then G is linear and Ls(q_) ={f8 | (f, g)e A}
Let us comment this proposition. First, we introduce a definition.

Definition For M < X* and A< Y*XZ*, the bracket of A and M is the
language over X U Y U Z defined by

[A, M]={fwg |weM,(f,g)c A}.
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Thus L={fg|(f g)e A} can be written as L =[A, 1]. Then, Proposition 6.5
states that for any A e Rat(X™ X X¥), the language [A, 1] is linear, and con-
versely for any L eLin, there exists a relation A e Rat(X*x X*) such that
L =[A, 1]. However, if L is linear, and L =[A, 1] for some A < X*x X* then
A is not necessarily a rational relation (Exercise 6.4). Indeed, a factorization
w={g is a “parsing” of w, and any parsing needs not to be linear.

We now prove an iteration lemma for linear languages.

Propesition 6.6 (Iteration lemma for linear languages) Let L < X* be a
linear language; then there exists an integer N=1 such that any word fe L of
length |f|= N admits a factorization

{=aubve (a, u, b, v, ce X%)

satisfying
aubv"ce L for n=0, |w|=1 and |auvc|<N.

The special feature of this iteration lemma is of course the very last condition
which says that the factors u and v can be chosen near to the borders of the
word f.

Proof. Let A< X*xX™ be a rational relation such that L ={fg:(f, g)e Al.
Then the proposition is just a reformulation of the iteration lemma for rational
relations together with the remark following Lemma IT1.3.3. i

Proposition 6.6 can also be proved directly on a linear grammar generating L,
without using Proposition 6.5 (Exercise 6.2).

Exampie 6.3 The language (S_)*> ={x"y"x™y™ |n, m =0} is not linear. Assume
the contrary. Then by the iteration lemma, there would exist large enough
integers n,m such that x"“"y"x™y™* e(S_)* for some integers A, u with
0<A+u, and this is impossible. This example shows that the full AFL
generated by S_ is not contained in Lin.

Corollary 6.7 The rational cone Lin is not a full AFL.

We give some other examples of nonlinear languages.

Example 6.4 The language L={x"y"""x™|n, m=0} is not linear; this is
shown as in Example 6.3.

Example 6.5 The Dyck languages are not linear. Consider D*, DY < {x, x}*.
Then DFNx*£%x* ={x"2"""x" | n, n =0} thus D¥=L, where L is the lan-
guage of Example 6.4, and the linearity of D¥ would imply the linearity of L
since Lin is a cone. Next

DN x X xT® = {x g Pz | k=0, n, p>0L.
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Let C be the latter language, and assume CeLin. Then x"%"xP%" e C for any
n,p>0, and by the iteration lemma, there exist A, p, 0<A+p such that
x"TEPEP " e C, provided n,m has been chosen large enough. Thus
D?¥¢Lin. We shall see later (Chapter VII) that any Dyck language over at
least two letters is a generator of the cone Alg and therefore cannot be linear.
Further, D, = D}~ D{* (Proposition VIIL.1.3), thus D,, D} ¢Lin.

Exercises

6.1 Let &= AT be a principal cone. Show that there exist languages (A,),=; in & such
that any L € ¥ can be written in the form

L=y(A,NK)
for some n=1, where ¢ is an alphabetic morphism and K is a regular language.
6.2 Prove the iteration lemma 6.6 directly on a linear grammar for L.
6.3 For n=1, let X, ={x1,..., x.} and define
M, ={feXTIf=F}.
M, is the language of palindromes over n letters.

a} Show that M, is a linear context-free language first by exhibiting a grammar, then by
showing that S, = M,.

b) Set M. ={fe M,||fl,, =1}. Show that M, =M, =S,_, for n=2.

¢) Show that any M, (n=2) is a generator of the cone Lin.

6.4 Give an example of a linear language L and an irrational relation A such that
L =[A,1]. (For further discussion, see Rosenberg [1967].)

V.7 Examples of Incomparable Languages

It is usually not difficult to prove that a language dominates rationally another
language by providing a rational transduction mapping the first onto the second
language. It is often much harder to prove nondomination or strict domination.
In some cases, known properties of cones give an easy answer. Thus the fact
that the cone of linear languages is not closed under product implies that
Ling Alg, and thus any generator of the cone of context-free languages strictly
dominates all linear langnages. On the other hand, there exists a general
criterion based on so-called systems of iterative pairs which allows to prove
strict domination in a great number of situations. This will be developed in
Chapter VIIIL. For other classes of families of languages, the “syntactic lemma®
proved in Chapter VII provides a tool to establish the existence of infinite
chains of cones or full AFLs.
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Nevertheless, there still remain languages for which strict domination or
incomparability can only be shown by a direct proof. The proofs in these cases
usually are by contradiction. Assuming the existence of a rational transduction,
the pumping lemma is applied to the regular set given by Nivat’s theorem in
order to obtain a contradiction. In this section we illustrate this technique by
two examples, proving the incomparability of the languages S, S, S...

We first fix some notations. Set
Se={x"y"|0<n<m}, X={x,v}
S.={a"b™|n,m=0,n%m), Y={a b}
we may assume XN Y =, and set Z=XUY. Finally, let a:Z%— X* and
B:Z"— Y be the two projections from Z* onto X* and Y* respectively.
Propesition 7.1 The language S. is not a rational image of S...

Proof. Assume the contrary. Then there exists a rational transduction
7:Y*— X* such that +(§.)=8_. By Nivat’s Theorem II1.4.1, there exists a
regular language R < Z* such that

=B (HINR)  feY™

Let N be the integer of the pumping lemmas associated with R (I is the
number of states of a finite automaton recognizing R), let r>2N, and let
w=x"y* e S_ for some s>r. Then there exists f=a"b™ € S,. such that

xrys Ea(B‘l(anbm)mR)’
and consequently there is a word he R such that

ah =x"y", Bh=a"b™.
Consider an arbitrary factorization

h=hih} with ahi=x" ahl=y"
Now ||, =¢>2N. Thus, marking the letters x in h}, we obtain by Ogden’s
iteration lemma applied twice a factorization hi=uv,u'v,u"v,, with 0<
lu'],, [u"], <N and v,u v,u"™v;h4 < R. Since Bh} < a*b*, at least one of the
two words B(u'), B(u") belongs to a*Ub*. (This is the reason why we apply

the iteration lemma twice!) Denote by u one of the words u’, u” whose image
by $ is in @™ or b*. This provides a factorization

h = h,uh., with O<[|ul,<N, Bwea*Ub* hu*h,cR.

Now B(huhy)e a®b* for p=0, thus B(h,u’h,)e S.. for all p=0 excepted at
most one. This implies that

hyu"h,e RNBTHS,)
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for all large enough p, and consequently
a(hlu"hz) — xr+(p—1>\a(u)lys c §<
for all large enough p. Since |a{u)| =|ul, >0, this is impossible. B

By symmetry, we clearly obtain also the property: S.#S.. The next proposi-
tion, which is the converse of the previous one, is much more difficult to prove.

Proposition 7.2 The language S. is not a rational image of S_.
There are several consequences of these propositions:

Theorem 7.3 The languages S-, S=, S, are pairwise incomparable; the lan-
guage S._ strictly dominates the languages S, S-., S....

Proof. In view of Propositions 7.1 and 7.2, the languages S. and S. are
incomparable. By symmetry, the languages S. and S. are incomparable.
Assume S.=8_; then S.=5.US_=8,.. Thus S. and S. are incomparable.
By Example 6.2, S_ dominates S.., S. and S.. Assume S.=S_; then S_=S_
would imply the relation S.=S_, in contradiction to Proposition 7.1. Thus
S_>S8.. In the same manner, if S.=$_, then since S_=§.., it would follow
that S.=S.. Thus S_>S. and S_>S_.

The situation described by Theorem 7.3 can be pictorially represented as in Fig.
V. 2.

Fig. V.2

The proof of Proposition 7.2 is similar to the proof of 7.1: Assuming the
existence of a rational transduction 7 such that v(S.)=S_., we obtain a
contradiction by showing that in fact »(S.)2S... The difficulty of the proof
comes from the scarceness of words in a®h*\S... This implies some complica-
tions reflected by the use of factorials.

For k=2, define
A =1a""p" [n=1}

We first prove a simple lemma.

Lemma 7.4 There is no regular language K such that A, c K< §S_..
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proof. Assume the contrary. Then K is infinite, and by the pumping lemma,
there is an integer p such that n=p implies

akmprttM e K for all A=0.

n! 3 M KT -+

Since p=<n, p divides n!, and u =— (k —1) is an integer. Thus a"*"'b"""*Pe K
p

since n!+up =kn!, the language K is not contained in S..

Proof of Proposition 7.2. We first sketch the proof. Assuming the existence of
a rational transduction mapping S. onto §.., we first show that there are always
arbitrarily long words in S.. which are images, through the transduction, only of
very long words in S.. This allows us to assume that words h in the
intermediate regular language R contain always enough letters of each kind. In
a second step, we apply the pumping lemma in a naive fashion. This gives the
result excepted in one case. Then we use the pumping lemma in exactly the
same way than in the proof of Proposition 7.1. This also gives the result
excepted in one special case. Combining now the two factors supplied by the
pumping lemma in these two reserved situations yields the contradiction by the
use of the factorials. We now proceed to the formal proof.

a) Assume the resultis false. Then there exists arational transduction T : X s YH
such that 7(S.)=S... Then this transduction verifies:

for each N there exists a n = N such that any word 7.1)

x'y* € S for which a®'b"™' € 7(x"y®) satisfies r = N.

Indeed, assume the contrary; then there is an integer N such that, for any
n = N, there exists some word x'y* € S with r <N and a*"'b"' € 7(x"y*). This is

equivalent to
{a™'p™ | n=N}< 7(By),

where By ={x'y*|r<N,r<s}. The language By is regular. For n=

1,...,N—1, let w,eS. be a word such that a*'b"'er(w,); then B=
By U{w, .., wy_y} is a regular language contained in S., and
Act(B)er(S) =S, (7.2)

The language t(B) is regular, and (7.2) is in contradiction with Lemma 7.4.

This proves (7.1).

b) By Nivat’s Theorem, there is a regular language R < Z* such that
(=B ()NR) for feX*

Let g be the number of states of a finite automaton recognizing R, and fix k (k
is the index of the language A,) to be k =q!+1. Finally take N in (7.1) to
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satisfy N=3q. In view of (7.1), there is an integer n= N such that a“'b"'e
7(x"y*) with N<=r<s. Let he R be a word such that

ahr—x”y‘, tha“"’b’”.
¢) Let h, be the right factor of length g of h. Then h, €{y, b}° since both s and

n! are greater that . By the pumping lemma, h; has a factor u with 0 <|u|=gq
and such that, by setting

h=gul’, (7.3)

gu¥h' < R, and |uh'|<q. From ue{y, b}*, it follows that a{u)ey™, B(u)e b,
thus a(gu*h’)e S. for all A =1, and thus B(gu*h’)e §,. for A = 1. We shall see
that |8(u)]=0. Assume 1 =|B(u)|>0; then

B(guhh/) - akn!an(Aml)t e S# )t = 15

f
and t divides n! (since 1=t=|u|<g=<Ns=n); thus u:%(k~1)+l is an

integer, and n!+(u—1Dt=kn!; this implies B(gu*h)¢S.. (Note that this
argument was already used for the proof of Lemma 7.4.) Thus |8{u)] =0, and
we set p, =|a{u)| =|ul, = |u|. Then 0<p, =q.

d) Consider now the left factor g of h given by (7.3). We have |g|, =|h|, —q=
2q. Arguing exactly as in the proof of Proposition 7.1 by a double application
of Ogden’s iteration lemma to the marked b’s of g, there exists a factorization
g=g'vg", and thus a factorization

h:glvguuh/7 glv#:guu*hrc R,
with 0<|v|, <gq, a(v)e x*Uy™*, Bw)eb™.
C) Set Po :}a(v)l’ 4y = ‘U‘b = |13(U)1? and deﬁn€
b, =gv"gu " (A, pn=0).

If a(v)ey*, then a(h,,)e S for all A, w=0, thus B(h, o) =a*"'b""* e S, for
r=0. By 0<q,=gq, this leads to a contradiction by the same factorial argu-
ment as in ¢). Thus a(v)ex™®, and

AP (ST Up,

Oi(l’l)\,g):x y

Consequently, h,, ., € '(SO)MR for all A, u such that 0=A=<pu. On the
other hand,

B(hh,u) - a“”!b”’““‘v
since |B(u)|=0. Thus

B(h)\pmu.pu) — akn!bn!-«»)\puqu . ()t, n 20)
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We now use once more the factorial argument: since p,=<g, p, divides

k—1=q!, since q, <g=n, q, divides n!. Thus the number I:M is an

integer, and P
Bl )= a b ¢ S,

Since a(hy, .)€ S<, this gives the final contradiction. &

Exercises

7.1 (Ginsburg and Greibach [1969]) Assume that the full AFL generated by a
language A Ais equal to the rational closure of the cone generated by A (Theorem
VI.4.10): AI'=(AT)Rat. Prove that the full AFLs 5. and S_I" are incomparable.

7.2 For rational numbers 0 <r< s define M(r, s)<{x, y}* by
m
M, s)=1U {x"y'" 1 n, meN\O, r$~<s}.
i n

a) Show that M(r, s)= M(kr, ks) for any integer k>0.

b) Show that M(r, s)= M(qr, gs) for any rational number g >0.

¢) Show that for rational numbers p, g, 0<g=p <1 implies M(q, 1)< M(p, 1). (Hint.
Use the fact that M(p, 1)=M(p""", p*) for integers n=0, and that p"™' <gq=p" for
some integer n=1.)

k
d) Show that M(1, 1)>M<—-—’ T 1> for any integer k> 0.
3

e) Conclude that M(q, 1)< M(p, 1) for all rational numbers p, g such that 0<<g=p=1,
and that all languages M(r, s) are linear languages.
f) Prove that for 0<q <1, M(q,1)>5.,8S..,S-.




V1 Operators

Operators on families of languages are defined as mappings of families of
languages satisfying an additional property which links together the languages
in the families. All transformations of families of languages introduced in the
preceding chapter are operators in this sense. We develop some general
properties of operators. In the last two sections of this chapter, operator
calculus is used to derive some fundamental results on cones and full AFLs. By
this way, we can separate parts of proofs which are only formal calculations
from other parts which rely on a few, more or less standard constructions. The
exposition follows Lewis [1970] and Nivat [1975].

VE1 Operators

In the preceding chapter, we introduced several operations on families of
Janguages, such as closure under rational transduction, substitution and so on.
These transformations can be considered as mappings which associate a new
family of languages to any given family. Then these mappings can be com-
posed, and the result defines a new operatjon on families of languages. On the
other hand, some of the properties of families of languages proved in the
previous chapter are in fact results on transformations. Thus, the equality
$I'T =%I" (Proposition V.2.3) means that I" is idempotent: I'T =T

These considerations show that it is natural to investigate functions over the set
of all families of languages (over some fixed alphabet Z), with the aim to find
relations between these functions. It is to be expected that the consideration of
the totality of these mappings will give no information, since all transforma-
tions of families of languages defined up to now are related to transformations
of the languages themselves. This relation must be expressed on the level of
families of languages. Therefore we consider only transformations @ on
families which satisfy the following additional property: any language A in the
image of the family & by « depends only on a finite number of languages in Z.
In the first three sections of this chapter, we investigate transformations of this
kind. A concrete use of these operators will be made in the last two sections.
Let 3 be a fixed infinite alphabet. We denote by F the set of all families of
languages over £ in the sense defined in the preceding chapter: any language is
contained in the free monoid X* generated by some finite X < Z. Let w be a
mapping from F into F. The image of a family & eF under w is denoted by Lo.
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It is a family of languages, and in particular closed under copy. If w, and w, are
two mappings from F into itself, the composition is denoted by juxtaposition
and is defined by

Llwo,) =(Fwp)w, (ZelF).

This composition is associative, and the identity mapping is a neutral element.
We denote it by id.

Definition A mapping w:F—F is called monotone if it satisfies the
following condition:

forany &, MeF, M= Fo< Mo (1.1)
Further, w is locally finite if it verifies:

for any £el, and for each A € %w, there is a finite family
FacF such that Ae L o, (1.2)

Recall that a family of languages 4 is finite (see Section V.1) if there is a finite
number of languages M,, ..., M, € # such that each M e 4 is a copy of one of
the My, ..., M,.

If in (1.2), the family £, is always composed of a single language (and its
copies), then w is called unitary.

Definition A mapping o from F into itself is an operator on families of
languages if it is both monotone and locally finite. The set of all operators over
F is denoted by (.

We first show that §2 is a monoid, and that the set of unitary operators is a
submonoid of §2.

Proposition 1.1 id is an unitary operator; if w,, w, are operators, then w,w, is
an operator; further, if w,, w, are unitary operators, then w,w, is unitary.

Prootf. Clearly, the identity mapping is monotone and unitary. Let w,, w, be
operators, and let &, 4 be families of languages. If £ < 4, then $w, < Hw,,
and thus (Lw;)w, < (Mw)w,; thus w e, is monotone. Next set M = Fw,. Let
A € Mew,. Since w, is locally finite, there is a finite family M, ={M,, ..., M < 4
such that A e #law,. For each M, € Feo,, there exists a finite family ¥, < & such
that M, € L. Let £'=£,ULU---UZ,. Then & is a finite family of
languages, and Fw, < ¥'w, for i=1,..., n, by the monotonicity of w,. Thus
Me&w, (i=1,...,n), and M, < ¥ w;. Since w, is monotone, this implies
/z‘{éAwQ C Z'ww,y; consequently, A€ ¥ wiw,. Thus wje, is locally finite. A
similar proof shows that if e, and w, are unitary, then w,w, is also unitary. |

We now define an order on operators by setting:

Wi=w, o P CcPo, forall ZLeF.
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Clearly, < is an order relation. No confusion seems possible between this order
on operators, and the preorder on languages defined by rational transductions

in Section V.2. -
We note the formula:
0=, > 000w and 0w, Sow,.
Indeed, if P, < Fw,, then Fw,0 < Fw,0 by the monotonicity of w. The
inclusion (Yw)w,; < (¥w)w, is true by definition.
The most interesting operators are closure operators:
Definition An operator « is called
(i) extensive if id< o, thus if ¥=Zw for LelF

(ii) idempotent if @ =ww, thus if (Yo)w =L for LelF
(iii) a closure operator if it is both extensive and idempotent.

Usually, a closure operator with respect to some order is a mapping which is extensive,
monotone and idempotent. In the present case, monotonicity is supplied by definition.

Exercises

1.1 Let £, ={A.} be the family consisting of the single language A,. Let w be defined
by $o =%, for £eF. Show that w is an idempotent, unitary operator which is not
extensive.

1.2 Let o be a closure operator, £, 4 be families of languages. Show that (£U #)w =
(Fo U Mo)w.

1.3 Let w be an unitary operator. Show that for all sets (£,);c; of families,

(U)o=U o

iel iel

V1.2 Examples of Operators

We list here the principal operators and some simple relations between
operators.

2.1 @ is the “morphism’ operator defined by

PO ={e(L)|Le¥, ¢:XF— Y* a morphism}.
@ is a unitary closure operator.
2.2 @ 'is the “inverse morphism’” operator defined by

$d ' ={¢N(L)|Le%, ¢: Y*— X{ a morphism}.

@' also is a unitary closure operator.
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2.3 The operators

@, :alphabetic morphism; @' inverse alphabetic morphism;

@_ :projection; @' inverse projection
are defined as @ and @7, by replacing morphism by alphabetic morphism and
projection. They are all unitary closure operators.

2.4 I, is the operator “intersection with regular sets” defined by
Y ={LNK|Le%, KcRat}.

Clearly Iz is monotone and unitary. Since the intersection of two regular
languages is regular, I is a closure operator.

2.5 I' is the operator of closure under rational transduction:
$I={L'|9Le% L=L".

Clearly, I' is an unitary operator, and I' is a closure operator by Proposition
V.2.3.

Recall (see Section V.5) that if &, #( are families of languages, we introduced
two unary notations for the substitution £ o 4 by setting

FoM=LM=ML.
This yields two mappings 4 and .£.

2.6 M is an operator for any family 4. B
Indeed, 4 is monotone by formula (V.5.2); further, if A € LA, then A =o (L)
for some language L € £ and some J-substitution o, Thus, A € {L}4 and /4 is

unitary. In general, 4 is not a closure operator.

2.7 & is an operator for any family <.
Indeed % is monotone by formula (V.5. 1); and if Ac ML = LAl then A =
o(L), where Le % and o:XF— Y* is some (-substitution. Thus A € M,%,
where M, ={c(x):x e X; }. In general, &£ is not unitary. This is the reason why
we cannot restrict to unitary operators.

2.8 Rat, Fin, Elm are closure operators.
2.9 [ is the “full AFL” operator.

Clearly, " is monotone. To show that I is locally finite, consider a family of
languages &, and a language A c %" Then A has be obtained from languages
in & by a finite number of rational transductions and rational operations. Thus
there is a finite family £, = & such that AeL . Thus I' is locally finite;
MOreover I" is a closure operator. Note that we shall prove in Section 4 the
equality I=r 'Rat; this shows a posteriori that [ is an operator.
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We now give some examples of relations between operators.

1. Nivat’s Theorem gives

=@ &= I,D, =D [P,
2. The inequalities @7, I ®, Rat=<I hold since inverse morphisms, morphisms,
intersection with regular sets, rational substitutions are special cases of rational
transductions.

3. The associativity of the substitution % = gives the commutativity formula:
L= MEL. (2.1)
This is precisely Corollary V.5.3.

4. If &, (iel) are cones, then |J %, is a cope. Indeed, I is unitary, and by
Exercise 1.3, el

(Ug)r=Un=Us.

iel iel iel
(This is not true for the full AFL operator r * see Exercise V.4.2: [ is not
unitary.)

Exercises

2.1 Let 4 be a family of languages. Show that if {x}e# for x €3, then # and 4 are
extensive,

2.2 Give an example of two closure operators w,, o, such that w,w, is not idempotent,
and thus is not a closure operator (this shows that the theorem of Elgot and Mezei
about the idempotency of I' cannot be obtained as a formal consequence of Nivat's
Theorem).

VL3 Closure Operators

Let £ be a family of languages, and let @ be an operator. Suppose & is not
closed under o (i.e. Lo is not contained in ¥). In some cases, there exists a
least family &' containing ¥ and closed under w. This defines a new operator
o™ which associates %' to £, and »* is a closure operator.

In this section, we give an explicit construction of the closure operator w®,
and more generally of the operator {w, . . ., @ }* which associates to a family
& the least family of languages containing % and closed under w,, . . ., @,. the
main result of this section is a particularly simple expression of {w,, ..., @ }*
which holds provided w,, ..., w, are closure operators satisfying some rela-
tions of commutation.
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The reader will observe that the results of this section do not use the fact that
the objects under consideration are families of languages. Similarily, the local
finiteness of operators is only used to derive a “continuity” property. In fact,
all computations are valid in the much more general framework of the lattice of
continuous functions over a complete lattice, and lead to rather well-known
results in this algebraic structure. We prefer to restrict ourselves to the special
case of families of languages and to prove directly the few results necessary in
the sequel. (The reader interested in the general theory may consult, e.g.
Maeda and Maeda [1974]).

The set I of all families of languages is a complete semi-lattice for the union. It
would be a complete lattice if the empty family would be added. The first
lemma shows that operators are upper-continuous mappings.

Lemma 3.1 (Continuity) Let ¥ &, <+ be an Increasing
sequence of families of languages, and let w be an operator. Then

<,-91 éf,-)w = U (Zw) | (3.1)

i=1

Proof. Set = |J ¥ For any i=1, ¥, ©¥; consequently ¥w < Lo since w

i=1

is monotone. Thus | Lo < Lw.

i=1
Conversely, let A € Lw. Since w is locally finite, there is a finite family ¥, < %
such that A € £, 0. Since the sequence (£,);~; is increasing, there is an integer
k such that £, < ¥, Using monotonicity once more, this yields A € £,w. Thus
YPo < 1U1 Yo, &

Note that if w is unitary, then (3.1) holds without the assumption that the
sequence is increasing (Exercise 1.3).

Let w be an operator. A family of languages ¥ is closed under o if Lo < Z.
If @ is extensive, this is equivalent t0 Yo =%. If » is a closure operator, then
Fw is always closed under w. Our aim is to define the operator of closure
under w.

To any set (w;};; of operators, we associate a mapping denoted by | J w, and
defined by el

fé’(U w,~>= U(&w)  ZeF.

iel iel

To verify that w = |J e; is an operator, we first observe that w is clearly
iel

monotone. w is also locally finite. Indeed, let A € Lw =|J (Yw;). Then there

iel
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exists an index k € I such that A € Lw,. Since «, is locally finite, A € £, for
some finite family £, < £. Then A e | (Lrw) =L 0.
iefl
If I is finite, I={i,,..., [}, we write
w0, Uo, U - Ue,.
iel
In particular, o s o' iff o' =0 Uw’

ES

Definition Let w be an operator; then

0)* — U wn’

n=0

is the operator defined by

where 0" =1d.

Proposition 3.2 Let o be an extensive operator; then w™ is a closure operator. For
any family of languages ¥, $w™ is the least family of languages containing &
and closed under w; moreover, ™ is closed under w*.

Proof. Let ¥ be a family of languages. Then
Yo | Fo" =L,

n=0
showing that o™ is extensive. We show that Fw* is closed under . Since w is
extensive, the sequence (Yw"), =q is increasing. Thus by the continuity lemma,

Fote= < U jfcu")w = Fo'w= ] Yo' =] Lo"=Fo*. (3.2)
n=0 n=0 n=1 n=0
Next, let # be a family of languages containing & and closed under . Since @
is monotone, Lu" < Mo" =M for n =0, and Fw™ < M, showing that Lo™ is
the least family containing % and closed under w. Finally, we verify that o™ is
idempotent. By (3.2), 0*o = o™, Therefore, o*w™ = w™ for any n=0. Thus
Fotw* = (Foto" =ZLu™.
n=0
Example 3.1 Let . be a family of languages such that {x} e for x €. Then
M is extensive (Exercise 2.1). For any family of languages %, the family
LM = U L(it"

n=0
is the least family of languages containing ¥ and closed under 4(-substitution.

In particular, 4% is the least _family containing # and closed under (-
substitution. We prove that #M(* is closed under substitution, i.e. under
MAC*-substitution. For this, we first extend formula (2.1) and show

MEN = NA* (M extensive). (3.3)
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Indeed. the formula A = NA( implies, by induction,
N =NU"  (n=0).

For any family %, (LA™, -0 is an increasing sequence since M is extensive; by
continuity
FAEN =\ LK) =\ LNU" = LNM*
n=0 n=0

This proves (3.3).

Covollary 3.3 Letr 4t be a family of languages such that {x}e M for x €%, then
HMAF is closed under substitution.

Proof. We have
A = M M = MM F
by (3.3). Further,
MMM M = A U™
Now M* M = M* M* = MF by Proposition 3.2, thus

A AI = MAL* . m
We now extend Proposition 3.2 to the case of several operators. Let
wi,..., o, (k=1) be operators. Define k={1,2, ..., k}, and for a word
f=ip i, ek” (i, ... 50, €K),
set W =@, 0, " Wy

Finally, let € be the empty word of k* and set w, =id.

Definition Let w,, w,,..., w, be operators; then {wy, s, ..., 0} is the
operator defined by
{w, 0, .0, wk}* = U Wy.
fek™

Propesition 3.4 Ler w,, ..., w, be extensive operaiors; then {w,,...,w.}* is a
closure operator. For any family of languages &, ${w,, ..., w }* is the least
family of languages containing ¥ and closed under w,,. .., w,; moreover,
Py, ..., o is closed under {wy, ..., w.}*.

Proof. Let w ={w,, ..., w ¥ Clearly w is extensive. We show that ww; =w
for i=1,..., k. First note that, since each w; is extensive, w; =w, for any

subword f of g, (f, gek®).
Let & be a family of languages and define

F = Lo

fer™
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The sequence (£™), . is increasing; thus by continuity

Fow; = ( U $(”)>wi =) ¥  i=1,...,k (34
n=0 .n==0

Note that the inclusion £"™Ww; « LY is not necessarily true except if @, is

unitary, since in that case «; can be passed through the union. Let g be the

word of length nk" obtained by concatenating all words of k. Then Loy < Lw,

for all fek”, therefore

LARISH AN
and LV © Ly = Lo © L. (3.5)
By (3.4) and (3.5), we have Low, =Yw for i=1,...,k, showing that Lo is
closed under wy, ..., o, Consequently, ww,=w for all fek®, and

Fow= ) Lou; =ZLo.

fek*
Thus o is idempotent. Finally, let # be a family of languages containing &£ and
closed under @,,...,w,. Then Fw;<floy=4 for fek® and therefore
Lo < M. This achieves the proof. &

Example 3.2 Let w; =1, o, =Rat. Then LI, Rat}* is the least family con-

taining % and closed under I' and Rat. Thus {I, Rat}* =1, and

I'= U oy, o, withe,=I orwe,=Rat.
n=1
We now show that the operator {w,, .. ., & }* has a very simple form, provided
certain conditions are verified.
Theorem 3.5 Let 0, ws, ..., w, be closure operators; if ww, <ww, for 1si<
j=k, then

{w, 0, ... wk}* T Wyt T G

1, H

Proof. Clearly w;w,- - o= Jw;. Conversely, let f=i, --i, ek™

fek*
If i1>1,, then w,w, <o o, Thus o <, - - w,. Comparing then i, to iy
and so on yields finally
A N R
where 1sjsps---<sj, <k and (j;,...,J,) i5 a permutation of (i,,...,1I,).

Using the idempotency and the extensivity of w4, ..., ey, we obtain
Wy W@ TWy W

Thus w;<w; - o for any fek™; therefore

{wg, ..o <00, - 0. &
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Example 3.2 (continued). In order to prove the equality F=r Rat, it suffices,
in view of Theorem 3.5, to show the inequality Rat I'ssI" Rat. This will be
done in the next section.

Exercises

3.1 Let wy, w,,...,w, be extensive operators. Show that
HCTIINI wk}*: %

where @ =o, Uw, U -+ Uy,

3.2 Let Word be the family of all words of £*. Show that Word is the operator of
closure under product. Show that Elm Word=<Word Elm, and prove that Fin=
Word Elm.

Vi4d Subconunutative Relations

In this section, we use the results of the preceding section, and especially
Theorem 3.5 to derive relations between some frequently appearing operators.
As a result, we obtain that the operations defining cones and full AFLs can
always be applied in some specific order. For this, we use standard technigues
from formal language theory to prove some inequalities between fundamental
operators; from these, other relations can then be deduced in a completely
formal way.

As an illustration, we first reformulate several results of Chapter III as
relations between operators.

Propesition 4.1 I'=@ ' [;& =D [P, = O I,D,.
This is the theorem of Nivat (Theorem II1.4.1). i

Proposition 4.2 I'T' =T,

This is the theorem of Elgot and Mezei (Theorem II1.4.4). We give the proof
of the theorem once more, but using now operaiors. We need the following
three lemmas.

Lemma 4.3 ¢, &' '=@'@,.
This is just Lemma I11.4.5.

Lemuua 4.4 [, ' <@ 'L, L& <@ ', P <d- 'L,

Proof. We prove the first inequality. Let & be a family of languages, and let
A e LI;P'. Thus there exist a language L ¢, a regular language K < X7,
and a morphism ¢:X¥—X¥ such that A=¢ YLNK). Thus A=
e "LYNe YK), and since ¢ NL)eFP ' and o '(K)eRat, we have
A e DI, showing that L@ 'c LD I, B
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Lemma 4.5 @y <I;®; @I <Ixd,;, O Ix<IP,.

Proof. We prove the first inequality. Let % be a family of languages, and let
A € £PIy. Thus there exist a language L € ¥, a morphism ¢: XF— X¥ and
K eRat(X¥) such that A = o(LYNK. Now

A=¢pLNe (K)),

and since ¢ "Y(K) € Rat(X}), we get A € LI P. This shows that £OI, € LT, P.
B

The proof of Elgot and Mezei’s theorem can now be rewritten as follows:
IT=0' P, P [, D, (Nivat’s Theorem)
s P LDID LD, (Lemma 4.3)
< @O R D, D, {(Lemma 4.4 and 4.5)
=@ P, =T. (idempotency)
Since clearly I'T'=1T, we finally get I'=TT.

Remark. The three Lemmas 4.3, 4.4 and 4.5 imply, in view of Theorem 3.5,
the equality

{®;19 IR: ®77}$' = (p;l[R(pﬂ"
Since {&,', I, @,}" is a closure operator, it is idempotent, and this shows
directly that I'T'=1I". On the other hand, by the equality I'={®_1, I, ®_}* we
see directly that for any family &, I is the least family containing and closed
by inverse projection, intersection with rational languages, and projection.

We now investigate similar relations involving substitutions. First, we prove
Lemma 4.6 Elm I'sI'Elm.

Proof. Let & be a family of languages, and A e Elm I'. Then there exist a
language B €% Elm and a rational transduction 7:X¥— X% such that A =
7(B). Since B e ¥ Elm, there is an integer n=0 such that

B= |J L Lie#, i=1,...,n
I=<i<n
This implies 7(B) = U 7(L;), and since r(L)e ¥ for i=1,..., n, we finally
get Ac$IElm. ="

Theorem 4.7 {I', Elm}* =I" Elm, or equivalently: The full semi-AFL generated
by a family of languages ¥ is equal to the closure under union of the rational
cone generated by £.

Proof. This follows from Theorem 3.5 in view of the preceding lemma.

We now want to show that Theorem 4.7 remains true when Elm is replaced by
Rat, and more precisely that the equality #I"= #I" Rat holds for any family of
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Janguages £. We need only to prove that $IRatis a cqnel, and for this, it
suffices to show the inequality Rat I'<I" Rat. Writing I'= DR, we haye to
“pass” the operator Rat through the three operators @77, I, @. This will be
done by proving three inequalities, each one involving one gf these tilxree
operators. It appears that the operator Rat can be replaced, with only minor
changes, by any operator of the form &; this gives, as a corollary, another
important property of cones. Therefore, we show the more general
Proposition 4.8 Let £ be a family of languages; then

FI'<sT¥l orequivalently Ir<r«r.
First, we note the following

Corollary 4.9 Rat '] Rat.
Proof. By Proposition 4.8, we have Rat ' Rat I and since Rat is a cone,
Rat I' =Rat.

Using Theorem 3.5, this corollary implies the following theorem

Theorem 4.1 (Ginsburg and Greibach [1969]) = R;M}*:FBE or
equivalently: The full AFL generated by a family of languages £ is equal to the
rational closure of the cone generated by ¥£. &

By this result, AFL-properties can be separated in properties of rational cones,
and in properties of rational closure.
For the proof of Proposition 4.8 we need three lemmas. The first lemma

involves morphisms.

Lemmsa 4.11 Let £ be a family of languages; then
P, =0, % L0, =D, LP=PY

or equivalently L -
FD, =5, I, =4D; FP=LP.

Proof. Let # be a family of languages; then
MED=MDL « LAD=LMD.

Thus the two sequences of formulas are equivalent. B

Let Ae%MP. Then there exist a language BeZA, and a morphism
¢ : X%¥— X*¥ such that A = ¢(B). Since B e £/, there are a language Le%,
and a -substitution o : X*— X% with B=o(L). Thus A =(¢e°o)(L). NOW
poa: X¥F- X% is a MP-substitution since po(z) e MD for each z € X;. This
shows that A € LUD. Thus LMD < LMD.

Conversely, let A € $4®D. Then there exist a language L €%, and a'/%@=
substitution o :X¥— X* with A =0(L). For each zeX, there exist an
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alphabet Y, a language M, < Y7, M, € #(, and a morphism ¢, : Y¥— X such
that o(z) = ¢,(M,). By copying if necessary, we may suppose the alphabets Y,,
{z € X} ) pairwise disjoint. Set

Y=U Y,

zeX;,

and define a morphism ¢ : Y* — X% by o(y)= ¢, (y) iff y € Y,. Finally, define a
substitution

o XY
by o'(z)=M, for zeX;. Then o=¢ °¢'. Since ¢’ is a M-substitution, it

follows that A = o(o'(L)) € LMD, and thus LMBPc LHAD. The proofs of the
two other identities are similar.

The second lemma handles inverse morphism. The situation is complicated by
the fact that inverse morphisms are not substitutions.

Lemuna 4.12 Let & be a family of languages; then

PO <FPT<TLPT orequivalently FO; <FP <P ol
Proof. Let 4 be a family of languages. Then

MEDP < MTLDPT o PHDT < PO MT.

This shows that the two sets of inequalities are equivalent. The inequality
$®;1§$®g1 is clear, and only the last inequality has to be shown. Let
A€ LMD" Thus there exist a language B € LA, and an alphabetic morphism
@ X% — X¥ such that A = ¢~ '(B). Further there are a language L €%, and a
HM-substitution o : X7 — XF such that B=o(L); consequently, we have A =
¢ o (L)). Note that ¢ o o is not a substitution in general, since ¢~ (1) # {1}
Let y be a new letter not in X, set Y =X U{y}, and let 6: Y*— X7 be the
projection from Y* onto X7. Set L'=8¢"%L); then L' £, Define a
substitution o': Y*— X% by

o'(z)= ¢ Ho(z)) for zeX; a'(y)=¢ 1 (1).
Then o' is a M -substitution since ¢ (1) e Ratc .#I". Finally, we have
o' (67 w)) = ¢ Ho(w)) forall weX¥,

and thusa-(l NV=a'(67H (L)) = ¢ No(L)) = A, thus A € ¥O-' MT. Consequently
fﬁf%@ c P l./z'/{F i

Finally, we investigate intersection with regular sets.

Lemma 4.13 Let & be a family of languages; then

Ll <. LT orequivalently LIy <I'%l,.
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Proof. Let 4 be a family of languages. Then
ML S MIR LT o Ll LT Mg,

Therefore, the two inequalities are equivalent. Let A€ ¥ MIy. Then there exist
K eRat(X%) and B eéﬂ% such that A = BN K. Next, there exist L €%, and 2
Jt-substitution ¢ X7~ X3 such that

A=BNK=c(L)NK.

Let A =(X,, Q,q_, Q,) be a finite automaton accepting K : K =|A|. For each
pair ¢, q'€ Q, define

K,o={feXXlq f=q}

Clearly, these languages are regular. Next, set
Y=0xX,xQ,

and define a transduction 7: Xj — Y™ by

i lek;
7(1)_{@ if 1&K,

T(ZIZZ Zn) {(q Zy, %)(Clu 22, Ch) (qn 1> Zns QH) [ CI! € Q QH € Q+} fOI' n=
1, 24, ..., 2, €X;. Clearly this transduction is rational, and t(L)e #I.

Finally, deﬁne a substitution o’ : Y*— X% by
0'(q,2,q)=0(z) Ky  (g.2,q)€Y.

It follows that o' is a M#Ix-substitution. For any word

w=2y2y 0 2, € XL (z;eX)
we have

o(r(w)) = U (0(z) MKy o No(2) MK g) - (0(22) N K L a)s
where the union is over all (qi,...,q.)e Q" with g,€@Q,. Therefore

o' (rw)=a(w)NK. Since o'(r(1)) =K No(l), we have A=0o "(7(L)), and A €
LT M. =

Now we are ready to prove Proposition 4.8.
Proof of Proposition 4.8. We have
P =20 [P, <P LTTe®P,  (Lemma 4.12)
< P TLTIRP, =TT, (Lemma 4.13)
= Fm= rer. (Lemma 4.11). B
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Remark. A more symmetrical statement of this inequality is the following:
LIT<I¥T. The converse statement: ['ZI<ZIT is not true in general
(Exercise 4.1).

The following result also is obtained by a simple application of Proposition 4.8.

Theorem 4.14 (Ginsburg and Spanier [1970)). Let & be a rational cone
(res_pA a full semi-AFL, a full AFL) and let M be a rational cone; then
SLM=F4 is a cone (resp. a full semi-AFL, a full AFL).

Proof. In view of Proposition 4.8,
LMD = LTHMT,

Since ¥ =TI, M =4I, it follows LM = LM, and therefore £ 4 is a cone.
Next assume ¥ is a full semi-AFL. Then by (2.1)

LA Elm =¥ Elm M = M,
and thus #4 is closed under union. Similarly, if & is a full AFL,

LM Rat =% Rat M = LM. &
We show now that substitution by full AFLs instead of cones do not change the
resulting family. We deduce this fact from the following equality.
Lemmsa 4.15 Let & be a family of languages; then

Ier=r¥¢r or equivalently &I = f“:*’f_IT

Proof. We have I'ZI'= 7T Rat = [Rat. 7T
Now Rat<F since each rational substitution is a rational transduction; there-

fore I'Rat $I'<sIT¥I'=T¥%T. Thus I'¢['<TI'¢T. The converse mequahty is
clear.

Corollary 4.16 Let £ and M be cones; then Lo it=%=MF.

Proof. Indeed %Ml = #TUF = 4T MmE by the preceding lemma.

Finally we show that £M*, the least family containing ¥ and closed under
M-substitution, is a cone provided £ and # are cones.

Proposition 4.17 Let £ and M be cones; then LMF is a cone. Further, if £ isa
full AFL, then SM* is a full AFL. For any cone &, £¥* is a full AFL closed
under substitution.

Proof. Assume & and 4 are cones. In view of Theorem 4. 14 and arguing by
induction, %M~ is a cone for any integer k=0 (with J°=id). Thus LA* =

U 24" is a cone, since the union of cones is a cone. Assume % is a full AFL.
k=0
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Then by formula (3.3),
PMF Rat =€ Rat M* = LM*,

and thus £AM(* is a full AFL.
Finally, #%* is a cone and is closed under substitution by Corollary 3.3, thus is
a full AFL by Proposition V.5.5. @

Exercises
4.1 Show that I'¢T#%IT. (Hint. Apply the operators to Elm.)

4.2 Show that @.'®, <P, @7', and thus @.'P, = @, D", Discuss the situation for the
operators @, and @.

4.3 Show that @I # [RD™".

4.4 (Ginsburg, Greibach and Hopcroft [1969]). Let &, and %, be two families of
languages. The wedge of ¥, and &, is the family ¥ defined by

L= nNE={LNL,|Lie¥, Lo L.}

a) show that if ¥, and ¥, are closed under inverse morphism and intersection with
regular sets, then the same holds for &.

b) show that if ¥, and ¥, are rational cones, then £ is a rational cone (Hint. Apply
the operator @I to £=£® ' I.)

¢) show that if &, and &, are full AFLs, then ¥@ is a full AFL.

d) show that if ¥, is a cone and %, is a full AFL, then ¥,5%,c ¥® (Hint. Show that
Lt L,e s NS, if Lie¥y, L,e¥, are over disjoint alphabets, and use Proposition
V.5.4.)

4.5 Show that I'Elm =Elm I,

VEi.5 Marked Substitution

In the preceding section, we showed that £= .4 is a rational cone provided ¥
and  are cones. In fact, a much more precise result holds: if & and # are
principal cones (or full AFLs), then o is also principal. Moreover, a
generator of ¥o# can be given which is explicitly expressed in terms of
generators of & and ( by means of the syntactic substitution. The question of
the converse property, namely whether the principality of o implies the
principality of ¥ andjor 4 will be considered in the next chapter.

It will appear in the sequel that the proof of the principality of ¥ = requires
inequalities in operators which are precisely the converses of the inequalities
proved in Section 4. Since some of these inequalities are sharp, we have to go
through a series of inequalities involving a special type of substitution called
marked substitutions. They differ from the general substitutions by the condi-
tion that the substituted languages have endmarkers. Marked substitutions are
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therefore closely related to, and in fact a generalization of syntactic substitu-

tions.
A language A is said marked if it is of the form A = B¢, with ¢ a letter,

ce X, \Xg. A marked language never contains the empty word.

Drefinition The marking operator # is the operator which associates, to any
family of languages ¥, the family

S ={Lc|Le¥ ceI\X.}

Clearly, ¥# is closed under copy and thus is a family of languages. It is also
clear that # is monotone and unitary, and therefore is an operator. Note that
# is neither extensive nor idempotent.

Definition Let 4 be a family of languages. A marked #-substitution is a
MH-substitution.

Example 5.1 A syntactic substitution is a marked substitution. More precisely,
let A, B be languages over disjoint alphabets. Then

A1 B=o0g(A)

where og(x)=Bx for x€ X,. Thus og(x)e{B}#, and oy is a marked {B}-
substitution.

Any marked substitution involving only two languages can be reduced to
syntactic substitution in the following sense. )

Proposition 5.1 Let A and B be languages over disjoint alphabets. Then
{Al(dBINT =(A 1 B)I.

Proof. We just have seen that A 1 Be{A}=({B}#); thus (A1 B)I'c
(Ao (BYNE. Conversely, let Le{A}o({B}#). Then there exists a {B}#-
substitution o : X% — X} such that L = ¢(A). Hence for each xe X,

O-(x) = BXCX’

where B, is a copy of B, and ¢, € X\ Xp. Let 6,:X5— X% be the copy
isomorphism. ‘tnen 6,(B) =B, for each x e X,. Consider the relation

R={ U (0 0.0y € XaPx ) @ (X UXa) X XE,

xeXa

Clearly, R is rational, and the transduction 7:(X, U Xg)* — X defined by R
is rational. Next

dom(7)=< U Xf';x>*,

X EX a4
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and for wy, Wa, ..., w, X%, X1, Xo ..., X, € X,
T(WiX WaXo * - W) = 6 (Wi)e, 6, (wa)ey, o+ 0, (W) -
Thus (A1 B)=c¢(A)=L.
Consequently, Le(A 1 B)T, and (A} ({B}#NI<(A 1 B B

This proposition will be helpful to construct generators of the cone ¥4 from
generators of cones £ and .. We now prove some simple facts on the operator
#. First note that ¥# never is a cone, even if & is a cone, since {1} & L#.

Lemma 5.2 #<I, IT#<I #I=r T¢<l #r=r

Proof. Let A and B be languages such that A = Bc, with c¢ Xg. Then A =B
by Corollary V.2.5. Consequently, ##I"= #I" for any family of languages ¥.
Thus #F I, which implies #<#I'=1F, and '#<IT=1I. Next F#<FF P
and #1=#I Rat =TI Rat.

As already noted several times, an inverse alphabetic morphism is not a
substitution. By means of the marking operator, inverse alphabetic morphisms
can be expressed using rational substitutions.

Lemma 5.3 @;'<#Rat.

Proof. Let £ be a family of languages, and let A e £®_'. Then A =¢ (B),

where Be % and ¢ : X% — X3 is an alphabetic morphism. Define
X, ={xeX, :ox=2z} (zeXp); Xo={xeX, 0ox=1}.

Then ¢ '(z) = XFX,X& for ze Xy and ¢ Y(1)=XF. Let c € S\ X, and define
a rational substitution

o (XgUc)— X% by o(z)=XFX, (zeXg); o(c)=XF.
Then o(fc)=¢ '(f) for all fe X% Hence A =0(Bc). Since BceXZL#,
A € £#Rat, proving thus the inequality. B

We now turn to the construction of a set of generators of the cone LI 4TI in
terms of & and (. We shall prove that #Ic.#I" is generated by L#o#I" The
inclusion (F#oul) c FIo Ml is easy to show. The converse inclusion can be
written as an inequality between operators:

rulr=#ufr. (5.1)

Note that (5.1) is a weak converse of Proposition 4.8. To prove (5.1), we
proceed as in the previous section and write

IMl= o7 g ® MT
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We thus have to prove three inequalities involving €, I, @7 and the
operator #I". Alphabetic morphisms are easy to handle. For intersection with
regular sets, we have the following “‘converse” of Lemma 4.13. N
Lemma 5.4 Let & be a family of languages; then

IR <$HT  or equivalently Ll < H#HLT.
Proof. Let 4 be a family of languages. First note that

M, FC MEHT = Ll < LHMT

Thus the two inequalities are equivalent.
Next, let Ae.#I,#. Then there exist Meuf, KeRat(X¥) and a ¥-
substitution o: X5 — X% such that A=c(MNK). We may assume
XuNX, =, Define a ¥#-substitution

ol Xk — (X, U X,)F
by o' (x)=a(x)x, x € X
Next, consider the rational substitution
o XE— (X, UX)E
defined by
o"(x) = X%x, x € Xy
Then K'=¢"(K) is a rational subset of (X,,U X, )*. Further, for fe X5;, we
have
wea' (HINK'
iff W= WX WaXy 0 Wy,
with w, € o(x;), 5, € X, f=x1%, - -« X, € K. Clearly ¢'(1)NK'=1NK. Let 7 be
the projection from (X, UX,)* onto X%. It follows that
A=ac(MNK)=m(e"(M)NK").

Thus A e #MF#T, and the inclusion is proved. @

Inverse morphisms will be treated by Lemma 5.3. Thus we are ready to prove
following

Proposition 5.5 Let & and 4 be families of languages. Then
(i) Lol = LTl = (E#o M0,

(ii) ST Blmoul = ¢T Elmoatl = (om0 Elm;

Giy el =eloul = (e uDr.
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Proof. We first prove
Tl = #MIT. (5.2)
Indeed, [T = &' Iz D, MI'< D' I Rat MT
since a morphism is a rational substitution. In view of Rat MT = /{TIA’: we obtain
rur< o Ioul
= @;Q%ﬂf (by Lemma 5.4)
<o T (by Lemma 5.2)
s#@ AfT (by Lemma 5.3)
= #MIT.
Conversely, in view of Proposition 4.8,
#MET< #TUIT = Tl =Tul

by Lemma 5.2, and in view of Lemma 4.15, I AL =TT, This proves (5.2).
Next, since N = AN for any families N and 4, it suffices to prove (i). Now (i)
rewrites as

PT M= LTUT = LHMIT,

and thus follows directly from (5.2) and Lemma 4.15.
Proposition 5.5 is not satisfactory, since in the case where ¥ and # are
singletons, it does not give a single generator for the family £Io#I" To get
this generator, we prove
Lemma 5.6 Let & be a family of languages. Then

SPI<SPHI  or equivalenily TEL<p el
Proof. Let J be a family of languages. First, observe that

MFTC MFHT <« P pc SHMT,

thus the inequalities are equivalent.

Next, let Ae#sTI. Then A=c¢(B), where Be#l and o: X5 — X% is a
Zr-substitution. Thus, for each letter z € X, o(z)e £I, and there exist an
alphabet Y,, a rational transduction 7,:YF— X%, and a language L,c%,
L, < Y¥* such that

o{z)=r,(L,) z € Xpg.
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We may assume that the alphabets Y, are pairwise disjoint and disjoint from
Xp. Set

Y=XzU U Y,

zeXp

and define a substitution o’ : X5 - Y™ by
o'(zy=L,z z e Xp.

Thus ¢’ is a SL#-substitution. Next, let 7:Y*— X% be the transduction
defined by

rD=1; =@ iff&(U Yi)"
(fize o fuzo) :’rz,<f1) Cet Tz,,(fn)a if fie Yj, z; € B.
Then w(o'(zY)y =1L, z)=1(L,)=0(2) (z € Xp),
(o' =7(1)=o(1)
(o' (fg)) =o' (No'(g)) =a(flo(g)  for f geXj.
It follows that 7 o ¢ is a substitution, and 7 ¢ ¢’ = ¢. Consequently,
A=a(B)=1(c"(B)).

Now o'(B)e MZL#, and in order to achieve the proof, it suffices to show that
is rational. For this, let -

R, cY¥x X%

be the graph of 7,(z € Xg). Then
&
s=(U Rz 1)
zeXp
is the graph of + and since each R, is rational, S is a rational relation. &
Theorem 5.7 (Ginsburg and Greibach [1970]) Let & and # be principal
cones (full AFLs). Then £ 4 is a principal cone (full AFL). For any cone (full

AFL) generators L of & and M of M and for any new letters ¢, d& X, U X,
Ld {1 (Mc)* is a cone (full AFL) generators of &4

Lo M= (Ld 1 (Mc)")I (5.3)
LM =(Ld 1 (MM (5.4)

Further if L#{1}, then

Lo M =(L 4 (Mc)")I (5.5)
LioME = (L1 (MY (5.6)
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Proof. By (2.1) and Corollary 4.16, LI's MI'=(LI'= MI") Rat. Thus (5.4)
and (5.6) are direct consequences of (5.3) and (5.5) respectively. To show (5.3),
we first note that in view of (5.2)

M= #MIT.
Next by Theorem V.4.4, MT:]V,{’1 I, where M, =(Mc)". Consequently

TMI# M IT<#M AT (by Lemma 5.6)

s H#TMHT (by Proposition 4.8)
=] 1\_47 (by Lemnma 5.2)
=TIt

Thus rMr= #ﬁ;fjl’ and by Lemma 4.15, IMT = #mr. Consequently
LI's MI = ({L}# AM AT = (Ld}o{M DT

By Proposition 5.1, we obtain
LIeMI™=(Ld T (Mc)H)T.

Suppose now L#{1}. To prove (5.5), it suffices to show
Ld 1 (Mc)* =L 1 (Mc)".

Set X=X, Y=X,, Z=XUYU{c d}. Consider the following rational rela-
tions of Z*xZ*:

R={(y,y):ye Y c,c); I= < U R™(x, X)>“ﬂ; E=Y%cx{1}.

xeX

The transduction Z* — Z* with graph I is the identity on ((Y¥¢)"X)*. Let
11 Z* — Z* be the rational transduction with graph

A=I-E*-{d D).
Then for f1,..., fa € (Y*O), x1, .., x, € X,
Tl(flxl U fhxn h+1d):f}xl R

Consequently 7 (Ld 1 (Mc)") =L 1 (Mc)*. (The hypothesis L #{1} was not
used.) Conversely, consider the transductions Z*— Z* with graph

S, =R*(1,x)R™(x, d) (x e X).

These transductions map a word m, ¢ « - - mex, (m; € Y*, k=2) into the words

myC - mexm ¢ omyed, (1ssi<k). Define a transduction 7,: 2% — Z*
with graph
5-1-(us)

xeX
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Then 7,((Mc) %, - (Mc) x,) = (Mc) x, - - - (Mc) x, (Mc)"d for Xqyonn, %, €X,
n=1. Consequently, if 1 &L then

(Lt (Mc)Y)=Ld | (Mc)*.
It 1eL, then Ld 1 (Mc)™=7,(L T (Mc)")U(Mc)*d. In this case, consider the
rational transduction 75: Z* — Z* with graph

c= <XU E*(x, 1)>* < U R*(x, d)).

eX xeX

Then for k=1, fi,...,fee(Y*)", x,,..., 5. €X,
73(fixy 0 fixi) = fid.

Thus if L# {1}, 75(L 1 (Mc)") =(Mc)"d. Hence
Ld T (Mc)" =(r,Ur)(L 1 (Mc)™).

Exercises
5.1 Compute (Ld T (Mc))I" and (L 1 (Mc)")I for L ={1}.
5.2 Show that for L#{1}, LI's MI"=((Ld)* | (Mc)")T,

5.3 Let ¥ and # be principal cones. Show that there exist Le¥, Meu such that
&= (L1 M)F. Give an example of languages L, M such that (L YM)FE Ll MF
(see also Exercises 5.6, 5.7 below).

5.4 (Lewis [1970]) For any family of languages ¢ define . by
P={A|{A}rc ).

a) Show that & ¥ =%, and that £ is closed under substitution.
b) Show that if & contains at least one language {x} with x €3, then £< &.
c) Show that if £ is a full AFL, then & is a full AFL.

5.5 (Greibach and Hopcroft [1969]) Let % be a family of languages closed under
rational substitution and intersection with regular sets. Show that if &% contains at least
one nonempty language #{1}, then & is a rational cone. (Hint. Show that $# < % and
use Lemma 5.3.)

The two following exercises are difficult:

5.6 Show that S, 1 (Mc) =S, 1 M, where S, is the symmetric language, S, and M are
over disjoint alphabets, and c is a new letter. (Hint. Show first that S, TM=8;1 M,
and use the third letter of the alphabet of S; to create the letter ¢.)

5.7 Show that D1* 1 (Mc)" =~ Di* ? M, where D/* is the restricted Dyck language, and
M, ¢ are as above. Same problem for D}* (n=2). (Hint. For D!® consider first a
rational transduction which replaces, in words of D}* 1 M, factors of the form mxm'x
by mec. For D¥, (n=2), Proposition VII.1.1 may be useful.)

VI Generators

The first section contains examples of generators of the cone Alg of context-
free languages. The Dyck languages over at least two pairs of parentheses and
the language E of completely parenthesized arithmetic expressions are shown
to be generators. Sections 2 and 3 are concerned with S. Greibach’s Syntactic
Lemma and its applications. In particular, we prove that in a substitution
closed principal full AFL, the nongenerators form a substitution closed full
AFL. Next the Syntactic Lemma is used to exhibit infinite ascending chains of
cones, and thus nonprincipal cones of context-free languages. In Section 4, we
study the family of languages recognized by one counter pushdown automata
and we prove this family to be the full AFL generated by D%*. The last section
deals with the family of quasi-rational or nonexpansive languages. Several
characterizations of this family are given.

VIL1 Generators of the Context-Free Languages

The family Alg of context-free or algebraic languages is a full AFL closed
under substitution (see Theorem I1.2.1.). In this section, we shall see that Alg is
a principal cone, by describing some of its generators. Each cone generator is
also a full AFL generator of Alg. As a consequence of the Syntactic Lemma,
we shall see that conversely, each full AFL generator generates the cone Alg,
ie. LI'= Alg iff LI'= Alg. The family of (full AFL or cone) generators of Alg
is the most “powerful” class of context-free languages.

No characterization of the generators of Alg is known. The Chomsky-
Schiltzenberger Theorem implies that the Dyck languages D7, D™, D,, D* are
generators for n=2. Other examples of generators are related to the language
E of completely parenthesized arithmetic expressions introduced in Section
IT.4. Autebert and Beauquier [1974] observed that these languages are all
rationally equivalent to languages of the form D/*N K, with K rational, and
gave a characterization of generators of this form. Let us mention a remarkable
property of the generators of Alg proved by Beauquier [1976a, b][1978a]:
For any generator L of Alg, there is a regular language K such that LN K is
still a generator and is an unambiguous language.

Recall that the Dyck languages

DEDD, Dy (n=1)
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are defined over an alphabet Z, =X, UX, with X, ={x,,...,x), X, =
{%4, ..., .} We first prove:

Propesition 1.1 For n=2, D¥f¥=D*=D =~Di=~D5; further Di¥=D7F,
D7¥ Dy, D4,

The Dyck languages over one pair of parentheses are not generators. The full
AFL generated by D/¥, Dy, D} is the family of one counter languages studied
in section 4.

Proof. For n=1 we have

Di=D¥,NZ¥ DF=DE.NZY D,=D,,NZE

D;=Dj,sNZ},
thus

*.=D¥ DF . =D* D.=D, D =D

Conversely, consider the morphism « : Z¥— Z¥ defined by

alx)=xix,xi, a(%) =X 5% i=1,...,n
Then U=a(Z,) is a bifix code. We shall verify that

D¥=o Y (DINU"), DiF=a (D5 NUY),

D,=a™(D,NU"), Dp=a (DsNU"),
which imply

D¥=D¥ DF=Ds D,~D, D.,=D:s. (1.1)
The inclusion a(D¥)c D¥N U* (and similarly for o(D/*) < DFNU*, a(D,) <
D,NU*, a(D1) < DL UX) is shown by a straightforward induction. To prove
conversely D¥ o a7 (DF N U*) we argue by induction on the length of words.

Let fea {DENUY). If |f|=0, then f=1eD¥ Assume |f|>0. Then w=
a(f)#1. Since we D¥, there exists a Dyck reduction

W= Wok— Wy = Wy * =W, =1,
Consider the smallest index i such that |w|, <|wl,. Then since w &= w;, it
follows immediately from Lemma I1.3.6 that w admits a factorization

W = UgX,UXo Uy or W = UgXoUXo Uy

with v = 1(mod 8,) and v €{x,, ¥;}*. Suppose for instance that w has the first of
the above factorizations. Since w e U™, there are integers i, j, (1=<i, j<n) such
that

w=u' 5% xxiu’
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with w'Zi=uy, v=%\x{ and xiu"=u,. Since veD¥ we have i=j, and
u', u"e U*. Consequently there are f, f"€ Z¥ such that a(f)=u', a(f)=u"
and f=f%xf" Next a(ff)=u'u"e DENU*" By induction, f'f"e D;‘, whence
feD¥. To prove the inclusion D, © o™ (D, N U¥), assume that there is a word
fea (D,N U™ such that f4:_ D,.. By the above proof, fe D¥ and conse-
quently f=fifs, Wlth fi. f-€ DI\1. But then a(fy), a(f,) e DA\1, and «(f) ¢ D,.
The proofs for D4 and D!, are identical.

In view of the Chomsky-Schiitzenberger Theorem I1.3.10 and by (1.1), there

are integers n, m, p, q =2 such that
D¥=Di*~D¥=D,~D,=Dy~D,=D¥=D¥

This concludes the proof. B

Proposition 1.1 implies immediately

Theorem 1.2 The cone Alg of algebraic languages is principal; any of the

languages D7, DI, D, Di(n=2) is a generator of Alg.

Proof. Let L be an algebraic language; then in view of the Chomsky-

Schiltzenberger Theorem, D/¥=I for some n=2. Since D'*=D* by the

previous proposition, DQ*B L, whence Algc DS*I". The converse implication is

obvious. &

Proposition 1.3 D, ~ D} =D

We shall see later (Proposition VIIL.7.1) that none of these languages is a
generator of Alg. The situation of DY is particular: Clearly Proposition 1.3
implies

D e p,f=Di'=D*
Thus DT is not a generator of Alg (since otherwise D%* would be a generator).

In fact, it can be proved (Boasson [1973a]) that the above inclusion is strict,
and that further the cones DFT™ and D7*I” are incomparable.

Proof. The equalities
Di=x,D{*%,  Dff=x7'DiF;
show that D4 and D¢ are rationally equivalent. Define an isomorphism
B:ZF—Z¥ by
Bxy) =3, B(%y) =x,,
and set D% =p(D?4). Then D4~ D, whence D} =D, UD.
Next we claim that

=D{UDjs. (1.2)
We shall see indeed that, with the notations of Section IL3,
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Dllle,xlszZ;k}zlﬁDla ﬁ;:Dl,il (1.3)

The inclusions D} < D, and D' c D, ., are clear. Conversely, consider a wqrd
w in D,,,. Then by formula (IL(3.5), (3.6)), w=x;w,w, - - w,%,, where

Wi,. .., W, € Dy, . Thus the conclusion follows by induction. The same proof
holds for Dj.
By (1.2), D{= Dy, and in view of (1.3), we have conversely D, = D4, B

There are other generators of Alg, related to the language E of completely
parenthesized arithmetic expressions. The first languages of this type have been
described by Schiitzenberger [1973]; other languages were found by
Autebert and Beauquier [1974]. A rather complete list was given in
Autebert [1973]

For n=1, consider the alphabets
An:{ab"'?a‘n}’ Cn:{C],...,Cn},
Let E, be the language generated by the grammar G, with productions:

Y, =A, UG U{b d}

n

E— Z aébée, +d.

k=1

For n=1 we set a=a,, ¢ =c,. Thus E;=FE is the language introduced in
Section IL.4. The languages E, have properties very similar to those of E.

Lemma 1.4 The language E, is bifix; more precisely, if we E,, then

Wla, =)y =|wle, =|wls—1,

and any nonempty proper left (right) factor w' of w satisfies

|W’|A“>QWI|C,, A, <|Wllcn)-
The simple proof is left to the reader.

Lemma 1.5 The language E, is equal to the class of d in the congruence w,
generated by the relations

adbdc, ~d k=1,...,n
The proof is the same as for Theorem I1.4.5 and is also left to the reader.

Lemma 1.6 Let weE,, and w=uau’, with u,u' e Y¥. Then there exists a
unique factorization u'=wibw,qu” with wy, w,e B, u"e Y*.

Proof. Let w=uau'. Since we E,, and w#d, there exist w', w' € E, such
that w=aqw'bw’¢, for some L{(1<iI=<n). If u=1, then u'=w'bw’q is the
desired factorization. If u# 1, then two possibilities arise. Either |ua,|<|aw’],
and then w' is of the form w' = u;quj with qu; =u and u} a left factor of u'.
Otherwise |aqu'|<|w"¢|, and w” has the form w"=u,a.u/, with u/c,=u' and
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u, a right factor of u. In both cases, the existence of a factorization follows by
induction. The unicity is obvious since E,, is prefix.

Theorem L7 The languages E,(n=1) are rationally equivalent.

Thus, in opposition to the situation for Dyck languages, we also have B, = E,.

Proof. The proof is in two parts. In the first part we prove the relations
E,=~E,=E, by a standard encoding argument similar to that employed for
Proposition 1.1. In the second part we prove E,= E, by a more complicated
encoding.

First we observe that

En = En+1 n Y?L

hence E, .= E, for n=1. Next, we show that E,=FE,. For simplicity, set
a=a;, c=cy, a =a,, ¢'=c,. Define a morphism

0:Y¥—Y¥
by 8(ay) = a(dba’)*;
6(b)=b,  6(d)=4d.

The set U=6(Y,) is a code. Further we have the derivations

8{c,) =c'"c k=1,...,n

&> a(dba’) ebéc' c k=1,....n

in the grammar G,. This shows that

HE)<cE,NU*
To show the converse inclusion E, 8 '(E,) and thereby the relation E,= E,,
we argue by induction on the length of a word fe 87'(E,). If |f|=1, then f=d
and feE,. Assume |f|>1 and set w=6(f). Then we E,NU*, |w|>1 and
consequently w = a(dba")*w’ for some k, (1<k<n) and some w'e U*. Apply-
ing Lemma 1.6 k times shows the existence of words u,, u, € E, such that

w = a(dba'Yuybu,c™c.

We verify that ug, u; € U™, Assume uy& U*. Then uob is a left factor of a word
ve U*, and by the form of the elements of U, ve U*6(a,) for some ie
{1,...,n}. But then either adb or a’db is a right factor of uyb, and d is a
proper right factor of u, which is impossible since ug€ E,. Thus uye U* and
similarly u, € U*. Consequently f factorizes into f= a,fobfc, with 6(f,) = uy,
6(fi)=u,. Since uq, u;€ E,NU¥, it follows by induction that f,,f,€E,,
whence fe E,. This completes the first part of the proof.

In order to prove the relation E = E, = E,, consider the morphism ¢ : Y¥— Y*




190  VII Generators

with Y =Y, defined by
dlay)=ay=adba  ¢lc))=y,=cc
Yla) =a,=aa Y(cz) =y, = chdc
g(b)="b Y(dy=d.

The set V=y{(Y,) is a prefix code. Next
é-> a;béy, i=1,2

in the grammar G = G, generating E, and therefore
Y(E)cENVE,

The converse inclusion ¢ (ENV* cE, is proved by induction. Let fe
$HENVH, I |fl=1, then f =d e E,. Suppose |[f|>1, and set w = §(f). Since
w#d, w contains occurrences of a; or a,, thus f contains occurrences of a4, a,.
We consider the right most occurrence of a letter a, or a, in f. Then f
factorizes into

f=gah’  ke{l, 2}
and k' e(Y,\la,, a,})*. Define u=y(g), v'=4(h'). Then v'e{b, d, c}*.

If k=1, then w=uadbav', and in view of Lemma 1.6, there exist words
wq, W, € E, such that

w = uadbawybw ccv, with v' = wobw, ccv.

Since v’ contains no occurrence of the letter a, we have wy,=w,=d. Thus
o' = dbdcco, and v € V¥, Therefore

f=ga,dbdch,

with (h)=v. Consider the word f = gdh. Then ¢(f')= udv, and since w=
udv(mod 7,), Lemma 1.5 implies that udv € E. Since also udv e V¥, we have
f'e E, by induction. Next f = f(mod 1,), whence feE,.

If k=2, then w=uaav’, and in view of Lemma 1.6 there are words
wo, Wy, Wy € E such that

w = yaawybw,cbw,cu, v' = wobwchw,cv.
As above, w, = w, = w, = d, which implies that v € V* and

f=ga,dbdc,h

with (h) = v. We conclude as above that fe E,. Thus E,= YEN V*) and
therefore E= E,.
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Corellary 1.8 The languages E, (n=1) are generators of the cone of algebraic
languages.

Proof. We prove that E;=D%*. Let indeed ¢: Y¥—Z¥ be the morphism
defined by

(P(ai):xis (p(ci):fi l:laz

el(as) = ¢lcs) = @(b) = @(d) =1.

The language ¢(E;) is generated by the grammar ¢(G,) with productions:

E— x 1 EER + X, 887, + EE+ 1.
It is straightforward (see Exercise I1.3.2) that this grammar generates D5¥,
Thus ¢(E;) = D5 B

We mention the following consequence of Theorem 1.7:

Corollary 1.9 Let X be an alphabet, and let A ={0, B, v,8}= X" be a code.
Then the language E, generated by the grammar with productions

£ affly+o
is a generator of the cones of algebraic languages.

Proof. Let Y={a, b, ¢, d} and E< Y* as above. The morphism ¢ : Y*— X*
defined by ¢la)=ea, ¢(b)=8, ¢(c)=7, ¢(d)=38 clearly satisfies e(E)=E,.
Since A is a code, ¢ is injective. Consequently E = ¢ 'p(E)=¢ " (E,) and
E, =~ E. Thus the corollary follows from Theorem 1.7. 8

We now examine some variations of the language E. For a complete classifi-
cation, the reader is referred to the paper of Autebert [1973] already
mentioned.

Proposition 1.10 The language E'<{a, c}* generated by the grammar with
productions

E—atéc+1

is a generator of the cone Alg.

Corollary 111 The languages Etand E% defined by the equations
Ei=aFE{bE\cU1l; Et=aE}Etc\Ud
are generators of the cone Alg.

Proof. The language E' is an obvious homomorphic image of both E/
and Ej. B
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Proof of Proposition 1.10. Set X ={a, ¢} and define
a = aaac, B =ca, v = acce, & = ac,
A={a,B,v,8}, K=(a"Usy*p)*sy*.

Clearly K is a regular language, and A is a code.

We shall prove the equality
E'NK=E,

which proves the assertion in view of Corollary 1.9. For this, define L = E'\{1}.
Since LN K =E'NK, it suffices to show

LNK=E,.
The language L is generated by the grammar H with productions
E—aééc+aéec+ac.

This implies that L is contained in D/ (with x, = a, %, = ¢) by a straightforward
induction. Thus L is bifix. The following formulas are easily verified:

§—afBéy; £f;8; (1.3)
aKBKy< K, 8 K; (1.4)
awye K> wekK; 7 (1.5)
awce L>welULUL2 (1.6)

By (1.3) alLBLyUSc L, whence L 2 E,. By (1.4) we have K 2 E,, and thus
E.<LNK. The converse inclusion LNK<E, is proved by induction. Let
we L NK. The shortest word in K is §, and 8§ E,. Assume w# 8. Then w
starts with a letter a, and ends with a letter c. Since we A™, w starts with ¢, v
or & and ends with «, vy or 8. Since we L and L is bifix, w cannot start or end
with 8. Next, by the form of K, w cannot start with v nor end with «. Thus

W =gy = aaacgaccc
for some ge X* By (1.5), ge K. By (1.6),
w'=aacgacce LUL?,

Assume w'eL. Then w"=acgace L UL? by (1.6), and since L is bifix and
acelL, one has g=1 and w=avy. But since ay¢ K this is impossible. Thus
w'e L2, and there are words u, ve1 UL UL? such that

w'= gacgacc = aucave, thus acgac = ucav.

Since u# 1 and u# a, ac is a left factor of u and similarly ac is a right factor
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of v. Thus u = ach, and v = hyac for some words h,, h,e 1UL. Thus
w = ah Bhyy.

Next iy #1 since of8 is not a left factor of a word of K. Similarly, h,# 1, and
hy, hoe L. We claim that

hy, hye L, hiBh,e K = hy h,eK (1.7)

Taking (1.7) for granted for a moment, we recall that g = h,Bh,c K. Thus
hy, hoe LNK and hy hye B, by the induction hypothesis. Consequently w e
E, which is the desired conclusion.

To prove (1.7), consider the unique factorization

g=hBhy=uu, - u

of g with uy, ...,y € A. Let n be the least integer such that h; is a left factor
of uytty - u It hy=uy - - u, then B=u,,, since 8 is the only word in A
starting with the letter ¢. Consequently ki, =u, ., * - y, € A¥, and since h,Bh,
K, we have hy, h,e K.

Assume hy#u; - w, Then hyo=u; - u, where v#1 is a proper right
factor of w,. Since B = ca is a proper factor of none of the words in A, B cannot
be a left factor of v. Thus necessarily v =c. Since the words in L have even
length, [hyclis odd. The length of the words in A™ are even, and consequently
lhicl=l|u, - < - u,| is even. This is a contradiction. Thus (1.7) is proved. B

Exercises
1.1 Define a morphism B:Z5— Z¥ by

BOx) = x,x8, B(x)=%\%, i=1,...,n
Show that D= g (D5*N B(ZH), and DEs R (DENB(ZH).
1.2 Show that the language L <{a, b, c}* defined by L =al.bL¢l. U{1} is a generator of
Alg.
1.3 (Schittzenberger [1973]) Show that the langnage M <{a, a}* defined by M=
aMMd Uad is a generator of Alg. (Hint. Show that M= M’, where M’ is given by
M'=aM'M'a U bb.)
1.4 Let L be defined by L =aLbL Ud. Show that L= D{*. (As already mentioned D/*
is not a generator of Alg. Thus the letter ¢ cannot be erased in E without loosing the
generator property of E.)

1.5 Let N be defined by N=aNNa Ud. Show that N is a generator of Alg. (Hint.
Proceed as in the proof of Proposition 1.10, with @ =aada, B = daaaad, v = adaa,
§=4d.)

1.6 Show that [wls, =[w']s, for any w, w' € Z¥, and that [wls, is a generator of Alg for
any we Z.. Same exercise for &/,
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1.7 Prove a Chomsky-Schiitzenberger like theorem for the family E,, (n=1): For any
L e Alg, there exist an integer n, a morphism ¢ and a regular language K such that

L =o(E,NK). -

VIL2 The Syntactic Lemma

For the investigation of families of languages with respect to substitution, the
“Syntactic Lemma” due to S. A. Greibach is a basic tool. By means of this
lemma, some information about the families £ and #( can be derived from
properties of the substitution £=/(. Further the lemma gives a method to
construct infinite ascending chains of cones and full AFLs, and thus of
nonprincipal full AFLs. These applications will be given in the next section.
The material for this and the next section is from Greibach [1970]. The
present statement of the Syntactic Lemma is more precise than the original
one. It is due to Beauquier [1978b]. For related topics and extensions, see
Boasson, Crestin and Nivat [1973] and Greibach [1972].

Theorem 2.1 (Syntactic Lemma) Let L and M be languages over disjoint
alphabers, and let &, M be cones. If L 1 MeZLo M, then LeZ or Me M.

If A=L1Me¥ oM, then A=6(B) for some BeX¥ and for some M-
substitution 6. Thus L 1 M and 6(B) represent alternative parsings of words in
A. The theorem claims that the form of A forces such constraints on the
second parsing that either L can be recovered from B or M can be obtained

from one of the languages 6(x), (x € Xp) by a rational transduction.
Note that in the theorem, the conclusion cannot be replaced by: Le ¥ and
M e #t (Exercise 2.1).

Proof. Let L= X* and M < Y*. First we handle some trivial cases. If L =0
or M=¢, then Le ¥ or Meut. If L={1}, or M={1}, then Le £ or M e
Next (L\DMM\D) =LIM N (Y X)", thus LTM € £ = 4 implies (LADM M\ D e
Po. Further, if L\1e% then L €% and similarly for M. Thus it suffices to
prove the theorem in the case where 1¢ L, 1€ M.

Assume J#Lc X", @#Mc X", Since A=L1TMe¥cM, there exist a lan-
guage Be¥, and a /l-subsfitution 8: X% (XUY)* such that A=LTM=
6(B). Thus any word fe A has at least two factorizations, a first one of the

form
2.1

f=muximax, - o myXy

with my, ..., M, €M, x1,..., %X, X, -+ x,eL, and a second one of the
form

f: dldz' .. dq’ (22)
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where .dj € Q(sz z;€Xp, and z, -z, €B. A factorization (2.2) is a 6-
factorlz.atxon of f. Note that a word f€ A has just one factorization (2.1), but
may admit several §-factorizations. }
Letk= I‘be an integer. We say that the §-factorization (2.2) splitsatorder k
or I;(—sp.hts if each d, (1=j=<g) contains at most k letters x € X. We now
distinguish two cases:

a) There exists an integer k=1 such that for each u = Xy x, € L, there are
wa'rds My, ..., m, €M such that f=myx, - m,x, has a @-factorization that
splits at order k.

b) For all integers k=1, there is a word u=x, - x, €L such that for all
my, ..., m, € M, no 8-factorization of f=myx, - - m,x, splits at order k.

Assume that a) holds and define a substitution 8: X%— (XU Y)* by
8(z)=6(z)N T z€Xpg,

where Ty ={ge (XU Y)*||g|x <k} Clearly 6(z) e since 6(z) e .4 and A is a
cone. Further G(iB).C 6(B)=A. In fact, 6(B) is precisely the set of words in A
that have a k‘sghttmg‘ 6-factorization. Thus by the assumption 6(B) = A. Next
let 7:(XU Y)‘?X* be the projection. Then for zeXy w(6(z)c
1L,{XU e UX .. Thus o =70 §: X5— X" is a finite substitution, hence a
rational transduction, and o(B)e #. Since

o(B)=m(8(B))=m(A)=L,

we have Le ¥
Assume now that b) holds. Let n=1 be an integer, and define

M, ={weM:|w|<n}, k =k, =Card(M,).

Let U=X1 X €L be a word such that the conclusion of b) holds for the
ﬁxcd‘mteger k= k.. Then clearly p=k. Define q, s by p=gk+s, (0ss< k)
Consider any enumeration of the words in M, : ’ .

Ml :{wl’ Wa, ovoy Wk}

and define a word f=w;x, "+ w,x, by setting w, =w, wh =
e o 1% 2%, by g w; =w; whenever j=i(mod k)

f=wx, - WK Wi Xpe1 * 00 Wik © * 0 WiXgeWi Xgeaq © WeXp,.

Next consider a @-factorization (2.2) of this word f. By assumption, there is a
factor d; that contains at least k+1 letters in X, thus d; has the form

J—
di=u'xwX, g WiXg Wi " * Wemi Xag U (2.3)

for some integers r, t, j, and some words u’, v'".
Now define a transduction 7: (XU Y)*— Y* by

g={meY": ge(XU Y XmX(XUY)* ge(XUY)*




196  VII Generators

Thus 7(g) is the set of all factors m € Y™ of g such that xmx’ is a factor of g for
some letters x, x' € X. The transduction « is rational since its graph

R=[(XU Y*X {1y, y):ye YPIXXUY)=x{1}] -
is a rational relation. It follows immediately from (2.3) that 7(d;) @ M,. Next

obviously 7(8(z)) & M for all z € Xp. Combining both inclusions, there exists a
letiter z € Xp such that

M, < +#(8(z)y= M.

Thus if b) holds, then for any integer n= 1, there is a letter z =z, € Xg such
that

M, = 7(6(z,)). (2.4)

This implies that M =7(8(2)) for some 2 € Xp. Indeed, assume the contrary.
Then there is a word w € M which is in none of the languages 7(6(2)), (z € Xp).
Setting n =|w|, this contradicts (2.4). Since @ is an J(-substitution, 6(2)€ K.
Further, since A is a cone and r is rational, Me /(.

Thus we have proved that if a) holds, then L €%, and if b) holds then Me M.
Since one of these conditions is always satisfied, the proof is complete. G

There are several useful formulations of the Syntactic Lemma in terms of
families of languages.

Corollary 2.2 Let £, &, M, # be cones. If L\L#* g and M\M# D, then
E o MNEL o MA D

Proof. Let L e ¥\&, M e 4\4. Since the families are closed under copy, we

may assume X; NX,, =@ Next A=LtMe%¥ oi. Suppose that A€ LoM.
Then by the Syntactic Lemma L € ¥ or M e M. Thus A¢ Lo,

The property of “factorization” of the Syntactic Lemma appears clearly in the
following corollary which is just a reformulation of the above statement.
Corollary 2.3 Let £, %, M, M be cones. If LoMc L oM, then Fc £ or
M

Proof. Suppose the conclusion is false. Then £\ # @ and M\ 4 # (. By
Corollary 2.2, Lol\L'oM' # D. @
As a first application of the Syntactic Lemma, we prove a weak converse of
Theorem V.5.6.

Thearem 2.4 Let & be a cone and let M be a cone closed under union. If o.M is
principal, then & or M is principal.

Note that as for the Syntactic Lemma, the conclusion : & and . are principal is
faise (see Exercise 3.1).
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Proof. Let A be a generator of Lol : Fobl=A Then A=c(LYwithLe¥
and o: X7~ X% a JA-substitution. By Proposition V.5.4, there is a language
Me M Em =4 such that ASLTM. Since L1MeLIl'sMI and LIsMI is a
cone, it follows that A € LI o MI" and consequently 24 < LI c MTI. In view of
Corollary 2.3, < LI or M MI. Since LI'c ¥ and MI'< 4, this implies

$=LI or M=MI

Corellary 2.5 Let ¥ be a cone closed under union. Then ¥ is principal iff £
is principal. &

Fxercises

2.1 Show that in the Syntactic Lemma, the “or” in the conclusion cannot be replaced
by “and”. (Hint. Consider a language A which can be written in two different way as
syntactic substitution: A=L T M=L'"{ M' with L# L' and M# M')

2.2 Let A;, B, be languages with X, NXp =&, (i =1,2). Show that A,1B,<A,{B,
implies A, <A, or B, =B,.

2.3 Let & and # be incomparable cones. Show that Ze and 4% are incomparable.

VIL3 Substitution Closure

This section contains applications of the Syntactic Lemma both to cones closed
under substitution, and to cones not closed under substitution. For principal
cones closed under substitution, the existence of a largest full AFL properly
contained in it will be proved. Cones not closed under substitution are shown
to produce infinite ascending chains of cones and thus nonprincipal cones.

A cone closed under substitution is a full AFL (Proposition V.5.5). Thus cones
closed under substitution are idempotent elements in the semigroup of all
families of languages with respect to the product 5, We first show that such an
idempotent cannot be a nontrivial product of two other cones.

Propesition 3.1 Let ¥ and A be cones, and set N =L oM. If N is closed under
substitution, then N =% or N = M.

Proof. Since N is closed under substitution. & o < ¥ o4, Hence N < ¥ or
N < M by Corollary 2.3. Since <N and M c W, it follows that /=% or
N =M. B

From Proposition 3.1, we obtain:

2,0

Proposition 3.2 Let £ be a substitution closed full AFL, and let 4l be a family
of languages. If £= I, then ¥ =T
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Proof. Observe that & =uI"=#I" Rat=RateI" Thus by Proposition 3.1,
% =TRat or £ =T In the first case .4 < Rat. Thus in both cases, M =M =

Proposition 3.2 is interesting when & is principal. -

Corellary 3.3 Let & be a substitution closed full principal AFL. If = Al then
¥=AT.

Thus the set of generators of the cone ¥ is equal to the set of generators of the
full AFL £.

Example 3.1 The cone Alg is closed under substitution. Thus any context-free
language L such that LI'= Alg also satisfies Alg=LT.

For any cone %, define the sets of generators and nongenerators of & as
follows:

Gen(¥)={Le#| L =% Ng(@) ={L e | L€ %} = $\Gen(¥£).

Clearly Gen(¥) # ¢ iff £ is principal, and Ng (¥) #{d} iff ¥# Rat. If both
conditions are satisfied, then Gen(¥) and Ng(¥) are families of languages. In
view of the corollary above, if & is closed under substitution and principal,
then Gen(¥)={Le ¥ | L[ =<

Proposition 3.4 Let ¥ # Rat be a principal cone. Then Ng(¥) is a cone, and
any cone properly contained in ¥ is contained in Ng(¥).

Proof. Let LeNg(¥), and let M be a language such that L. =M. Then
MI'c LI'¢ %, whence M € Ng(¥). Next let # be a cone contained in &, If 4 is
not contained in Ng(¥), then there is a language A in 4N Gen(¥). Conse-
quently #=Al'c i, and M=

If & is substitution closed, then a more precise result can be obtained.

Theorem 3.5 Let ¥ # Rat be a substitution closed full principal AFL. Then
Ng(¥) is a substitution closed full AFL and is the maximal full AFL properly
contained in ¥£.

Proof. In view of the previous proposition, Ng(¥) is the maximal cone
properly contained in &. In view of Proposition V.5.5, it suffices to show that
Ng(¥) is substitution closed. Define /(= Ng(¥) o Ng(¥). Then A is a cone, and
M Fa¥ =% Thus either M < Ng(¥) whence M =Ng(¥), or M=F. Assume
the second case holds, i.e. ¥=Ng(¥)oNg(¥). Then Proposition 3.1 implies
that £ = Ng(¥), contrary to the definition. Thus # = Ng(¥) and Ng(¥) is closed
under substitution.

Example 3.1 (continued). Theorem 3.5 asserts the existence of a maximal full
AFL Ng(Alg) properly contained in Alg. Thus Linc Ng(Alg), and since
Ng(Alg) is closed under substitution, Lin Lin* is contained in Ng(Alg). It is not
known whether Ng(Alg) is principal or not (see also below).
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We now apply the Syntactic Lemma to the construction of nonprincipal cones
or AFLs. This will be done by showing the existence of infinite strictly
ascending chains of cones. In the sequel of this section, we use the simplified
notation LAt for £=4. Thus in particular

PE=FcF, Lr=F-gt=gP! (n=2), L=

Theorem 3.6 Let & be a cone. If & is not closed under substitution, then
Fre P for any k=1 and Z* is nonprincipal.

Since ¥%* is closed under substitution (Corollary VI.3.3) the nonprincipality
as a cone or as a full AFL are equivalent by Corollary 3.3.

Proof. By assumption, ¥ G %°. Suppose that £* = #**! for some k, and let n
be the least integer such that ¥£" = ¥""'. Then n=2. Next £"=¥""forl=1.
Thus " =%?". Hence " is substitution closed. Since n=2, £ = %%, In
view of Proposition 3.1, " =% or " = %", The first equality is impossible
since £ ¢ £* < &7, and the second is ruled out by the minimality assumption on
n. Thus £* ¢ £**' for any k=1.

Next assume M =%F*= | ¥* is principal, and let A be a generator of L.

k=1
Then M= AI'= AT There exists an integer k such that A ¢ ¥*. Consequently,
L el = A« LT =Z*, in contradiction with the first part of the proof
Hence M is nonprincipal.

Example 3.2 The cone Lin of linear languages is principal and is not closed
under substitution. Consequently, there is an ascending chain

Ling (Lin)?’% - - - € (Lin)*s
of principal cones, and the substitution closure

LinLin*= | (Lin)®
k=1
is not principal. Lin Lin* = Qrt is the family of quasi-rational or standard
matching choice or nonexpansive or derivation bounded languages.
The cone (Lin)* is denoted by Qrt(k) and is called the family of quasi-rational
languages of rank k. Quasi-rational languages will be studied in more detail in
Section 5.

Example 3.3 In the next section, we shall consider the cone generated by the
Dyck language D7¥. This is the cone of restricted one counter languages.
We shall see later that D{*T", also denoted Rocl, is not a full AFL. Thus we
obtain an ascending chain Rocl&- - - & (Rocl)" & - - of principal cones, and the
family Fcl=Rocl Rocl* of finite counter languages is not principal and
therefore is contained in Ng(Alg). We note Fcl(k) the cone (Roch)*. In Section
VIHIL7 we prove that Rocl and Lin are incomparable, and even that Rocl is
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incomparable with QOrt and symmetrically, that Fcl and Lin are incomparable.
These results cannot be derived from the general methods described in this
chapter (see also Exercise 3.3). The combination of Lin and Rocl gives another
example of a substitution closed full AFL properly contained in Alg. We use
the following proposition.

Propesition 3.7 Let &, and &£, be two incomparable cones, and set &=
LU, Then LE* is nonprincipal.

Proof. It suffices to show that the cone & is not a full AFL, and to apply
Theorem 3.6. We verify that & is not closed under union. Consider indeed
languages [, € %,\%,, and L,e £,\¥;. Since ¥, and &, are cones, we may
assume L, < X7, L, < X3 for some disjoint alphabets X, X,. Let L=L,UL,.
Assume Le#,. Then LNXE=I,e%,. Thus L%, and similarly L& .%,.
Thus £ is not closed under union. @

Example 3.4 The family Gre=(RoclULin}(RocULin)* is the substitution
closure of the restricted one counter languages and the linear languages. By
Proposition VIIL.7.1, the rational cones Rocl and Lin are incomparable. Thus
in view of the previous proposition, Gre is a substitution closed nonprincipal
full AFL properly contained in the principal AFL of context-free languages.
Greibach [1970] conjectured that Gre=Ng(Alg). Boasson [1973b] has
proved that the inclusion of Gre in Ng(Alg) is proper. A characterization of
Ng(Alg) is still lacking.

Exercises

3.1 Give examples of cones ¥ and # such that ¥ =4 is principal and either & or 4 is
nonprincipal. (Hint. Take QOrt for & or 4.)

3.2 Let % be a cone which is not a full AFL. Show that £ < ['c #**' for k=1.
3.3 Let ¥, and ¥, be two incomparable cones. Show that if none of &%, and %, is
substitution closed, then £7 and &5 are incomparable for any n=2. (Thus (Rocl)" and
(Lin)" are incomparable.)

3.4 Let & be a substitution closed full principal AFL, and let L be a generator of #.
Show that for any regular language K, LN K or LN{XF\K) is a generator of &£

3.5 (Greibach [1970)) Let & and # Pe two incomgarab]e cones not closed under
substitution. Assume further that L& MAM* and M & LL*. (This situation is realized for
% =Lin, #{ =Rocl. See Section VIIL7.)

a) Show that #° < #°F" (resp. M = £ "4°) iff p<gq, (p,q,n=1).

b) Show that £'#° <F"#* iff n=wm and p=sgqg (p.qnm=1).

For k=1, ny, ny, ..., n =1 define

LM LM if keven,

LHy, Moy oo, )= .
(1, 1z ) {se/% o it kodd.
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¢) Show that L(ny, ..., m, BEL(m,, ..., my), and ML, ..., m)E L0, ..., M)
forall my,....;,my ... om =1,

d) Show that £L(2n,,2n,. ...,2m)cLQ2my, 2m,. ..., 2m) iff ny<m,, n.=<m,,
....m.=my. (This yields hierarchies of cones which are order-isomorphic to N*.)

Vil.4 One Counter Languages

We announced in Section 1 that the restricted Dyck language D% is not a
generator of the family of context-free languages. This will be proved in the
next chapter. The present section is concerned with the study of the cone and
the full AFL generated by D%*. Indeed, these two families can be characterized
by restrictions on the pushdown automata (pda) recognizing them. More
precisely, Df*I" is the family of languages recognized by pda’s having just one
pushdown symbol. For D/*" the condition is slightly weaker.

If a pda has just one pushdown symbol, then only the length of the words on
the pushdown store can be used for computations, and the pushdown store
works as a counter. Therefore the languages in D{*I" and D/*I” are called one
counter and restricted one counter languages. Note that the restriction on pda’s
defining one counter languages is in some sense dual to the restriction on
grammars defining linear languages.

We start with the definition of one counter pda’s, introduced by Greibach
[1969]. Since in this section we manipulate integers, the empty word will be
denoted by e in order to aveoid confusion with the integer 1.

Definition A one counter pushdown automaton M=(X Q,q.,
Q., Y, v,,R) is composed of an input alphabet X, a finite set @ of
states, an initial state g€ Q, a set Q,< Q of final states, an alphabet Y
consisting of two pushdown symbols y, vy, and a finite set of rules
R OX(XUe)xYXOQXY* Arule (g uzq,vy)is written (g, u, z)—{q’, v),
and N is subject to the following conditions:

(@, u,y)—=@, v)eR>vey™,
(@ u,y0)—=(q', V)eRD yey*y,. (4.1)
If (g, u, z)—(q', v) is a rule, then z is called the pushdown symbol and u is

the input symbol of the rule. A configuration is a triple (g w,v)e
OXX*XY* A move is a couple of configurations denoted by

(Qb Wi, ‘Yl)t:: (q25 W, Y2)

such that there is a rule (qi, u, z)—(q,, v) in R with w, =uw,, v, =2zv,
v, =y for some v'. Note that y,%s. A computation of length
is a sequence of k+1 configurations (g, w,v), (0i<k) suc
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(Gi—1, Wimr, vie) =(q, Wy, vi) for i =1, ..., k. A computation is usually written
(Go> Wos Yo) =(q1, Wi, YO =+ - = (G, Wi, Vi) (4.2)
or shorter

(qq, wo, Yo)"L (G Wi Y1)

As usual,F= and£= denote the transitive and reflexive and transitive closure of
=. Note that if yo€y¥y, in (4.2), then v, ..., v €v¥y, by (4.1), and if
Yo€y", then vy, ..., ye_1 €y and y €y

We associate to M two languages:

(Ml ={weX*|3q. Q.. (q_, w, yo) F=(q., & yo)};
Iml :{W EX* | 3q+€ Q—H (q~> W> Y)C:(QH €, 8)}

Clearly only rules with pushdown symbol equal to y are involved in computa-
tions of words in [M]. Thus if ' is the set of rules with pushdown symbol v,
then |M| = |M'|, where M'=(X, Q, q_, Q., Y, yo, ®'). Note that |M]| is defined
as the set of words which leave y, on the pushdown store. The usual definition
is rather to consider the words which empty the pushdown store (see the books
in the Bibliography). The definition above stems from the cited paper of
Greibach. It is easy to see that both definitions are equivalent (Exercise 4.1).
The present definition allows reinitialization.

A language L is a one counter language (a restricted one counter
language) if L =||M]| (L =|#)) for some one counter pda M. The families of
one counter languages and of restricted one counter languages are denoted by
Ocl and Rocl. Clearly both families are closed under copy.

Example 4.1 The Lukasiewicz language F <{ag, b}* ic a restricted one
counter language. Let M be the one counter pda with unique state g, and with
rules

(g,a,9)=(a,v%), (Db, y)—(q ).

Then it is easily seen that we|M| iff |w|, =|w|,—1 and |w'|, =|w/|, for any
proper right factor w’ of w. Consequently |M| =1 by Proposition I1.4.1.

Example 4.2 D7 < {x, £}* is a restricted one counter language. Let indeed B
be the one counter pda with the two states q_, g, with final state g and with
rules

(g %)@ y?), (@, %y)=(q.¢e), (g ¢&y)—>(qe).

Then |;|= D5* follows immediately from Corollary I1.4.2.
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Example 43 DY c{x, #}* is a one counter language. Consider indeed the one
counter pda M with states q_, g, g, final state q_ and with following rules:
(@- %0 yvo), (@ %y)=>(q,y%), (¢ % y)—(q &)
(g- % 0= (G yv0), (G % 9)=(3 ¥, (G x y)—(q ¢);
(g, & y0)=>(q-, Vo), (g. & yo)—=(g-, o).

Then the equality || = DT follows from the relation D¥ = (D4 U D})*, where
D is obtained from DY, by exchanging x and % This relation is a consequence
of formula (1.2).

Proposition 4.1 Roclc Ocl.
Proof. Let M =(X, Q, q-, Q. Y, yo, N) be a one counter automaton and set
L =|M|. We may assume that all rules of M have pushdown symbol y. Let g be
a new state, and define M=(X,QU4g, ¢ Q. Y,y,0) by

g%: %U{(qa g, y())"%(q—a YYO)}
For any computation in M

(G- w, Y)=(qy, wi, Y =0 = (G Wi Y7 = (g, &, €) (4.3)

(G, w, yo) =(q-, w, yyo) =(q1, Wy, Y™¥0)

= = G Wi YY) = (g4, &, o) (4.4)

is a computation in M. Conversely, any computation (¢, w, Vo) B= (4, € Vo) in M
factorizes into (4.4), and then (4.3) is a computation in M. Thus |M'=|#]. e

Propasition 4.2 The family Ocl is closed under union, product and the plus
operation.

Proof. The closure under union is straightforward. Let L, L’ < X* be two one
counter languages, and let L =|M|, L' =|[#'|| for

M: <X3 Qs q——a Q-\La Y9 yO> m>> M’ = <X9 OI! q/—’ Qfﬁ») Y’ Yoa %,>
Clearly, we may assume QN Q' = . Define a one counter pda
M” = <Xs Q U 0/9 q—s Q;a Y’ YO’ %”>

with R"=RUR' U{(q., & yo)— (%, vo) | a. € Q..
Then obviously |M"||= LL'. Next let

[W+ :<X5 Q’ Q~s Q+a Y» yOa SR+>
with R =RU{(gs. & vo)— (-, yo) | g, € Q).

Then |[M*|=L". ®
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Wote that these proofs are simplified by the possibility to reinitialize in the
definition of M.

Theorem 4.3 Ocl is-the rational closure of Rocl: Ocl=Rocl Rat.
Proof. By Propositions 4.1 and 4.2, we have
Rocl Rat < Ocl Rat < Ocl.

To prove conversely Qclc Rocl Rat, let M=(X, Q,q._, Q., Y, yo, R) be a one
counter automaton. For p, g€ Q and k=0, a computation

(p, W, yo) ={qs, wi, v =" 2= (G, Wi, Vi) =g, W', o)

is called properif |vil, ..., v > 1, thus if vq,.. ., v € y"y,. Define languages

L, by
wel,, <« thereisapropercomputation (p, w, yo) £={qg, &, Vo).

Any computation (g_, w, yn)t:é(% , &, vo) with g, € Q. factorizes in a sequence
of proper computations. Thus there exist states ¢, ¢z, ..., G, (n=0), and a
factorization w = ugu;u, -+ - 4, such that ugel, ., wel, ., ... 4 €L, 4.
Congider the aiphabet Z = Q X Q, and let K < Z* be the local regular langnage
K =(AZ*NZ*B\Z*CZ*,
A={q}xQ, B=0x0Q, C={gy,9.)a a5 |a#q}
Define a substitution o : Z%— X* by

o((p.q)) =Ly,
Then o(K) = |M], and to prove the theorem, it suffices to show that L, , € Rocl.
Define a one counter pda

f%p,q = <X9 Q U ﬁs ﬁ: {q}s Ya Yos 8?p,q>
where p is a new state, by

R =RULB, w, )= (@', V) | (0, w, y0) = (q', vyo) € R

Then it is easily seen that [|[M, .| = L, &

For the rest of this section, we only consider restricted one counter languages.
We therefore introduce some simplified notations. First, since the symbol y,
will no longer be relevant, a one counter pda will be denoted by M=
(X, Q, q_, O., M. Next, all rules in H are assumed to have pushdown symbol y,
and we write

(q.u)—>(q',m) insteadof (q,u,y)—(q.y"™) (m=-1)

VIL4 One Counter Languages 205

Thus m denotes the increase or decrease of the pushdown store. With these
notations, the computation (4.3) takes the form:

(-, w, 1)e={g, wy, ny) = = (G Wi 1) P2 (g, 8, 0).
Theorem 4.4 The family Rocl is a rational cone and Ocl is ¢ full AFL.

Proof. The second part of the statement follows from the first part by the
previous theorem. Thus it suffices to show that Rocl is a cone. Let M=
(X, Q,q., 0., R be a one counter automaton and L =[]

a) Let ¢: X% Y™ be an alphabetic morphism. Define a pda oM =
(Y, Q, q-, Q., ) by

e ={(q, eu)—(q', m)| (g, w)— (g, m)eR}.

Then clearly |of| = o |].
b) Let K< X™ be a rational language, and let 4 =(X, P,p_, P,) be a finite
automaton recognizing K. Define My =(X, QX P, (g_,p-), Q. X P,, Jig) by

Re ={g, p), W= g, p"), M| (g )= (g, m)eRandp-u=p'.

Then one has |My|=LNK.

¢y Let Z=XUz with z& X, and let : Z%— X be the projection. The first
idea for the construction of a one counter pda M’ with || =7"Y(L) is to add
to N the rules (g, z)—>(g, 0) for g€ Q. This method does not work. Indeed,
consider for instance a word w=w'z with w'eL. Then w would not be
accepted by M’ since the pushdown store is empty after the lecture of w'.
Therefore the presence of letters z has to be anticipated. This vields the
following construction. For each (g, u)e O x (X Ug), let g, be a new state,
Then define Q' ={q, | (g, W) e QX (XUe)} and o' M =(Z, QUQ', q_, Q,, 1",
where H' is given by

N ={q-, 2)—(q_, O}UR"
3%-” :{(Q9 u)““é’(gun O), (q'u Z)MB' (ams O)v (CAIw 8)'_; (qls }ﬂ) ' (qv u)m} (q,7 Iﬁ) ESQ}

A straightforward verification shows that |o 'M!=7""L.

By the previous constructions, Rocl is closed under alphabetic morphism,
inverse projection and infersection with rational languages. Thus Rocl is a
rational cone. &

In order to prove that Rocl is a principal cone, a “normal form” of one counter
pda’s will appear to be useful. A one counter pda M=(X, Q,q_,Q,,R) is
called normalized iff for any rule (g, v)-> (g, m)e R, either m=1 or m=~—1.
Thus the length of the pushdown store always increases or decreases by 1.
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Lenmuma 4.5 For any one counter pda M, there is a normalized one counter pda
M’ such thar |M| = /M|

Proof. Let M=(X, Q,q_, O,,R), and define M =(X, Q', q_, Q., ") with
Q'>Q as follows. Let {q, u)—(p,m)eR be a rule. Then (i) if m=1 or
m =1, then (g, u)—(p, m)e R'; (i) if m =0. then let § be a new state and add
to N the tworules (g, u)—(4, 1), (4, &)= (p,~1); Gil) if m=2, then let
415 925 - - - Gu—1 De new states and add to N the rules (g, u) — (G, 1), (G4, &) —
(G 1), (Grzs €)= (Gre1s 1)o(Gin1, €)= (p, 1). Such a ““factorization” of
the rules of N yields a normalized pda M', and clearly |M'|=|M . &

Theorem 4.6 The rational cone Rocl is principal. D, D, D,, £ are generators
of the cone Rocl.

Proof. By Proposition 1.3, D{*~D{~D,. Next if D¥ £ <{a, b}* then we
noted in Section I1.4 that D*b =£. Thus D{¥~%, and the four languages are
rationally equivalent. All these languages are restricted one counter languages,
and since Rocl is a rational cone, we have #I' < Rocl. Thus it suffices to show
the converse inclusion, or £ =L for any L € Rocl.

Let L X™ LeRocl, and let M=(X, Q,q.,Q., N be a normalized one
counter automaton with L = |M]. The proof is in several steps. Note that only
minor changes will be made with respect to a proof showing that the languages
recognized by general pda’s are context-free.

a) First we prove that L is the homomorphic image of a language recognized
by a “deterministic” one counter pda. Number the rules of R from 1 to
N=Card(@R). Let m, (1<i<N) be the i-th rule. Then R ={m, ..., my}. Let
T={t,...,ty} be an alphabet and define a one counter pda M =
(T, Q,q., Q,, ') by

(g )=, meR < m=(quw)-—(q,m) l=sisN

Then clearly M’ is normalized, and M’ is deterministic in the sense that there is
no rule with left side of the form (g, ¢), and

each r e T is the input symbol of exactly one rule in R’ (4.5)

Let o: T~ X* be the morphism defined by (t)=u iff u is the input symbol
of the i-th rule in :. Let L' = |M'|. We prove that L = a:(L"). Consider indeed a
computation in M';

(g, b, 6, De=(agy, to b= =Gy, b ) = (g4, &, 0).

Since m, =(q-, a{t N> (q:, ny—1), m, =(q,_, a(t)—(q, (LR CHR

2=r=<k-1) and 7 =(gu-1. a(t ) —(q., —1), it follows that alt, - -t )eL.
Thus «(L')e L. Conversely, let wel and consider a computation in
M (g, w, 1)% (q,, &, 0) of length k and let T, . . ., 7, be the sequence of rules
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used in this computation. Then each , is of the form =, = (g, a(t))—(q', m)
for some t, €T, and (q, t,)—(q’, m) is in R'. Therefore a(y, -+, )=w and
AR eL’. Thus Lca(l’).

b) Next we show that L' =|M"|NK where K< T* is a regular language and
4" has just one state. Define a one counter pda M" =(T,{p}, p.{p}, R and a
finite state automaton 4 =(T, Q, q_, Q,) by

ma@mmm%}
q1=q

(g, 0)—~(q,m)elRt

Then it is easily seen by induction that
k
(qu Wa 1) ¥: (Q+> 85 0) in M’
k
iff (p,w, DNe=(p,&,0)inM"and g w=4q..

Consequently L' =L"MNK, with L"=|M"| and K =|4|
¢} The set " of rules of M" defines a morphism v from T into the additive
group Z by

v(il=m < (pt—=>@E meR” (eT). (4.6)

Note that v is well defined in view of (4.5).
Letw=z, -z €T (z;€T). Assume w € L". Then there is a computation in
M

(p> Zys " Zys no)‘z (p’ Zpt Zies nl)kz v ’:(ps Zyes nk—l)k:(ps g, nk) (47)

with ng=1, n=0. By (4.6), v(z)=n—n_, for i=1,...,k whence
vz, z)=m—1fori=0,...,k Since i, >0 for i=0,...,k—1, we have:

v(w)=—1 and v(w') =0 for any proper left factor w’ of w. (4.8)

Assume conversely that (4.8) holds and define n,=1+wv(z, z) for i=
0,..., k. Then by (4.6), (4.7) is a computation for w and therefore w € L”. This
proves that w e L” iff (4.8) holds. Finally let £ c{a, b}* and let g: T*—{a, b}*
be the morphism defined by

o ifu(n=1
Bm“{b fo=-1 (€T

(Recall that the integer m in (4.6) is equal to 1 or —1 since the automaton M
was supposed to be normalized.) Then Proposition 1.4.1 and (4.8) show that
welL” iff B(w)e . Consequently L"=8""(£). The three steps of the proof
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show that
L=a(lY=all"NK)=a(B"HE)NK).

Thus L<£, &
We shall see in the next chapter that the principal cones Rocl and Lin are
incomparable. A direct proof of this fact is long and tedious. A short proof uses
results on iterative pairs.

The language S.={x"y"|n =0} is both a linear and a one counter language.
Thus S_I"< RoclNLin. It is an open question whether this inclusion is strict. A
refated open problem is the following: Is the intersection of two principal cones
a principal cone?

Exercises

4.1 (Greibach [1969]) Show that a language is contextufreé iff it is of the form
(Ml ={w e X*|Fq. € Q. :(q-. w, yo) = (... &, ya)}, where M is a general pda (as defined
for instance in Ginsburg [1966]).

42 Let X, ={xp, %1,..., %}, (n=1). Define L, = X¥ by

L,= U xk(Ln)k U xq.
K

=1

Show that the languages L,, (n=2) are generators of the cone Rocl.

4.3 (Greibach [1969]) Let M =(X, Q,q_, O., Y. v0. M) be a pda. Define P(I)=
fhe Y*|3weX* g0 (g, w, yo) =(q, &, )} to be the set of all words appearing on
the push-down store during computations. Then B is an n-counter pda iff

PR < yoyt -y (v1, .. . ya€ Y.

Show that L eFol(n)I* iff L =[M]l={weX*|3q.cO, (g, w, yo)—=(q, &, yo)} for some
n-counter pda M.

VILS Quasi-Rational Languages

The family of quasi-rational languages is the closure under substitution of the
family of linear languages. This remarkable family admits several quite differ-
ent characterizations and therefore has also several denominations: quasi-
rational languages are known as standard matching choice, or nonexpansive, or
derivation bounded languages.

In this section, we prove the equivalence of some of these definitions. Papers
on quasi-rational languages include Yntema [1967], Nivat [1967],
Ginsburg and Spanier [1968], Salomaa [196%9a], Gruska [1971a,b].
Results concerning subfamilies have been proved in Boasson, Crestin and
Nivat [1973], Crestin [1978].
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Definition The family Qrt(k) of quasi-rationallanguages of rank k=1 is
defined inductively by:

Ort(1)=Lin, Qri(k+1)=LinsQrt(k) (k=1).

The family of quasi-rational languages is

Qrt= U Qrt(k).

k=1
In view of the associativity of substitution (Theorem V.5.1),
Qrt(k) = Qri{k — 1)oLin = Qrt(n)e Qrt(m)

for all k=2, n, m=1 with k = n + m. By Theorem VL5.7, Qrt(k) is a principal
cone, hence closed under union. In view of Example 3.2 and Exercise 3.2,

Qri(k) ¢ Qri(k) M g Ort(k +1) k=1. .1

Example 5.1 Let X ={x, vy, 2}, let S_={x"y":n=0), and consider the lan-
guage

L={x"my"x"y" . x"y%z?:p=0,n,,...,n, =0}

Then L =6(S.), where 8:{x, y}*~>X¥ is given by 6(x)=5_, 8(y)=2 Thus
L € Qrt(2). The iteration lemma for linear languages (Proposition V.6.6) easily
shows that L is not linear.

Ezample 5.2 No generator of the cone Alg is quasi-rational since otherwise it
would belong to Qrt(k) for some k=1, and (5.1) would be violated. Tt is much
harder to prove that Di¥ (and consequently also £, D}, D,) are not quasi-
rational. This will be done in the next chapter (Theorem VIIL7.14).

We now give a first characterization of the quasi-rational languages. For this
we need a definition.

Definition A context-free grammar G =(V, X, P) is nonexpansive if for
every €€V, and we(VUX)*, £¢5w implies that w contains at most one
occurrence of & A language L is nonexpansive if there exists a nonexpansive
context-free grammar generating L.

Let Nexp denote the family of nonexpansive languages.

Theorem 5.1 Nexp =Qrt.

Proof. In order to verify the inclusion Qrtc Nexp, we show that Qrt(k) <
Nexp by induction on k. Clearly any linear grammar is nonexpansive. Thus
Ort(1) @ Nexp. Next let L Y*, LeQrt(k+1)=Lin~Qrt(k). Then there are a
linear language A < X* and a Ort(k)-substitution 6:X*—Y™* such that
6(AY=L. Let G=(V, X, P) be a linear grammar such that A =Lg(o) for a
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o€ V. By induction, there are nonexpansive grammars G, =(V,, Y, P.) such
that 8(x)=Lg (o,) with o, eV, for each xe X Let H=(W, Y, Q) be the
grammar generating L constructed in Section I1.2. We claim that H 4s
nonexpansive. Otherwise there is a €€ W= VU |J V, such that

xeX

£ akbéc (5.2)

for some words a, b, c. The variable £ is in none of the sets V,, since otherwise
(5.2) would hold in G,, and G, would be expansive. Thus £¢ V. But then (5.2)
cannot hold since G is linear. Thus H is nonexpansive and L € Nexp.

Conversely, let L be a nonexpansive language. Let G =(V, X, P) be a nonex-
pansive grammar with L =L (o) for some o€ V. We prove that L is quasi-
rational by induction on n=Card(V). If n=1, then G is linear and L is
quasi-rational. Thus assume n=2, and that the conclusion holds for all
nonexpansive grammars with less than n variables. Clearly G is still nonexpan-
sive if it reduced in ¢ (in the sense of Section I1.2). Thus we assume that G is
reduced in 0. Define V'< V to be the set of variables £ such that £ ach for
some a, be(VUX)*. Since o€ V', V' is nonempty. Define a grammar

G'={(V', X U(V\V"), P, Pr={t—>acP|tcV'}

We claim that G' is linear. Assume the contrary. Then there exists a produc-

tion £— fn,gn.h in P’ with & 1y, np€ V'. Consequently ;> a,0b;, n,-> a,0b,
for some words a4, by, a,, b, and since G is reduced, o= uév for some words
u, v. Combining these derivations, we obtain

o> u{‘u—; Mf”"hg‘flzhv—*" ufa,ob,gaob,ho,

and G is expansive, contrary to the assumption. Thus G' is linear. If V'=V,
then G =G’ is linear and L is quasi-rational. Thus suppose V'# V and
consider the grammar

G =(V\V', X, P\P".

Note that G is indeed a grammar, i.e. n—a € P\P' implies a € (XU V\V")¥,
since otherwise a = afb for some (e V', hence ¢ — a’ob’ for some a’, b’, and
ne V. Since o e V', G has less than n variables, and obviously is nonexpan-
sive. Thus by induction L, = Ls(£) is quasi-rational for each £e V\V'. Next
L=6¢(Ls{o)), where 6:(XUV\V)*— X* is the substitution defined by
O(x)=xfor xe X, and 8(&§)=L, for £ V\V'. Thus L eLinoQrt=Qrtand L is
quasi-rational.
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We now consider another property of grammars which will appear to give a
characterization of the quasi-rational languages of rank k. Let G =(V, X, P) be
a context-free grammar. The index of a derivation

Wo=> Wy—>+ * —>w,
is the maximum number of occurrences of variables in wg, ..., w,, i.e. the
greatest of the numbers [wolv. .. ., [w,|v. Given a word w e (VU X)* such that
£5w, the index of w with respect to £e V is the least of the indices of all
derivations £->w. Denote this number by ind(£ w). Clearly ind(& w)=1.
Next define

LE(E ={we X*|ind(¢ w)<k}.

Thus LE(£) is the set of all words w € X* for which there exists a derivation
£ w with index at most k. Obviously

LEOSLED®,  La@= U LEO.

The grammar G has index k in ¢ if k is the least integer such that
Ls(8)=L% (&), and G has infinite indexin & if Lo(&)# L&) forall k=1.
Let ind(G, €) denote the index of G in & Thus ind(G, &) is either a positive
integer or infinite,

Defimition Let L be an algebraic language. Then the index of L is defined as
ind(L) = min ind(G, &)

where (G, £) ranges over all algebraic grammars such that L = L;(&). Thus the
index of L is either a positive integer or infinite. Let Ind(k) be the family of all
algebraic languages of index <k, (k=1).

Example 5.3 Any linear language has index 1, since any linear grammar has
index 1 in all its variables.

Example 5.4 Let £ <{a, b}* be the Lukasiewicz language. £ is generated by
the grammar with productions £— aff+b. We claim that this grammar has
infinite index.

Define indeed a sequence of words (f,,) =1 bY f1 = b, frui1 = af nf. We verify that
ind(¢, f,,) = m. Since £-> b, we have ind(§, f;) = 1. Arguing by induction, assume
ind(¢, f,.) = m. Then there exists a derivation

é:wo-—)»wl-é- CT W, :fm

of index m. Consequently the derivation

E=abl—aw E— > aw g awwy = S aww, =f
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has index m+1, and ind{{, f,..¢) < m+ 1. Conversely, consider a derivation

E=wom—r Wi = w, =1 -

Then w, = agf, and by Lemma I1.1.1, each w; admits a factorization w, = auy;
such that

k, k,
E=U—>Uy—> > Y= Uy,
l?. i
E=v—> 0= 0, o,
with k, +l=1for i=2,...,p. Since [, =auv, and u,, v, e £, and since £ is

prefix (Proposition 11.4.1), it follows that u,=v, ={,. Next either k,=0 or
l,=0. Assume k, =0, then I, =1, and |v,_4|,=1. Consequently |v,|,=1 for
each i=1,...,p—1. Next y,_; =u, = f,, and by induction, there is an integer
i, {(1=isp-1) such that |ul.=m Thus |w|,=m+1, showing that
ind(g fu)=m+ 1.

Note that we did not prove that the language £ has infinite index. We only
proved that a particular grammar generating £ has infinite index. The proof
that £ has infinite index is much more difficult. It is a consequence of Theorem
VIIL.7.14 in view of the following result.

Theorem 5.2 For any k=1, Ind(k) = Ort(k).
The proof of this theorem is in two parts. First we prove
Lemma 5.3 For any k=1, Qri(k) < Ind(k).

Proof. The proof is by induction on k. Any linear grammar has index 1.
Hence Lin < Ind(1). Since by induction

Ort(k +1) =LincQrt(k) < LinoInd(k),

it suffices to show the inclusion LinsInd(k)< Ind(k+1). For this, consider a
language L < Y¥ in LineInd(k). Then L = 8(A), where A < X™ is linear, and
81 X%~ Y* is a Ind(k)-substitution. Let G =(V, X, P) be a linear grammar in
canonical form (as defined in Section V.6), and let oeV be such that
A =Ls(0). Next for each xe X, let G, =(V,, Y, P,) be a grammar such that
6(x)= L (o), and having index <k in o,. Let H =(W, Y, Q) be the grammar
such that L =L (o) deduced from G and the G,, as given in Section I1.2.

Observe that for each production é-—> xn in P, the production é—o,m is in Q.
Thus for all w € 8(x), there is a derivation ¢~ ww of index at most k+1 in H.
The same conclusion holds for the other types of productions in P. Conse-
guently, for each derivation o= in G, and for each we 8(f), there exists a
derivation o> w of index at most k+1 in H. Thus L e Ind(k+1). [

VIL5 Quasi Rational Languages 213

The prool of the converse inclusion, namely Ind(k) < Qri(k), is more involved
and requires some investigations of the index of derivations. For this, we first
introduce an auxiliary notation: Given a grammar G and words u, v, we write

U u
as an abbreviation for
U=y OF U->U.
Thus ur—v iff u—v with n=0 or n=1.

We now prove a general lemma concerning decompositions of derivations, and
their relation to the notion of index. Let G =(V,X ) be a context-free
grammar, and consider a derivation in G

Wi=> Wy ° > W, (53)
with w, € X*. Assume further that

Wy = Upf ity * ¢t U1 &, &,...,&eV, Ug, . . ., U € XE
In view of Lemma [1.1.1, each word w; admits a factorization

w; = uhPuhs  u, By,
such that

e

b= B hPrs- s g |

: (5.4)

b= hDi> P> o B

and further for each i=1,...,n—1, h®— k" for exactly one 1. The deriva-
tions (5.4) are said to be induced by (5.3).
The following lemma is an exiension of the argument used in Example 5.4.

Lepmme 5.4 Assume that the derivation (5.3) has index =<p. Then for t=
1,...,s, at least t of the induced derivations (5.4) have index <p-—s+1.

Froof. Assume the contrary. Then there is some ¢ such that less than ¢
induced derivations have index <p —s+t Since the index of the other deriva-
tions is greater than p—s+1, this means that there exist r=s—1+1 induced
derivations which all have an index at least p—s+¢+1=p—r+2. For simplic-
ity, we assume that these derivations are the first ones in (5.4). Next, since
RP, ... B eV, and h{, ..., hiY e X*, there is a largest integer m <n such
that

Ry =1, (v =1,.0 L R =,
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and there is some je{1,...,r} such that h{™*V e X*. Consider this j, and the

corresponding induced derivation &> h{" in (5.4). The index of this derivation

is=p—r+2. Thus there is some exponent | with 1<<!=<m and such that )
|kl =p—r+2.

Since (WP, =1 for i=1,...,r, i5#], we have
lwlv=(p-r+2)+(F—-1)=p+1.

Thus the index of the derivation (5.3) is =p + 1, and this is a contradiction. B

Proposition 5.5 (Ginsburg and Spanier [1968]) Let G=(V,X,P) be a

contexi-free grammar. Then LE(€) is a quasi-rational language of rank k for all
EceVand k=1,

The proposition claims that the languages L&) are context-free. Ginsburg
and Spanier [1968] show that this holds even if G is an arbitrary phrase-
structure gramimar.

Proof. Let k=1 be fixed. We first construct a context-free grammar H
generating LE(¢), which proves that these languages are context-free. The
analysis of the grammar H then shows that the languages are quasi-rational of
rank k.

Define a grammar

H=(W,X, Q)
as follows: W=V x{1,..., k}. (An element of W is noted [, p] instead of
(¢ p).) Next, for each production

E—ugb by U U €P, (5.5)

with &,,...,& €V, Ug, ..., U € X* and s <k, the productions

[§> p]—%uo[gh pl]ul[g?.: pz] te usfl[gm Ps]us

are in Q for all p=s, and for all permutations (py,p,,...,p) of (p—s+

1,...,p).

Note that the p’s are distincts, and that {p.,...,p}={p—s+1,...,p}. Note
also that if s>k in (5.5), then this production gives no contribution to .
Finally, observe that if s =0, then [ pl—u,eQ foralip=1,..., k. We claim:

Ly(&pD=L& & for eV, lspsk

(1) We first prove the inclusion LE(&) < Ly ([ p]) by induction on the length
of derivations. Let we L®(#), and consider a derivation of index <p:

Eswi—mw,— = w,=w iInG.
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¥ n=1, then £—weP, and, in view of a previous remark, [£,pl—>weQ for

s

p=1,...,k Thus w e L (& p).
Assume n>1, and set
W1:u0§1M152".§su59 glv"‘agsevs an"~>us€X*'

Obviously s <p, since the derivation has index =p.

In view of Lemma 5.4, there is at least one induced derivation with index
<p—s+1. Next, there is at least one other derivation which has index
<p—s+72. Continuing in this way, one determines, for each j=1,...,s, an
integer w(j)e{l, ..., s}, distinct from the previous ones, such that the induced

derivation £, ~>h{%, has index at most p—s-j. Since the length of the

induced derivations is smaller than n, it follows by induction that
W e Ly(léegyp—s +iD ji=1,...,s

Note that = is a permutation of {1,...,s}. Setting pi=p—s-+a ‘(i) for
i=1,...,s we get a permutation (py,...,p) of (p—s+1,... ,p), and

hive Ly((& ) i=1,...,s
Finally
[& pl—udé, piluy - U 1lé plu e Q,

and consequently we Ly (€ pD.
(ii) We now prove the inclusion L& phe LE(€), by induction on the length
of derivations. Let we L, ([ p]), and consider a derivation

[&plawi—w,——w, =W in H.

If n=1, then é—=wek, and we LE(§). Otherwise

w1 = Ul &y, prluilé, pal - - - uedlé, o lug,

with s <p, and with (py, . .., p,) a permutation of (p—s+1,..., p). There is no
loss of generality in assuming p,=p—s+1,....p,=p. By Lemma I1.1.1,
w=ughyuh, * - Ui,
with
[(f;‘apj:l*;’hj i=1,...,s
By induction, h; e L&(&) for j=1,...,s, and therefore there are derivations

&5y (5.6)
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with index <p,=p—s+jfor j=1,...,s Consider now the derivation

5’:”051“152' < U & -
?u0h1u1§2 C U S
—?uohlulh2 Crr U 1 & (5.7)
%u0h1u1h2 v us—~1hsus =W,

obtained by concatenating the derivations (5.6) in increasing order. The j-th
derivation (5.6) contributes in (5.7} to words containing at most p;+(s—j)=p
nonterminals. Thus (5.7) has index at most p. This shows that w is in LE(&).

(iti) It remains to prove that Ly ({£ p]) e Qri(p). Observe first that for each
production [£ pl—a €, and for each nonterminal [n, q] appearing in «, we
have g=p. Thus the grammar

H,=(W,, X, Q,)
with

W,=Vx{l,....p}, O, ={l{ql—acQ|gsp}
is well-defined, and further

Ly (& gD=Ly(£ q)) forg=p.

For p =1, the grammar Ly, is linear by construction. Thus L;({£ 1]} e Lin.
Assume p>1, and consider the grammar

H,=(W\W, , XUW,_ |, Q\Q,_,).

By the previous remark, I:Ip is well-defined and by the construction of H, ﬁp is
linear. Further, it is easily seen that

Lu(&pD=0Lg (& pD),
where 6:(W,_,UX)*— X* is the substitution defined by
8(x)=x (xe X);
6(&ad=Lu(&aD)  q<p
Arguing by induction, 6 is a Qrt {p —1)-substitution, and L;((£ p])eQr‘i(p)é

Proof of Theorem 5.2 The inclusion Qrt(k)<Ind(k) holds by Lemma 5.3.
Conversely, let L e Ind(k). Then L = L5 (&) = L% (¢) for some grammar G. By
Proposition 5.5, LE(£) e Qre(k). Thus L e Ort(k), and Qrt(k) = Ind(k). &

VIL5 Quasi Rational Languages 217

There is another characterization of quasi-rational languages using the bracket
operation defined in Section V.6, due to Nivat [1967] and Yntema [1967].
See the following exercises.

Fizercises

5.1 Show that for a rational relation R, and for a quasi-rational language L of rank k,
the language [R, L] is quasi-rational of the rank k. (The bracket [R, L] was defined in
Section V.6.)

5.2 (Yntema [1967], Nivat [1967]) The set of quasi-rational relations of rank k
over X and Y is the least family of subsets of X*X Y* containing the relations L XL,
(LeX® L'eY®) with L, L'e Qri(k) and closed under union, product and the star
operation.

a) Show that for any quasi-rational relation R of rank k, and for any quasi-rational
language L of rank k, [R, L] is in Qrt(k +1).

b) Show that conversely any language A €Qrt(k+1) can be written as A =[R, 1),
where R is a quasi-rational relation of rank k. Give such a relation of rank 1 for the
language of Example 5.1.
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In Chapter V it was shown that languages like S.={x"y™|0=sn<m} and
S.={x"y™ | 0=m<n} are rationally incomparable. In the previous chapter,
the Syntactic Lemma gave infinite chains of rational cones which appear to be
of increasing ‘‘complexity”. Thus rational transductions classify languages
according to some measure of complexity. In the present chapter, we give a
description of this complexity measure in so far as context-free languages are
concerned.

Since any algebraic language is a rational image of D%¥, it is obtained by
adjoining additional restrictions to that language. The resulting language is
then subjected to two types of constraints, some of “context-free” nature, the
other of “regular” nature. The algebraic constraints are expressed by counting
restrictions or by restriction on parenthesization. The rational constraints
concern repetition and transcription. Rational transductions should ignore
rational constraints, and detect modification of algebraic constraints.

The concepts introduced by Boasson [1976] and Beauquier [1978a] to
describe the algebraic constraints are the notions of iterative pair and of system
of iterative pairs. The central theorem of this chapter (Theorem 6.1) can be
rephrased informally as follows: if A and B are algebraic languages and if
A =B, then A has systems of iterative pairs of greater complexity than those
of B.

The systems of iterative pairs in a language L are defined by a combinatorial
property of L. But if L is context-free, then these systems are closely related to
some nesting of the self-embedding variables of any algebraic grammar
generating L. Thus systems of iterative pairs give, through a property of the
words of a language, a description of a “structural” feature common to all
grammars for this language. In view of this relationship, the types of systems of
iterative pairs can really be considered as a good measure of complexity. By
the way, these facts constitute a justification a posteriori of the use of rational
transductions as a tool for comparison of languages.

The first three sections of this chapter are concerned with iterative pairs and
the Transfer Theorem for these pairs. As an illustration, we easily obtain most
of the results of Section V.7, and we show a new infinite chain of rational
cones. Sections 4~7 contain the generalization of the results to systems of
iterative pairs and applications. The material for this chapter is from Boasson
[1976] and Beauquier [1978a]. The second author gives, in Beauquier
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[1977] another generalization, not included here, of iterative pairs, which he
calls “multipairs”.

VEI.I Types of Iterative Pairs

This section contains the definition and examples of iterative pairs. A classifica-
tion of iterative pairs is given and some simple lemmas are proved.

Definition Let X be an alphabet, and let L < X* be a language. A sequence
m=(a,u b,v,c)
of words of X* is an iterative pair in L if

) aubv"ce L for n=0;
(ii) luv|>0.
The words u and v are the iterating elements of .
In.view of (i) the word w = aubvc belongs to L. Then 7 is called an interative
pair of w in L, and w is said to admit the iterative pair = in L. We are
interested in the language L Nau™*bv™c or equivalently in the set of integers
k, I such that aubv'c € L. Therefore we define the set of exponents of 7 in
L by

Exp(m, L)={(k, ) eN?: au*bv'c e L}.

This set describes the local constraint of L on the factorization 7 of w. By
definition, Exp(w, L) contains the diagonal A={(n,n):neN}. K « is an
iterative pair in L, and if L = L', then clearly w is also an iterative pair in L'
and Exp(m, L)< Exp(ar, L'). Note that

Exp(m, L) =Exp(m, L Nau™bv*c).

Example 1.1 Let L < X™ be context-free. The iteration lemmas assert that any
long enough word w in L admits an iterative pair in L.

Example 1.2 Let X ={x, y} and S.={x"y" |0<n<m}. Then w=(1, x, 1, y, 1)
is an iterative pair of xy in S., and Exp(w, S2)={(n, m) | 0sn=<m}.

Exmpﬁg 1.3 Let L={x"y"™ |0<n<m=<n+3}. The word xy admits the itera-
tn’/e pair w=(1,x1,y,1) in L. The word x*y* admits the iterative pair
w'=(1,x%1,x* 1) in L, and Exp(+', L) = A.

Example 1.4 Consider the language

L={x*yPyiz"z"%" |0<k,0<<p=<gq,0<m=<n}
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The word w = xyyzZ% admits at least the following iterative pairs in L:
m=(1, % y922, % 1)y ma=(x, 9,1, §,22%);  mloyy, 2, 1, 2, %)

?7’42(/‘537: .‘;)-? 15 1: ZZ}:): g = (x}k 19 17 ys Zfﬁ);

Example 1.5 The language {x"y"z" | n =0} has no iterative pairs.

We now introduce a classification of iterative pairs according to the nature of
the set of exponents. Let

w={a,u,b,uv,c)
be an iterative pair in L, and define for k, [ =0:

G)y={k:au*bv'ce L}; D)y ={l:au*bv'c e L}.

Defimition The iterative pair = in L is called:
left strict if G(I) is finite for any [=0;

right strict if D(k) is finite for any k=0;
strict if it is both left strict and right strict;
very strict if Exp(m, L) =4;

nondegenerated if it is left strict or right strict.

Thus the following implications hold:
T left strictzy

. . nondegenerated.
Sright strict 77 g

very strict = stric

This terminology does not fit exactly with the terminology of Boasson and Beauquier.
For Boasson [1976], a very strict pair satisfies a somewhat weaker condition, and
Beauquier [19782a] calls strict the pairs we call very strict.

Note that if w=(qa, u, b, v, ¢) is nondegenerated in L, then both u# 1 and v#1.
Indeed, assume for instance that u = 1. Then clearly au™bv'ce L for any [=0
and thus 7 is not left strict. Further aubv'c = au'bv'ce L for =0 and conse-
quently 4 is not right strict.
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Example 1.2 (continued). The pair = is left strict, but not right strict in S..
Thus y(m, Sy =11,

HEzample 1.3 (continued). The pair = is strict, but not very strict. The pair ' is
very strict.

Example 1.4 (contitued). x(m;)=e&, x(my) =1I, x(ms) = rF.

The pairs w, and 45 are degenerated. The iterative pairs m,, 715, 775 can be
considered to form a “system”. The type of this “system’ will be defined as
elirie. This is the reason for our notation for types.

Example 1.6 Any iterative pair in a regular language is degenerated.

Example 1.7 The equation S, =x8:XUyS, U1 defines the symmetric lan-
guage S, over the alphabet Z=XUX, with X ={x, y}, X ={% 7). We claim
that any iterative pair in §, is very strict. Let indeed

w={(a,u,b,v,c)

be an iterative pair in S,. Since au™bvc € S, for any n =0, and §, < X*X* it
follows that u, v e X*UX*. Next fe S, implies |flx =|f|x. Thus if ue X* then
u=v ;1 and  is not an iterative pair. Consequently ue X*, and similarly
veX*, Therefore |u|={v|>0 and

Exp(w, S,) = 4.
Example 1.8 Any iterative pair in the restricted Dyck langnage D < {x, £} is

either degenerated or very strict. Define indeed |fl|=|f|, —|fls for fe{x, }*
and consider an iterative pair

m=(a,u,b,v,c¢)

in Df*. In view of the characterization of DJ* given by Corollary I1.4.2, we

have 0 =[laubvc|| =|labe|| +[|u +||v] = [lul|+ o], whence Ju]| = —|lv]. Next Ju]|=0,

since otherwise [lau"||=|la||+nllu]| <0 for sufficiently large n, conirary to the

fact that au"bv"c e D{*. If full=0=|o|, then 0<|aw|=|lau"v'] for any left
factor u' of u, and O<llaubv'|=|lau"bv™v'| for any left factor v’ of v. Thus
aubv¥c < Di* and = is degenerated. Otherwise |[u]>0 and |ju]<0 and
Iiag"bv'”c”z (n—m){ull. Thus au"bv™c € D{¥ iff n =m. Consequently 7 is very
strict.

We now define the type x(m, L) of a nondegenerated iterative pair w in L as'a

word of length 2 over a fixed alphabet & ={e, &5 3 L [,r, 7l

(ed if ar is very strict (“e” for equal);

ss if « is strict, but not very strict;

x(m, L) =

Wc conclude this section by some simple lemmas concerning the transfer of
iterative pairs.

o

I if o is left strict, but not right strict;

P if ar is right strict, but not left strict.

Types are ordered by eé>s§> [, s§>rr.
This rather lengthy definition will be useful in later sections where we consider
systems of iterative pairs.

Lemma 1.1 Let a be an iterative pair in L N K, where L is a language and K is
a local regular language. Then w is an iterative pair in L, and Exp(m, L)=
Exp(w, LNK).
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Proof. Let w=(a, u,b,v,c). Since LNK<cL, Exp(m LNK)<Exp(m, L).
Next aubv"c € K for all n=0. Since K is local, this implies au®bv*c < K (see
Exercise 1.4.1). Thus LNEK >L Nau*bv*c and N

Exp(wr, L) =Exp(w, L Nau™bv*c) < Exp(w, L NK).
Let ¢: X" — Y* be a morphism. For a sequence 4
a=(a,u b, v,c)
of words of X*, define

o = (¢a, U, ¢b, v, ¢c).

Lemmsa L2 Let Mc Y*, L= YM). If w is a nondegenerated iterative pair in
L, then @w is an iterative pair in M and Exp(m, L) = Exp(¢em, M).

Proof. Let mw=(a,u,b,v,¢). If aubv'cel, then ¢(au*bv'c)e M. Thus
Exp(m, L)< Bxplem, M). Conversely, if elau*bv'c)e M, then au*bv'ce

¢ (M) =L. Consequently Exp(w, L)=Exp(em, M). It remains to show that
loupr|>0. Suppose the contrary. Then Exp(em, M)= N? and = is degener—
ated, contrary to the assumption.

There is a lack of a lemma of the following kind: I L < X* and M = ¢(L), and
if 7' is an iterative pair in M, then there is an iterative pair 7 in L such that
¢m='". Such a lemma does not exist.

Example 1.7 Let L={x"y"z":n=0} and let ¢:{x,y,z}* —{x, y¥* be the
projection. Then M =@(L)={x"y":n=0} has iterative pairs but L has no
iterative pairs.

The next section will be concerned with a strengthened notion of iterative pairs
for the case of algebraic languages.

Exercises

1.1 Let 7w =({a, u, b, v, ¢) be an iterative pair in L. Show that =™ =(a, u™, b, v™, ¢) is an
iterative pair in L for any N=1. Show that x(m™, L)=x(m, L), and give an example
where this inequality is strict.

1.2 Let 7 =(a, u, b, v, ¢) be a nondegenerated iterative pair in L < X*. Show that the
mapping (k, 1) — au*bv'c from N* into X* is injective.(Hint. Use Exercise 1.2.6.)

1.3 (Beauquier [1977]) An iterative pair w=(a, u, b, v, ¢} is bounded in L iff there
is an integer K such that G(I) and D(k) have at most K elements for any [, k = 0. Show
that if L is contexi-free and m is bounded in L, then there exists an iterative pair '
which is very strict in L. (Hint. Use the fact, proved for instance in Ginsburg [1966],
that Exp(mw, L) is a rational subset of N2 for context-free L.)

1.4 Let 7 =(a, u, b, v, ¢) be an iterative pair in L. Show that if LN au™bv¥c is a regular
language, then @ is degenerated (the converse is false).
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The iteration lemma for context-free languages shows the existence of iterative
pairs for any infinite context-free language L. The iterative pairs obtained in
that way depend on the grammar G =(V, X, P) generating L. More precisely, if
[ =Ls(&), then the iteration lemma gives an iterative pair w=(a, 4, b, v, ¢)
together with a variable £ V such that

£ abe, Euby, £

It follows that two different grammars for a same language can give two distinct
iterative pairs of the same word. This raises the question how an iterative pair
7 of a word w in L is linked to the iterative pairs of w which are supplied by
the grammars generating L. A rather precise answer to this question will be
given in this section. It shows how a “combinatorial” property of the language
L, described by the iterative pair, is related to a common “generative”
property of all grammars generating L. We first give a definition.

Definition Let L < X* be an algebraic language, let G=(V, X, P) be an
algebraic grammar such that L=Lg(&) for £&e V. An iterative pair 7=
(a,u,b,v,¢) in L is grammatical with respect to G if there exisis a
variable £e V such that

b= ake, £ ubn,  ESD

The variable £ is called the pivot of 7 in G.

Example 2.1 Let X ={x, v, z}, and let
L ={x*2zy*" | n=0}

The word w=x%2y® admits the three iterative pairs in L:
a=(1, x5 z,v% 1),
= (x, x°, x%zy, y*, y?).

(2 43 3,2
™ =(x% X7, xzy,y°, ¥,

Next consider the grammar G with productions

Lo X8 +HE EaEySta

Then r; is grammatical with respect to G, and neither w, nor m; are
grammatical in G.

The example shows however that mr, and 75 can be transformed into grammati-
cal pairs first by taking a power of the iterating elements and then by “shifting”
these new iterating elements. We shall see that this procedure is valid in the
general case. First we prove some lemmas concerning transfer of grammatical
pairs.
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Lemmsa 2.1 Let L < X™ be generated by an algebraic grammar G, and let t Proof. Let m=(a, u b, v, c). By assumption there are in the grammar yG
K< X* be a rational language. If wr is an iterative pair in L N K grammatical ; derivations
with respect to Gy, then w is grammatical with respect to G. - .

o aée, * .
Recall that Gy is the grammar generating L MK defined in Section I1.2. & £ uén, ¢=b.

Consequently there are words a’, u’, b, v', ¢’ in X* such that Ya'=a, Yu' =y,

Proof. Let w=(a, u, b, v, ¢). Assume that G and Gg are as in Section IL.2. gb'=b, Yv'=v, c'=c, and

Then there exist derivations in Gg:

o= a'é, £ u'ay, E— b

calg é g, (g &9V > ulg éqv;,  (g649)5 0

%n the‘grammar G. Thus «'=(a’, u', b, v', ¢') is an iterative pair in L grammat-
ical with respect to G. The inclusion Exp(w', L)< Exp(m, M) is obvious. B

The first derivation factorizes into

G->(q,0,9,)>a(g & q)c

We now rely nondegenerated pairs to grammatical pairs. First we need a
definition.

for some q,. Consequently there exist, in the grammar G, derivations
&= uv;

showing that « is grammatical with respect to G. &

Definition Let 7 =(a,u,b,v,¢) and #= (a, i, b,%,¢) be two sequences of

‘f = ba 71
words. Then 7 is deduced from = if the two following conditions hold:

o~ aéc;

(i) there is an integer N=1 such that

Lemmma 2.2 Let ¢ : X* — Y™ be an alphabetic morphism, let M < Y™ be gener-
ated by some algebraic grammar G, and let L = ¢ ' (M). ¥ w is a nondegener-
ated iterative pair in L grammatical with respect to ¢~ (G), then o is gram-
matical with respect to G.

aubié = au™bvNe;

(i) there are integers p, g =0, and factorizations u = Uily, U= 10,0, such that

~ * — __ i 3 B3 — —
acauTuy, A=(uu1)’, beuu*bo*v;, ©=(v,0,)q, cevyv¥e

Proof. Let w=(a, u, b, v, ¢). In view of Lemma 1.2, ¢# is an iterative pair in
M. With the notations of Section I1.2, there are in the grammar ¢ 'G
derivations

Condition (ii) implies that

ag* gt = quNtrkppNale  for ko + 1,l+1=0.

Assume next that 7 and 4 are iterative pairs in some language L. Then

(k, DeExp(7, L) « (N+pk—1), N+q(l-1)eExp(m L). (2.1)

This implies immediately

o> ane, 1 <> uno, 7~ b.

In order to show that there are derivations

o5 elanele), = oene(v), 7= eb)

. . . Ce . ) Leruma 2.4 Let 7w and # be iterat] irs i _ .
in G, it suffices to show that the nonterminal n is distinct from w. Now if 7=, from . If = is nondege :e;;iﬁltw:hpam“ in L, anj assume Ctlhat 7; is ziedu;ed
’ y en m 18 nondegeneraled and y(ir, L)=

then ou = ¢v =1, and = is not an iterative pair. This achieves the proof. w ' x(m, L)

The following lemma is important and will be used in the next section.

Example 2.1 (continued). The pair 7 = (x°, %%, x*zy%, v°, v%) is deduced from

Lemnmg 2.3 Let ¢ : X¥— Y* be a morphism, let L < X* be generated by an . )
W p g Y 7y, and is deduced from s, It is grammatical with respect to G.

algebraic grammar G, and let M=¢(L). If «w is an iterative pair in M
grammatical with respect to G, then there exists an iterative pair @' . in L,
grammatical with respect to G, such that v’ = Further Exp(w’,EL}c
Exp(m, M). ‘

This lemma shows that iterative pairs can be transferred through a morphism,
provided they are grammatical with respect 10 some specific grammar.

The@rifem 2.5 Let L = X* be an algebraic language, and let  be a nondegener-
f&ted Herative pair in L. For any algebraic grammar generating L there exists an
Uerative pair & deduced from w and grammatical with respect to G.

Prqof. We first prove the theorem for iterative pairs of a special kind and
derive then the general case from this special case.
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Assume X =Z Ut x, v}, with ¢, x, yé Z, and suppose that = has the form
a = (at, xu, tht, yv, ic)

with a, u, b, v, c € Z*. Define
L'=LNK, K = at(xu)*tht(yv)*ic.

Recall that Exp(m, L)=Exp(w, L'). Next let H= G be the grammar generat-
ing L’. By Lemma 2.1, it suffices to prove the existence of an iterative pair
grammatical with respect to H. Let N be the integer associated to H by
Ogden’s Tteration Lemma I11.2.3, and define

g = at(xu)Nbt (yo)Vic.

Since = is nondegenerated, it is left strict or right strict. Suppose first m left
strict and mark the N occurrences of the letter x in g. In view of Lemma IL.2.5,

g admits in L' an iterative pair

7=(a,i b7,

which is grammatical with respect to H, and a, &, b or b, 8, ¢ contain occur-
rences of x. We have to prove that 47 is deduced from =. First note that neither
7 nor ¥ contain a letter ¢ since otherwise ai#*bo°¢¢ K. Next neither i nor ¢ can
be nonempty factors of a or b or ¢. We prove that © contains no occurrence of
x. Assume indeed |8],>0. Then © is a segment of (xu)™. This implies that
Gi*bo* € atGau)* for k=0. Hence the number of x’s in the words aakbo*e
increases with k, and the number of y’s remains constant equal to N. This is in

contradiction with the fact that  is left strict in L, hence in L'. Thus |8}, =0.

Since T contains no occurences of the letter x, # contains occurrences of x, and
7 is a segment of (xu) and similarly © is a segment of (yv)™. Thus there are
integers p, g =0 such that

5 =0,(yv)?yv,
for words us, Us, Uy, U, € Z¥. Since an2bs?c e K, this implies that u=u;u,,
v =00, It follows immediately that # is deduced from 7. This proves the
special case for left strict pairs. The case of right strict pairs is proved in the
same manner by marking the occurrences of y in g

Consider now the general case of a nondegenerated iterative pair @ =
(a,u,b,v,¢)in LcX* Let 1,x, y be new letters, set Y =XUlt x, vy}, and let
@: Y*— X* be the projection. Let L'= @ ML) and K = at(xu)*ht(yv)*tc,

7 = u,(xu)’xuq,

' = (at, xu, tht, yv, ic).
Then @m' =, and obviously Exp(s', L") =Exp(, L). By the first part of the
proof, there exists a pair # deduced from «' which is grammatical with respect
to the grammar ¢ (G). Then &= @ is deduced from = =qw, and. is
grammatical with respect to the grammar G in view of Lemma 2.2.

Theorem 2.5, there exists an iterative pair # deduced from r, and grammatical
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VEIL3., Transfer of Iterative Pairs

We are now ready f(}r the proof of the main theorem concerning transfer of
iterative pairs through rational transductions.

Theorem 3.1 (Transfer Theorem) Let A and B be algebraic languages such
that A 23. For any nondegenerated iterative pair 7 in B, there is a nondegener-
ated iterative pair %' in A such that x(w', A)=x(w, B).

As already noted, this theorem is false for nonalgebraic languages. The result
gives a necessary condition for rational domination of algebraic languages. But
the Transfer Theorem can also be regarded as a result on rational transduc-
tions:' Rational transductions only decrease and never increase the types of
iteration pairs occurring in algebraic languages. Thus rational transductions
decregse the “complexity” of context-free languages in so far as the type of the
iterative pairs of a language is considered as a measure of its complexity.
Let A<= X* Bc Y* and assume A = B. Then by Nivat’s Theorem, there is an
alphabet Z such that ’

B=y(¢ (A)NK)

where ([{:Z* — Y* is a morphism, ¢:Z%*— X* can be chosen to be an
alphabetic morphism and K < Z* is a regular language which we may suppose
to be local. We first prove

Proposition 3.2 Let G be an algebraic grawmar generaiing A. For any non-
degenerated iterative pair w=(a, u, b, v, ¢} in B grammatical with respect to the
grammar Yl N (G)g], there is an iterative pair w'=(a',u',b’,v',¢") in A
grammatical with respect to G such that Exp(w', AY< Exp(m, B). Moreover
av*bv'ce Plo N (a' v b v'YNK]  fork, 1=0.

P’r}ocf. Set C=¢ "(A)NK. In view of Lemma 2.3, there exists an iterative
pair = (ay, uy, by, vy, ¢;) in C, grammatical with respect to (@ 'G)g, such
that r; = . Further Exp(mr;, C) < Exp(r, B). Since K is local Exp(w ’ Cy=
Exp(my, ¢7'(A)) by Lemma 1.1. Next 7, is grammatical with respect tolsgp‘lG
by‘Lc?mma 2.1. Define #'= @ar,. Since ar, is nondegenerated, #' is an iterative
pair in ,{ﬁ, and Exp(my, ¢ '(A)) =Exp(w’, A) by Lemma 1.2. Finally =’ is
grammatical with respect to G in view of Lemma 2.2. Further Exp(n', A)
E)_qi)(mg B). Noyv consider a word w=a'u"b'v"¢’. Then w, :alu‘{bl’v‘lc €
© !(wl) and since K> a,ufbofe,, wee  (WNK. Consequently ¢rw1=
aubv'c e Yo w)NK). ] B

Proof gf Theorem 3.1. Let ¢, ¢, K, Z be as above, and let G be a grammar
generating A. Let w be a nondegenerated iterative pair in B. In view of
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with respect to the grammar (¢ (G ). Further x(#, B)= x(m, B) by Lemma
2.4. In view of the Proposition 3.2 above, there is an iterative pair 7’ in A such
that Exp(#', A) < Exp(it, B). Consequently x(n', A)= x(#, B)= x(m, B). B

The Transfer Theorem can be strengthened in the following way.

Corollary 3.3. Let A and B be algebraic languages. If A=B, then for any
nondegenerated iterative pair 7 in B, there are a nondegenerated iterative pair '
in A, and integers N, p, q=1 such that

(k, ) e Bxp(w', A) = (N+p(k~1), N+q(l—1))e Exp(m, B).

Proof. With the notations of the proof of Theorem 3.1, the grammatical
iterative pair # deduced from = satisfies formula (2.1). The corollary follows
then immediately from Proposition 3.2. B

As an illustration, we show that some of the results of Section V.7 are simple
applications of the Transfer Theorem.

Example 3.1 The languages S-. and S. are incomparable. Indeed, the language
S.. has right strict iterative pairs and S. has no right strict iterative pair. Thus
S_ does not dominate S... The symmetric result is obtained by considering left
strict pairs in S..

Example 3.2 S. dominates none of the languages S_, S., S.. Indeed, the
languages S., S.., S all have nondegenerated iterative pairs. On the contrary,
all iterative pairs in S, are degenerated.

Note that the Transfer Theorem cannot be used to prove that S. and S. do
not dominate S. (Proposition V.7.2), since S, only has degenerated pairs.

Example 3.3 Any generator of the cone Alg or of Lin or Rocl has at least one
very strict iterative pair. Indeed, any generator of one of these cones must
dominate S_.

There is an interesting interpretation of this example: It has been proved (Alt [1977];
Alt and Mehlhorn [1976]) that if L is a contexi-free language which admits a
nondegenerated iterative pair, then the membership problem for L (i.e. the problem to
decide whether u €L or not) requires log n space (n=|ul) infinitely many often on a
nondeterministic Turing machine. Thus the languages of Example 3.3 all have space
complexity at least log n. On the other hand, languages like the Dyck languages can be
analyzed in space logn (see Hotz and Messerschmidt [1974]).

As an illustration of the more precise version of the Transfer Theorem
formulated in Corollary 3.3, we now give another infinite chain of rational cones
which all lie in RoclNLin. Moreover we prove the existence of infinitely many.
pairwise incomparable rational cones.
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Let X ={x, y}. For rational numbers 0 <r=<s define a language M(r, s) < x*y*
by

M(r, )= 1U{x”y’" [ n, meN\O, rsmsg}
n

Thus M(l, 1)=S_. In Exercise V.7.2, it is stated that M(r, s)= M(qgr, gs) for
any rational number q >0, whence M(r, s) =~ M(i/s, 1). Thus only languages of
the form M(g, 1}, (0<g=1), ¢ rational have to be considered.

Proposition 3.4 (Berstel [1973]) Let q, g’ be rational numbers with 0<q, q'<1.
If M(g', 1)=M(q, 1), then q'=q. '

The converse property, namely q'=q = M(q', 1)=M(q, 1) is stated in Exercise
V.7.2. Thus

Corollery 3.5 For rational numbers 0<q,q'<1, M(q', )= M(q, 1) iffq'=q.

In particular, g'>¢q implies M(q', 1)I'® M(q, 1)I". Hence the rational cones
M(q, )I" (0<q=<1) form an infinite chain of principal cones which is order-
isomorphic to the interval 0<<g =1 of rational numbers. In particular, for any
two rational numbers 1=¢q'>q >0, there exist infinitely many cones £ such
that M(q', WI'2¥2M(q, DT.

Proof. Assume M(q', 1)=M(q, 1). The word xy admits in M(q, 1) the strict
iterative pair w=(1,x,1,y, 1), and
Fxp(m M(a 1) ={(0, 0} U | m) e (02 [ g =<1,
n
By Corollary 3.3, there exist an iterative pair #' in M(q', 1), and integers
N, a, b=1 such that
(n, m)e Exp(#', M(q', 1)) 2>

(N+{(n—1a, N+ (m —1)b) e Exp(1r, Mg, 1)). (3.1)
Since ar' is strict, it has the form
= (x", XY™, Y™ g, o, my, =0, al, b=l
Set c=N—~a, d=N-b, ¢'=n,+n,, d =m;+m,. Then
/+ ’
Exp(w', M(q', 1)) > {(n, m)e (N\0Y?| q' $d, Mb, = 1} # 0,
¢ +na
and by (3.1)
,<d’+mb’< <d-i—mb<1 ( ~0)
T +na 1= e = o ' 32
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In order to exploit this relation, define functions v, v, for rational r by
) a+rc—d ‘) ra’+rc'~d’
() = nr—t——; (n)=nr—+——
¥ b b Y b b

A straightforward computation shows that

(3.3)

7 .
s—=x1 il y()=sm=sy(n)
a

and similarly for v4.. Thus (3.2) is equivalent to
vimsm=yin) = yv=sm=sy (k) (h>0. (3.4
The values of the functions v, ' are rational, not necessarily integral numbers.

Hence (3.4) implies
vi(mzy,E -1 yi=sy+l (1>0).

'

. . ,a a a ,
In view of (3.3), it follows that g 572 qz and SE, whence ¢g'=gq.

b
For rational numbers 0 <r<<s <t<1, define

K(r, s, t)=M(r, s)UM(, 1).

roor
Lemma 3.6 If K(+',s',t)=K(r, s, 1), and t =7, P then r=r, s=5s".

Proof. By the same argument as in the preceding proof, the inequality
K@, s', ty= K(r, s, t) implies for n, m >0:

if yem)<m<vyi(n) or yun)=m=<yi(n) (3.5)
then v (m)sm<y ) or v()sm=y(n)

As above, this implies the inequalities

a
b’ b’

=
=

(3.6

Rl

'
.
e

whence r<7', s=s'. In order to derive the equality, we claim that there exists
an integer ng such that

vi(mysm=syh(n) > vm)<sm=<y ) n=n, (3.7
vimysm=yin) > vsm=<vy(n) n=ne (3.8)

Note first that for rational numbers z, z', v, (1)< v.(n) implies

<ﬁﬁ,£>(££:£~§:ﬁ
TR ) ST Y b
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thus if n is sufficiently large,

’ ’

a a R
vz(n)@y;(n)rbZESZ’-b*, and v.()=yin)=> 2=z~ |

[ @
w
©

o
o

Let n; be such that (3.9) holds for ze{r s, t, 1}, z'e{,s', ¢/, 1}. Next since
r'<s’, yio(n)—+yl(ny=1 for sufficiently large n, and consequently there is an
integer m such that y.(n)<sm=<+v.(n). Let n, be such that v,.(n)—v.(n)=1
and vi(n)—yi{n)=1 for all n=n,, and set ny=max(n,, n,).

Assume now that (3.7) is false. Then there are integers n = ng, m such that, by
(3.5),

m=vyi(n) and v(n)sm

i

whence v, (n)<+v.(n) and by (3.9), tggs’—zj. Since t=1, (3.6) implies 1'=<sg’
which is impossible. Thus (3.7) holds. Consequently v..(n)<<vy.(n)+1 for all

! t

a a ) . Foor
n =g, and therefore s’ —=<s—, In view of (3.6) and since ~=—
s

b ”
a ,a a ,a (3.10)
F— = — e 22 p—
b T Sp S :

Next assume (3.8) is false. Then as above there is an integer n = n, such that
vidn) =<+, (n), and by (3.9) it follows that t’%SSg. By (3.10), this again
implies ¢'<s', which is impossible. This proves (3.8). (3.8) implies v/.(n)=

'

v,(n)—1 for n=n,, whence r’—cbi,BTE:t“g. Thus'%Eg By (3.6), we obtain

, and by (3.10), it follows that r=r', s = 5'. i

a e

b b

Proposition 3.7 (Berstel [1973)) Let 0<r<s<it<1. For any two rational

numbers g7 q' with 0<q, q'<1, the rational cones generated by K(qr, gs, 1) and
K(q'r,q's, t) are incomparable.

Proof. Assume for instance that K(q'r, q's, 1) = K(qr, gs, t). Then by Lemma
3.6, q'r =gr, whence q=¢’. &

Proposition 3.7 shows the existence of an infinity of pairwise incomparable
rational cones all contained in RoclMLin, since all languages K(r, s, t) are
dominated by S... It can be shown (Exercise 3.1) that the full AFLs generated
by K(gr, gs, t) and K(q'r, ¢'s, t) are also incomparable.
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Exercise

3.1 (Berstel [1974]) Let L,M<x®y* be two context-free languages. Show that
LI < M iff LI'< M. Prove that the full AFLs K(qr, gs, 0" and K(q'r, ¢’s, )" are
incomparable for g#q".

VL4 Systems of Iterative Pairs

The Transfer Theorem for iterative pairs proved in the preceding section gives
a first criterion for rational domination, but the notion of iterative pairs is not
powerful enough to allow comparison of languages whose words admit simul-
taneously several iterative pairs. Consider for instance the languages

A={x"y"z°®":n,p=0} and B={x"y"z%":n, p=0}

All iterative pairs in these two languages are very strict, so the Transfer
Theorem gives no information. We shall see that A and B are incomparable.
This will follow from the consideration of “systems” of iterative pairs. In the
present example, systems for A are formed of two consecutive pairs, and
systems for B are formed of nested pairs. Thus the types of systems are
incomparable, and in view of a Transfer Theorem to be proved, the languages
are rationally incomparable.

The present section contains the definition and examples of systems of iterative
pairs. Section 5 is concerned with grammatical systems, and Section 6 contains
the proof of the Transfer Theorem for systems.

We shall be concerned in the sequel with sequences of words of the form
6 =(ag, Uy, A1, ..., Qpys Uy, Ay (4.1

and with sequences derived from (4.1) by concatenating some of its terms. A
typical sequence related to (4.1} is

6’ =(aou,a,; - - Qi 1o Uiy Gy U oyt 0 0 Qg Uy oo o Uy, G 0 0 UpCiy)
(4.2)
with 1=i,<---<i =m. For sake of simplicity, we introduce the notation
6" =Cu, Uy, ... U (4.3)
for (4.2). Thus {(u,, U,, ..., u,) is equivalent to (4.1), and 7 =(u,v) is an

equivalent notation for 7 =(a, u, b, v, ¢).
Next if L is a language we define

Exp(8, LY ={(ky, ..., ko) eNYaguba, - - a,_ukra,, eL}.

Finally we introduce the following notation: For P cN? O cN9,

P*Q:{(p9 kl""’kq’pl)|(p7p/)ep’ (k17-~<3kq)€Q}'
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Thus, with 4 ={(n, n): n =0} we have for instance
AxA={nm m n)n m=0}

while AxA4A={(nn m m): n m=0}

Definition Let X be an alphabet, and let L © X™ be a language. A sequence of
words of X*

8 =(ag, U1, 1, -+ -5 Gon—1> Uzms Qsy)

is a system of iterative pairs of length n in L if one of the following
conditions is satisfied:

(i) n=1 and 6 is a nondegenerated iterative pair in L;

(ii) n>1 and

(ii.1) 7 ={uy, uy,y is a nondegenerated iterative pair in L,

(i.2) 6'=(u,,..., Uy _y) Is & system of iterative pairs in L,

(ii.3) Exp(6, L) > Diag(6, L), where Diag(6, L)= 4 = Diag(¢’, L).

(iii) n>1 and there is some integer p, (I<p< n) such that

(iii.1) 6, =(uy, ..., uyy) and 6, =(Uzyi1s - - - » Uy, ATE SYstEmS of iterative pairs
in L,

(iii.2) Exp(6, L) > Diag(6, L), where Diag(6, L) =Diag(6,, L) xDiag(8,, L).

g is called a system of iterative pairs of the word w = apu, * * - Uz, da, in L, and
w is said to admit the system 6 in L.

Notation. If 6 is defined by condition (ii), then we write 6 = 7 * g';if 9 is
defined by (i), then we write 6 =6, X 0,.

With this notation, any system of iterative pairs 6 of length n of a word w has
an expression as a combination of n nondegenerated iterative pairs my, ..., m,
of w, which are combined by the operations = and <. The pairs my, ..., 7, are
called the underlying pairs of 6. Note that the operation X is associative.

Definition The type x(8, L) of a system 6 of iterative pairs in L is
x(, L) if 8 = 77 is an iterative pair;
x(6, Ly=<zx(0', L)z if@=m=8 and x(mL)=2zZ;
¥(8, Dix(6,, L) it 6=0,%06,.

The type is clearly a word of the restricted Dyck language D#¥ over the
alphabet Z. Types of the same length are ordered by the following conven-
tions:

e>s>r,s>1; E>5>F 5> 1
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it b, h'e Z* and |h|=|h|, then h=h' iff

h,=hy, h, = R -

for all factorizations h=hh,. h'=h{h} such that O<|h,|=|h{|<|h]. This
definition agrees with the order on types of iterative pairs given in Section 1.

Definition A system 6 of iterative pairs in L is independant if the following
conditions (ii.4) and (iii.3) hold instead of (3i.3) and (iii.2) for all steps of the
definition of 8:

(i.d)  Exp(6, L)=Exp(m L) = Exp(6’, L);
(if.3)  Exp(8, L) =Exp(8,, L)X Exp(6,, L).

These conditions express the property that simultaneous iteration of some of
the underlying iterative pairs of 6 does not create new elements in Exp(6, L).

Note that there may exist systems @, 6, in L such that Exp(6,, L) =Exp{6,, L)
and x(6,, L)# x(6,, L) (see Example 4.3 below). In other terms, a system of
iterative pairs 8 is completely specified only when the expression in its
underlying iterative pairs is supplied. This expression is described by the type
x(6, L). Nevertheless, if 6 is a system of iterative pairs in L, and if § =
(af.uf, ..., ub,, ab,) is a sequence of words such that Exp(6, L) =Exp(¢', L"),
then an expression in iterative pairs in L’ can be given for 8’ which is the same
as the expression of @ in I, i.e. such that x(6, L)=x(8', L).

Independent systems of iterative pairs have the useful property that their
expression in iterative pairs is determined by the set of exponents. Thus the
situation described above cannot occur for independent systems. More pre-
cisely we claim: If 6={(ap, U,,.. ., tan, s,) and 8 ={(dy, iy, . .., Uap, o) a1
systems of iterative pairs in L with Exp(8, L)=Exp(4, L), and if 6 is indepen=
dent in L, then (8, L)=x(8, L) (then @ is also independent). Assume indeed
the contrary. Then there is an underlying pair 7 =(u, i;) of 6 such that (u, u;)
is not an underlying pair of 6. Consequently there is an integer k# j such that
either o = (uy, ;) or 7 ={u, 4 is an underlying pair of 6, according to k <i or
i <k. By conditions (i.3) and (jii.2) applied to 8, we have

(G- 4P 4 ..., p g ....q) eExp(6, L)

for all g, p=0, where the p’s occur at the entries i, j. Since ¢ is independent,
conditions (ii.4) and (iii.3) imply that either (q,p)eExp(w, L) or (p,g)e
Exp{m, L), according to k <i or i <k. Thus in both cases, Exp(w, L) =N?, and
0 has an underlying pair which is degenerated, contrary to the definition.

Example 4.1 Let A ={x"y"z"t" :n, p=0}. Then
=1, x,1,y,1,2, 1,5, 1)
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is a system of iterative pairs of w = xyzt in A. The underlying iterative pairs are
ary ={(x, vy and m, ={z, 1); thus 6 = 7 X 7,. Further
Exp(6, A)=Diag(6, A)=A4 XA,
Thus 8 is independent, and x(6, A)= eéee.
Example 4.2 Let B ={x"y’z"t":n, p=0}. Then
8 ={1,x1,y,1,z21,¢1)

is a system of iterative pairs in B, whose underlying iterative pairs are
3= (x, t) and w,={y, z). Thus 8 =5 * 7,. Since

Exp(6’, B)=Diag(¢',B)=4 = 4,
8" is independent in B, and x(8', B) = ceéé. The types x(6, A) and x(8', B) are
incomparable.
Ezample 4.3 Let C=AUB, with A, B as above. Then the word xyzt admits
the two systems 6 =y X 1, and ' = o3 # 7y in C. But now

BExp(6, C)=Exp(8, C)=AXAUA A
Hence neither 8 nor @' is independent in C.
Example 4.4 Let L ={xyz"t" | p=0}U{x"y"zt | n=0}. The word w = xyzr ad-
mits in L the two very strict iterative pairs

mo=(xy,z,1,61) and w,=(1,x1,y, zf).
But B=mXm,=(,x 1y, 1,2z, 1,1
is not a system of iterative pairs in L, since

Exp(8, L) =4x{(1, D}U{(1, DIx AP Diag(d, L) = A X 4.
Example 4.5 Let L ={x"yP§iz"z"&" | 0=k O0=sp=g 0<m=n} be the lan-
guage of Example 1.4. Then

8 :(1’ X, 1, ¥, 13 }1 19 Z, 19 29 l> 29 1):71"1 *(szwf‘})

with 7r; =(x, %), w,=(y, ¥), m3=(z,Z) is a system of iterative pairs in L.
Diag(6, L)={k,p,p, n, n, k)eN°| k, p, n=0}; further 8 is easily seen to be
independent in L. Finally

x(8, L) = ellria.

Example 4.6 Let S, be the symmetric language over Z =X UX, with X =
{x, v}, X ={%, ¥} defined by

S, =x85,3UyS, U1,
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We claim that any system of iterative pairs 6 in S, is of the form
9:77“1*‘#2*'..*#719 (4«4)

where 7y, ..., m, are iterative pairs. Indeed @ cannot be of the form 6=
8, X 8,, since otherwise at least one of the underlying iterative pairs of 8 would
have its iterating elements both in X* or in X¥, contrary to Example 1.7. Next
all iterative pairs in (4.4) are very strict, thus 6 has type e"&". 6 may be
dependent, but there exist independent systems of type e"é" in S, for anyn=1.
Thus the systems

6 ={(xy, xy> ..., xy" ¥

or 0=V, %Y, XV R, P, K §, KD
are independent.

Example 4.7 Let D{* be the restricted Dyck language over X ={x, #}. We
claim that any independent system of iterative pairs in Df* is of length 1, i.e. is
a (nondegenerated) iterative pair in D%¥. Consider indeed a system of iterative
pairs of length 2 in D/

8 =(aq, U, ay, Uz, ay, Us, O3, Ug, Gg).

Two possibilities arise:

(1) 6= Xm,, with 7, =(uy, Uz), Ty = U, Uy).

By Example 1.8, these pairs are very strict. Set k =|u||=—u,|, [ =|us| =
—lluyll. Then k, I>0. Next

— 1+ - "
f=aoui™auarusa5ul " a, e DI

Indeed |fll=1 I].u]||+k lludll=0. Further if f is a left factor of aou'*a,u,a,usax,
then ||f'|>0. Finally, if f' = aoui™a,usasusasulv’ with 0<m=k and u’' a left
factor of uy, then [[f]|=1 Hu1l|+m[|u4H+}|a0u1a1u2a2u3a3u’u2 lludl+ mllud = 0.
Conseqguently

(I+1L 1,1, 1+ k)e BExp(8, DfF)

and Exp(6, D/¥)2 4 X 4.

(i) 6 =11, %1y, with m; =(uy, uy), 7 ={us, Us).

Settinngl =[uil=—lludl, {=[u.]l=~|usll, an identical argument shows that
f=aui™a;uaou3" asua, is in Di¥, which proves that A =4 is strictly
contained in Exp(6, D7¥).

Note that there exist in D7* systems of iterative pairs of any fength and of any
type (in {e, &}*) (Exercise 4.1). The above proof shows that these systerms are not
independent.

We conclude this section by the analog of Lemmas 1.1 and 1.2.
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Lemma 4.1 Ler @ be system of iterative pairs in L NV K where L is a language and
K is a local regular language. Then 8 is a system of iterative pairs of the same type
in L, and Exp(6, L) =Exp(6, LN K).
Proof. Let 6 =(a,. u,, ..., Uay, s, ). By conditions (it.3) and (iii.2) of the
definition, aou’ -« - - u5,a,, € K for k=0. Since K is local, aqu¥ -« - uf,a,, < K.
Thus

Exp(6, L)= Exp(6, L N agu’ - - - u3,a2,) < Exp(6, L N K).

The converse inclusion is obvious. 2
Let ¢ : X*— Y* be a morphism, and let
6=1{ag, Uy, ..., Usp d2p) (4.5)

be a sequence of words of X*. Define

©(8) = (pao, Uy, . . ., Play,, Pz, ).

Lemma 4.2 Let Mc Y™®, L=¢ ' (M). If 6 is a system of iterative pairs in L,
then @(8) is a system of the same type in M and Exp(6, L) =Exp(e(8), M).
Proof. It suffices to prove the last equality. Let @ be given by (4.5). Clearly

Exp(8, L)< Exp(e(8), M). Next it o(agu’ - ukzay,)e M, then aqu’ - -
ukana,, € o (M) = L. Thus Exp(¢(8), M) < Exp(6, L). @

Exercises

4.1 Show that in D* there exist systems of iterative pairs of any length and of any type
contained in {e, &}*.

4.2 (Beauquier [1977]) Show that the underlying iterative pairs of any system in
D" (n=1) are all very strict. Show that in D*(n = 2) there exist independent systems of
iterative pairs of any length and of any type contained in {e, &}*.

VIS Gramumatical Systemis

This section contains the extension of the notion of grammatical pairs to
systems of iterative pairs. Such a system is formed of grammatical iterative
pairs with the additional requirement that the pivots of the iterative pairs are
simultaneously derivable from the nonterminal generating the language.

Definition Let L < X* be an algebraic language, and let G=(V, X, P) be an
algebraic grammar such that L = Ls (o) for o€ V. Let

9 = (a()a Uy oo s Ugps aZn)
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be a system of iterative pairs in L. Then 6 is grammatical with respect to
G and has pivot we(VUX)* if

() n=1,and @ is a grammatical iterative pair with pivot w, N

(i) & =1 6', where 7 is a grammatical pair with pivot w, 8 is a grammatical
system with pivot w’, and

Fs 4 .
H)'E;?a'lw Anp—ys

(iif) 6 =46,%8,, where 9, is a grammatical system of length k and pivot wy, 6,
s a grammatical system with pivot w,, and

WE Wiy w, and 0% agway,.
It is easily seen by induction that the pivot w is a word of V(X*V)*,
Example 5.1 Let

0 :(a()s Upy ooy Uop, aZn) =Ty o Wy Hoeeoow s

and assume @ is grammatical with respect to G. Then there are variables
&1, 6y, ..., &, € V such that

o5 a0y, Erruéity,;

. . a
&= 16200, 15 & updattn, 1

* . R . .
gyl~lw> 180l w1 n U 4 Et1s énﬁ\'an‘

b

The pivot of ¢ is £,.

Example 5.2 Assume that 8 is of the form

O =1y Xary X« <X,

If 6 is grammatical with respect to G, then there are variables &,,... & €éV
such that

T Q&1 026,04 * * Aoy 0E,00, 5
L a1 (i=1,...,n).

&

&=ty &y

The pivot of 8 is & a,6,a, ¢ -
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Example 5.3 Let D {x, #}*. Then
6:(17x7 15 )_\"7 1axa 15)-“:: 1):771X7r2>

with m,=(1, x, 1, %, xx), 7, = (xX, x, 1, %, 1) is a (dependent) system of iterative
pairs in D4, @ is grammatical with respect to the grammar with rules
E— £E+ xEX + 1. Indeed € is pivot of both , and w,, and £¢ is the pivot of 6.

We now prove the analogues of Lemmas 2.1.-2.3.

Lemma 5.0 Let Lo X™ be generated by an algebraic grammar G, and let
K< X* be a rational language. If 6 is a system of iterative pairs in LNK
grammatical with respect 10 Gy, then 8 is grammatical with respect to G.

Proof. Byinduction on the length n of 8 =(d, U1, . . ., Uz, Gz,). Forn =1, the
result is Lemma 2.1. We assume that G and Gy are as in Section I1.2. Assume
g=m 6. Then in Gy:

G—1(g-, 0, q.) > ao(q, & q)aa.;

(0. £V > u(q & q Ve (6.6 0) > 0w an,
where w' is the pivot of 6" in G, Now w' is of the form w'=
(a5, &1, @01 0,14 &, gD with vy, ..., v, €X¥. Assuming by induction
that w" =& v, + * v,.,& Is the pivot of 6 in G, we have, in G,

T o, £ uiéuy,, £ a,w"as, .

Thus 6 is grammatical in G with pivot & The case 6 = 6, X 6, is proved in the
same way.

Lewma 5.2 Let ¢ : X%~ Y* be an alphabetic morphism, let M < Y™ be gener-
ated by an algebraic grammar G, and set L = @~ "(M). If 6 is a system of iterative
pairs in L grammatical with respect to ¢ '(G), then ¢(8) is grammatical with
respect to G.

Proof. By induction on the length n of 8 =(a,, uy,..., Uy, 0s,). For n=1,
the result is Lemma 2.2. Let G and ¢ (G) be as in Section I1.2, and suppose
first 6 =8, X 6,. Let k be the length of 8, and let w, w;, w, be the pivois of

8, 8,, 8, in ¢ '(G) respectively. Suppose by induction that no variable in wy

and w, is equal to the variable @ of ¢ '(G). Then the same is true for

W = Wydy Wy, Suppose next by induction that ¢(w,) and ¢(w,) are the pivots in
G of ¢(8,) and ¢(8,). Then in G

o> glagewelas,)

and @(w) is the pivot of ¢(8) in G. Thus the lemma is proved in this case.
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Suppose next § = % ¢’'. Then in ¢ ' G:
O,ﬁa()na2n> 7?_9”17?“2»1: n_éalw a2n~1> -

where w' is the pivot in ¢ 7' G of §'. Since # is nondegenerated, n is not the
variable w. Assuming by induction that ow’ is the pivot of ¢(8) in G, it follows
that

o= e(a)ne(da);  me(u)ne(un): M= ela)ew)elay, )

in G, thus ¢n = 7 is the pivot of ¢(6) in G.

Lemma 5.3 Let :X™— Y* be a morphism, let L < X* be generated by an
algebraic grammar G, and let M =y(L). If 6 is a system of iterative pairs in M
grammatical with respect to ¢G, then there exists a system of iterative pairs 6 in
L, grammatical with respect to G, such that (8)=6. Further Exp(é, L)<
Exp(6, M) and x(8, L)= x(6, M).

Proof. The inclusion Exp(é, L)<= Exp(6, M) is immediate. The inequality
X(é, L)=x(6, M) is a consequence of the fact that for any iterative pair +#
underlying to 6, = () is underlying to ¢ and therefore x(#, L)= x(w, M) in
view of Lemma 2.3. For simplicity, set m =2n. Assume first 6 = 7 % ¢, and let
& and w' be the pivots of 7 and 6’ in ¢G. Then in ¢G:

® s * !
a— a()gann §ﬁ ulgunv €~—> AW Gy
Thus there exist do, 4, 1, Gy, dy, Gy 1, W' with $d, = ag, Ya,, = a,,, i, = uy,

Yy, = Uy, Y8y = Gy, Yl = A1, YW’ = w’ such thatin G-

G“i>d()§&m; g";algam’ é_‘%élw/dmfl‘
Next by induction there exists a grammatical system 8’ in G with @' =9 and
with pivot W' verifying (W) = w’. w' has the form

W/zglb] e brfl rs

where §,...,& are variables and by,..., b, , are among the g;’s. Conse-
quently

W=¢gb, b &, Ww=gb bt

with ¢b, = b, = b, for i=1, . .., r—1. Since w' is the pivot of @', it follows that
W' is the pivot of the system ' obtained by replacing b; by b; in 6'. This proves
the lemma when @ =7 = §'. The case where 8 = 0; X 8, is similar.

Note that if 6 is independent, it does not follow that 6 is independent (see
Example 6.4).
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The main result of this section is the generalization of Theorem 2.5 to systems
of iterative pairs. We therefore define:

Definition Let
9:((10? U‘bal)"'auma am) and Bz(ﬁOrﬂba]:"-:am: am) (51)

be sequences of words. Then 6 is deduced from 8 if
(i) there is an integer N=1 such that

Aol A1y~ Upl, = aouiaub - - ula,

(ii) there exist factorizations
Uy =uiul, oL, Uy = uhut,

words ¢y,...,¢,, dy,...,d, and integers p,, ..., P (1<p; < N) with
u'=cid;  E=Wu)t; i=1,...,m (5.2)
dy = AoCy; a=dac,, (Isi<m); Gy = d,, 4, (5.3)

Example 5.4 Let 6 = (ao, uy, a,, uy, a,, Us, a3, Uy, as, ) =7, X 71, be a system of
iterative pairs in some language I, with 7, = (u,, u,), 71, = {us, u,). Then
8 =(aq, Ui, as, u3, a,, U3, a,, u2, a,) is deduced from 6. Set

1 =(ao, Ui, a,, uj, a,U3a5u30,),

i, = (Aouia u3a,, u3, as, u3, a,).
Then 7, and 7, are iterative pairs in L, but note that they are not deduced
from m; and 7, Next if both #, and #, are nondegenerated (this is not
necessarily true, see the following example), then 8 = 7, X 7.
Example 5.5 Let L ={x"y"z?t" | n, p=0}U x*y*2%% Then

6:(19)(:’ 19 Y, 15 z, 17t> 1):77-1)(77-2

is a system of iterative pairs, and m, =(x, y), 7, =(z, ) are very strict iterative
pairs. Next

0=(1,x%1,y%1,2%1,1% 1)

is deduced from 6, but 7« =(1,x> 1, y% z%t?) is a degenerated iterative pair
in L.

Since we will deal now with several systems of iterative pairs simultaneously,
we precise the notation (4.3) and write

0,:<uils e ui,>e

if 6" is a subsequence of a sequence 6.
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Proposition 5.4 Let 6 be a system of iterative pairs in L and let & be a;ed.uced
from 6. If 6 is independent, then 6 is an independent system of iterative pairs m\L,
and x(6,L)=x(6,L).

Proof. Let n be the length of 6, and let 6, 6 be as in (5.1) with m = 2Zn. First
note that

(kU o -»km)EEXP(é’ L) <«
(N+pilky=1), ..., N+pn(k,—D)eExp(6.L). (5.4)
Then the proposition is true for n = 1. Arguing by induction, assume 6 =  * e
and define
7= (i s 0= T
Note that # and 8 are not deduced from 4 and 6. But from the independence
of 6, it follows that

(k], km)GEXP(ﬁ-a L) i (N+pl<kl h'l)a N+pm(km - 1))€Exp</ﬁv L)

(kyy ooy knr-‘])‘EEXp(é’a L) =
(N+palky=1), ..., N+ ppq(ky = 1) € Exp(6', L).

Thus, by (5.4),

Exp(, L) = Exp(#, L) = Exp(6', L). (5.5)
Consider next

my = (a()cls als dlaﬂfiz e Mm*lamvw]cma lzms dmam

61 = (a()ulcz’ a2a dz, cets am-l? dmf] UG )+
Then =, and 8, are deduced from =7 and 6. By induction 6, is an independent
system in L and by Lemma 2.4 and by induction, x(m, L)=y(m, L) and
x(6,, LY=x(6', L). The independence of § implies that

Exp(mr,, L) =Exp(# L),  Exp(6,,L)=Exp(d, L).
Thus 6 is an independent system by (5.5) and x(8, Y= x(6, L). The proof is
quite similar in the case where 8 = 6, X 6,. ®
Note that (5.4) is a precise description of Exp(6, L) in terms of Exp(6, L). We
give a more compact formulation of (5.4) by introducing first two vectors of N™

ﬁ:(pla~-~’pm)s éZ(N“p1>,N“Pm)
Then we agree to define the product of two vectors d=(ay,..., a,.) and
b=(by,...,b,) of N" by

.C_i[;:(albla ey amb"‘)'
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Then (5.4) is equivalent to
g +p Bxp(6, L) =Exp(6, L) N (g + BN>"). (5.6)

We are now ready for the analogue of Theorem 2.5.

Theorem 5.5 Lei L < X™ be an algebraic language, and let 6 be an independeni
system of iterative pairs in L. For any algebraic grammar G generating L, there
exists a system 8 deduced from 6 which is grammatical with respect to G.

Proof. As for Theorem 2.5, the proof is in two parts. We first prove the
theorem in a special case, and then reduce the general case to this special case.
Let

é} = (a()s Uy ooy MZH",azn)

and set m =2n. In the first part, we assume that X is the disjoint union of an
alphabet Z and of letters ¢, x4, ..., x,, such that

age Z*, aetZ¥ (i=1,...,m—1), a,, e tZ*,
wexZ® (i=1,...,m).

Let ary, ..., m, be the iterative pairs underlying to 6. For each m, there are
integers [, r; with 1], <r,<m such that =, ={u, u,). Renumber the =,’s in
such a way that I, <l,<<--- <. Then there is a sequence 6,,...,6, of

independent systems of iterative pairs such that
6)1 =y, 81 =6
and for i=1,...,n—1, one of the three following possibilities hold:

6 = ar, % 6,45 0, = X 6.1,
6, = (ar; * )X 6, 1= 0 x 6%

where 6% and 6@ are systems of iterative pairs. (Note that the two first cases
could be considered as a special case of the third one, arising when one of the
two systems 0V or 8% is the “empty system” of length 0.)

Let K=aoufa,uf - ukta, and let H=Gy=(V,X,P) be the grammar
generating L N K obtained from G. Let o€ V be such that LNK =L, (o). In
view of Lemma 5.1, it suffices to prove the result for the grammar H. Let N be
the integer associated to H by Ogden’s Iteration Lemma I1.2.5, and define

g=0y a0y Uy, With v, = ulN (I<ism).

We proceed by induction on i=n,n—1,...,1. Consider first i =n. Then
m, =y, U ;) for some k. By the proof of Theorem 2.5, there exists a variable
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&, such that

o g, = A Gm1CkEaia1Uka2 " U ~

£, W&l &, = ey Crins

where ¢, di, Ces1y dicsts i Uiy are as in (5.2), (5.3). Thus the word g admits
a grammatical pair 6, with pivot §,. Suppose now n>i, and assume

6, = (m % 6V)x 89,  6.,=060%x9?.
(The two other cases are only simplified versions of the present one.) Let
ar, = (i, 4,). The order on the ar;’s implies that

0P =Auy, ..., Uy

8(1):<ul+17 c ur~1>$ qy %

for some r<q; <g,<'*-<q, We now make the following induction hypoth-
eses:

. . . . . -~ — ey 1 g 2)

a) There exists a grammatical system of iterative pairs ., = 6" x 8% where
6 =(agvy * * * VAC 1y Tiats Ty « ooy Uyt Groy Grg Uy * Vel

fgs Ay O+ * Umam)

A2 — Cae i7 e 7]
6< Y= (aovl g, Cays Ugy qu Capr Ugpy - - - > Uy Uq, g,

. . . 5
such that if w® and w® are the pivots of 6 and 6, then
D ce @ e
G-j% gi+v1= oV " ° vlalCH—IW( dr—-lar--lvr CchW dq,\aqh Ul
This implies the existence of derivations

1 * e .
coawPd o e, U1,

(5.7)

(2 * e
Cq, w th 7 Uy, anvClﬁ’l a%*x Vg,

b) Any variable occurring in w® and w® derives in a word having at least one
a; as factor.

These induction hypotheses are clearly satisfied by 6,. Next we proceed as in
the proof of Theorem 2.5 and distinguish two cases according to whether =, is
left strict or right strict. Suppose that 7 is right strict and mark the positions of
the letter x, in the word g, (and not in g!). Then g;,, admits a grammatical
iterative pair

7 ={a, i, b, B, ©).

Consequently g;.., = aiiht¢ and there are, in H, the derivations

&0,

) o> aéce, &> 4D,

whence

o atc—au bo’c  (k=0). (5.8)
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Further @ or ¢ contains occurrences of the letter x,. First we note that neither &
nor ¥ contains the letter ¢ since otherwise, by (5.8), the number of letters 7 in
the words of L NK would not be bounded. Next in view of hypothesis b),
neither & nor § contains an occurrence of a variable. By the form of K, neither
# nor ¥, if they are nonempty, occur as factors in one of the a;’s. Thus 7 and ¢
are factors either of some v;’s or of ¢4, diy, ¢, d,. Assume now that @
contains an occurrence of the letter x,. Then i is a factor of v, and ¥ is a
factor of v, or of some v;(j>r) or of ¢, or d,. If T is not a factor of v, there is
some factorization

v, =c'ud’,
and in view of (5.7)

A bo e <> agvia,v, - apc'i*d'afPe LNK

where % is some word in u¥*.a,., - u¥a,, (k=0). Thus @ is of the form
i = (u"u')’ for some factorization u, =u'u", and the independence of 6 implies
that

(N, N+p(k —1))e Exp(w, LNK) for k=0.

This is impossible since ar; is right strict. Similarly if © is also a factor of v,, then
there is a factorization

v, = ¢"liedd”

and au*bo*é S aguy . .. a,_ (" et d"a,0,.,  va, € LN K

and the independence of 6 leads to a contradiction. Thus i contains no
occurrence of the letter x,, therefore © is a factor of v, and by the same
argument as above one proves that & is a nonempty factor of v. This gives
factorizations

v =ul = qiid, v, =uN=c0d, u = ulu, U, =ulu"
such that & = (Wjup)?, = (ujul)> for some p, p,=1.

The same conclusion holds if m; is left strict by marking the positions of x,
instead of x,.

Thus there are derivations
[ — éd e w@do a
T—>g = doly -1G5,4,4, a an Uil
. g - 1
&—ugd, &—dac w' )drqar‘ﬁr-

This shows that the induction hypotheses a) and b) are satisfied by the system
of iterative pairs

g — Sooa = 0(2
Gi - (ao G Uy Ay ooy Uy drar Tt vmam)x 6( )'
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Thus the proof is complete in the case where € has the special form described
at the beginning.

Finally, and as in the proof of Theorem 2.5, consider the general case of an
independent system of iterative pairs

= y
6= (a(b Uiy oo s Unps Qop e

Lct fL,x,...%.(m=2n) be new letters, set Y=XU{t, x;,...,x,} and let

¢: Y¥— X* be the projection. Set M = ¢ ML) and

K = a()t(x]Ml)*[aii’(le’{?.);i< T (xmun)*tams

' ={aut, x Uy tagt, ..., 0,).

Then (&)= 6 and Exp(8', M) = Exp(8, L.). By the first part of the prooi, there
is a system of iterative pairs ¢ deduced from @ which is grammatical with
respect to the grammar ¢ '(G). Then § = (8) is deduced from 6 = ¢(6") and 6
is grammatical with respect to the grammar G in view of Lemma 5.2. &

VIILG Transfer of Systems

The following theorem was proved by Boasson [1976] for systems of length 2,
and by Beauguier [1978a] in the general case.

Theorem 6.1 (Transfer Theorem for Systems of Iterative Pairs) Let A
and B be algebraic languages such that A= B. For any independent system 6 of
iterative pairs in B, there exists a system 8' of iterative pairs in A of the same
length such that x(8', A)=x(6, B).

Note that €' is not claimed to be independent, and in fact the theorem is false
with this additional condition. We shall give some ‘‘substantial” counter-
example below (Example 6.4). This restriction makes the theorem difficult to
apply in its present form since dependent systems of great length or “complex-
ity” are in general easily constructed in languages which have only simple
independent systems. This was seen for instance for Df* in Example 4.7. We
therefore state below several variations or special cases of the Transfer
Theorem.

Let AcX* Bc Y™ and assume A = B. Then by Nivat’s Theorem, there is an
alphabet Z such that

B=y(¢ (ANK)

where : Z*— Y* is a morphism, ¢ : ZF— X* is an alphabetic morphism and
K < Z* is a local regular language. With these notations, we first prove
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Proposition 6.2 Let A and B be algebraic languages such that A =B, and let G
be an algebr‘aic grammar generating A. For any system of iterative pairs

(QO’ U oons s Uops 02}1)

in B grammatical with respect 1o the grammar & (G, there exists a system
of iterative pairs

fowm (gt ; s +
8 \Qos Uty o ovy Uy, 5“2n)

in A grammatical with respect to G such that x(8,A)=x(0,B) and
Exp(8', A)< Exp(8, B). Further

k, ...k - —1 k i
agus uszya,, € Ylo Hajuis - - utl=as)) ﬂK] fork, ..., ks, =0.

Proof. Set C=¢ YA)NK. Then B =¢(C). In view of Lemma 5.3 there
exists a system of iterative pairs 8=(dy, iy, . .., fap, day) 10 C, grammatical
with respect to (¢~ 1G),\ such that ¢(8)=6. Furthei Exp(8, C)< BExp(6, B).
Since K is local, Fxp(6 C)=Exp(6, ¢ (A)) by Lemma 4.1, and 8 is grammati-
cal with respect t0 ¢~ (G} by Lemma 5.1. Define ' = ¢(6). Then 8’ is a system
of iterative pairs in A and Bxp(6¢', A) = Exp(8, ¢ '(A)) by Lemma 4.2, and €' is
grammatical with respect to G by Lemma 5.2. Thus Exp(6’, A)< Exp(6, B).

I ‘ P T PP
Wext if w=ajut™ - uffral,, let w=3a,i% - - - d2d,,. Then we o '(w), and
-4 S - . :
W e FI since K Daziy - - 05,8, Consequently w =auul - ukza,, €
Yo ' w)N K. -

Proof of Theorem 6.1. Let ¢, , K, Z be as above, and let G be a grammar
generating A. In view of Theorem 5.5 there exists an (independent) system of
iterative pairs ¢ deduced from 6 which is grammatical with respect to the
grammar Yo (G ]. Further x(8. BY=x(6. B) by Lemma 5.4. In view of the
proposition above, there is a system of iterative pairs 6’ in A such that
Exp(6', A)< BExp(6, B). Conseguently x(8', A)= x(6, B)= x(8, B). &

We now prove the following more precise version of Theorem 6.1.

Propesition 6.3 Let A and B be algebraic languages such that A = B. For any
independent system of iterative pairs @ in B of length n, there exists a system of
iterative pairs 8" in A of the same length, and two vectors §, p e N*" such that

d+p Exp(8', A)=Exp(8, B) N (G +pN>"). (6.1)
Proof. With the notations of the proof of Theorem 6.1, we have by (5.6)
d-+p Exp(8, B) =Exp(8, BYN (G + pN?").
Since Fxp(@’, A) = Exp(8, A), the conclusion follows. &

There is another formulation of Proposition 6.2 which can be used for proving
nondomination.
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Corollary 6.4 Let A and B be algebraic languages such that A = B, and let « be
a type of a system of iterative pairs (i.e. a word in D;* over 5). If for any
algebraic grammar G' generating B, there is a system 6’ of iterative pairs in B
grammatical with respect to G' and of type x(8', B)= a, then for any algebraic
grammar G generating A, there exists a system 6 of iterative pairs in A
grammatical with respect to G such that x(6, A)=a.

Proof. Assume that there is a grammar G for A, such that any system 6 of
iterative pairs in A grammatical with respect to G satisfies x(6, A)Za. Then
with the notations of Proposition 6.2, let G' =y ¢ () ]. There is a system &’
in B grammatical with respect to G’ such that x(8', B)= «. By Proposition 6.2,
there exists a system 6 in A, grammatical with respect to G, such that
x(6, A)= x(8', B) = «. This yields the contradiction.

There is a more striking statement of the previous corollary. Define the
grammatical type v(A) of an algebraic language to be the following subset
of DiF over H:a € y(A) iff for any algebraic grammar G generating A, there
exists a system 6 of iterative pairs in A grammatical with respect to G such
that (8, A)=a. Then Corollary 6.4 can be restated as:

Corollary 6.5 Let A and B be algebraic languages. If A = B then y(A) 2 y(B).
B

This corollary expressed the infiuence of rational domination on the “struc-
tural” description of the languages. Indeed, the “complexity” of a context-free
language A can be defined as the features which are common to all grammars
generating A. The types of grammatical systems shared by all grammars for A
reflect in some sense these common features since they described restrictions in
the use of nonterminals which are common to all grammars. Thus the corollary
says that if A dominates B, the grammars for B are not as rich in structure as
the grammars for A.
However, the meaning of results like Corollary 6.5 concerning grammatical
systems of iterative pairs must not be overestimated. Indeed, the converse of
the corollary is false, since for instance y(S.) = vy(5,), where S, is the symmet-
ric language and S_ ={x"y" | n = 0}. This is a consequence of the fact (Exercise
6.1) that whenever a context-free language I has a grammatical iterative pair
of type eé with respect to some grammar G, then it has also grammatical
systems of iterative pairs of type e"e" with respect to G for any n=2. (Gf
course, these systems are not independent in general.) Thus the sets y(L) are
not a satisfactory measure of complexity, since a language like S, is intuitively
regarded as, and proved by rational domination to be more “complex’ than
S_. Consequently, the consideration of grammatical systems of iterative pair is
not sufficient, even if they are very useful in some cases (see for instance
Theorem 7.14).

A * Diag(6¢', L)

independent by induction, and since Exp(6, L) = 4 +Exp(¢',
dent. If 6 =0,x0,, Ehen Exp(8, L) = Diag(é,, L)xDiag(6,, L); Let k be the
length of 6; and let 1, =(1, i
thus  Exp(6,, L)=Diag(é,, L). Similarly Exp(6,, L) =Diag(6,, L). Conse-
quently 6; and 6, are independent by induction,
Exp(68,, L)X Exp(8,, L). Thus @ is independent.
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Results Ii.ke Proposition 6.2 or Corollary 6.5 may be delicate to apply since
they require some knowledge about all grammars generating a given language

Thus the description of special cases of the Transfer Theorem or of Propositioﬂ
6.2 may prgvide helpful results for comparison of languages. Such a special
case is }“eahzed when all the underlying iterative pairs of a given system are
very strict, and when further this system is independent. Therefore we define:

Definition Let ¢ be a system of iterative

initi pairs in L. Then 6 is called -
strict if all underlying iterative pairs of @ o

are very strict.

Tfhus 6 is very strict in L iff x(6, L) e{e, ey, We first give a characterization of
independence for very strict systems.

Lemma 6.6 Let 6 be a very strict system of iterative pairs in L. Then @ is
independent iff Exp(6, L) = Diag(6, L).

Proof. We first prove that the condition is necessary by induction on the
length n of 6. For n=1 there is nothing to prove. Assume 6 = * @', Then
Exp(m, L)= 4 since @ is very strict. Next Exp(6, L)=4 = BExp(6’, L) since 6 is
independent. By induction, Exp(¢’, L) =Diag(¢', L) and therefore Exp(6, L) =
A= Diag(8', L)=Diag(6, L). Next assume 8= 8,X6,. Then Exp(@j L)=

Egp(ﬁl, L) X Exp(6,, L) since 6 is independent. By induction, Exp(8, L)=
Diag(6, L) i =1.2. Thus Exp(6, L) = Diag(6;, L)X Diag(6,, L) = Diag(é, L).
Conversely, assume Exp(6, L) = Diag(6, L). If n =1 there is nothing to prove. If

=m %0, then Exp(m L)=A4A since § is very strict. Next Exp(¢,L)=
: and . Exp(6, L)=2{(1, D} * Exp(¢', L).  Thus {1, 1)} =
Exp(¢', L) ={(1, 1)} » Diag(é', L), whence Diag(8', L)=Exp(8',L). Thus ¢ is

L), 6 is indepen-
L....1)eN? Then 1, XExp(6,, L)< Exp(6, L),

and Exp(6,L)=

C@E@Eﬂafy 6.7 Let A and B be algebraic languages such that A =B. For any
mdepen.dent very strict system 6 of iterative pairs in B, there exists an independent
very strict system 6 of iterative pairs of the same type in A.

Proof. The only new assertion is the independence of 8. Let n be the length
of 9 anc} set m =2n. Then in view of (6.1) and of the previous lemma, there is a
very strict system 6 in A of same type as 9 such that

G+P Exp(6, A) < Diag(6, B), 6.2)

where as in Section 5-

ﬁ:(pl"'-9pm)s q:(N_pb‘--sN_pm)-
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We prove by induction on n that (6.2) implies:
Exp(6, A)=Diag(d, A). (6.3)

The corollary follows then by the previous lemma. If n =1, then (6.3) holds by
definition. Thus assume n>1, and suppose first § = 6; X 8,, for some indepen-
dent very strict systems 6, and 6,. Let | be the length of §,. Since ¢ and 6 have
the same type, 6 =8, %8, where 8, and 8, are of the same type as ¢, and 6,
respectively. Next (ki ..., ko) e Exp(8,, A) implies that

G+plke, .. ko 1 , 1ye Diag(6, B) = Diag(9,, B)xDiag(8,, B).

Thus (6.2) is verified for 6, and 6,, and similarly for 6, and 6,. By induction,
Exp(6, A)=Diag(8, A), (i=1,2). Now let (ky,..., k,)eExp(6, A). Then by
(6.2)

(N4 {k;—1Dpy, ..., N+(ky —1)py) € Diag(6,, B)
(N+(kapiq = Dparsts - - -, N4k, — D)p,.) € Diag(6,, B).

Consequently (ky, ..., k.)€ Diag(8,, A)xDiag(6,, A), whence
Exp(d, A) < Diag(6,, A) x Diag(,, A).

Suppose now @ =1 % @', Then 6 =4 = §'. Since 6 is very strict, Exp(#, A)=A4.
By the same argument as above, it is seen that Exp(6’, A)=Diag(d', A). It
follows in the same way that

Exp(6, A)< 4 = Diag(d, A). B

We now give some examples of the use of the Transfer Theorem and of its
variations. Further applications are given in the next section.

Example 6.1 The language A ={x"y"z?t" | n, p=0}(=(S_)?) strictly dominates
S_={x"y" | n=0}. Obviously A dominates S.. To prove that the domination
is strict, we observe that there exists in A an independent very strict system §
of type eéeé, namely 6 =(1, x, 1, y, 1, z, 1, , 1). Clearly no word of S_ admits an
independent system of length 2. Thus by Corollary 6.7, S_ does not dominate
A. (Note that S. has very strict systems of type eeée, for instance
(I, x,1,x 1,9, 1,y, 1), but these systems clearly are dependent.)

Example 6.2 The languages A ={x"y"z°t°|n,p=0} and B :{x“y"tpzfl
n, p=0} are rationally incomparable. Indeed, the independent very strict
systems of length 2 have all type eéeé€ in A, and type eeéé in B. These types are
distinct, so by Corollary 6.7, the languages A and B are incomparable.

Example 6.3 Consider the languages
L={x"y"z"t*[n=m=0,0sp<sq}~S5. S,
M={x"y"z" | m=n=0,0=<qg=<p}=5.-S..
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We claim that L and M are incomparable. Assume for instance that M
dominates L. Clearly xyzt admits, in L an independent system of iterative pairs
of type rill. Then the Transfer Theorem asserts the existence of a system of
iterative pairs of length 2 in M, of type = r7ll. This system is necessarily of the
form my X1, where m, and m, are (nondegeneiatm) iterative pairs. Clearly
any such system has type IIr7. This yields the contradiction.

Example 6.4 (Latteux [1977]) The restricted Dyck language D7*c{x, #}*
strictly dominates the language L of the preceding example. The fact that L
does not dominate D?* follows from the Transfer Theorem for iterative pairs,
since D{* has very strict pairs and obvicusly L has no pair of this type. The
remarkable feature of this example is that D7* dominates I, whereas L has
independent systems of length 2, and D7* has none such system (Example 4.7).
To prove D=L, we first note that

D= DFNx ¥ x 5 = N

with N={x"y"2"1*[n=m=0,0<p<sqn+p=m+q).

Next we verify that L = x*Nr* which gives the desired conclusion. Obviousl ly
x*Nt*< L. Conversely, let w= x"y"z’t%eL. Then n=zm, p<q If k=

(n—m-(qg— p)>0 let r=n—k Then r=m-+qg-— p>0 and r—m=qg—p=0.

Thus w=x"w' with w'=x"y™z"1%e N, whence we x*IN. Symmetrically, k=0

implies w e Nr*,

Exercise

6.1 Suppose that a context-free language L has an iterative pair of type eé. Show that
for any context-free grammar G generating L, there is in L a system of iterative pairs of

type e"€" grammatical with respect to G, for any n=2.

VIIL7 Applications

In this section, we apply the Transfer Theorem and its corollaries to continue
the classifications of context-free languages. Several infinite chains of cones are
constructed. The main results are: The cone of restricted one counter lan-
guages and the cone of quasi-rational languages are incomparable; the cone of
finite counter languages and the cone of linear languages are incomparable. We
first prove a weaker result used later.

Proposition 7.1 The cones Rocl and Lin are incomparable. Neither Rocl nor
Lin is closed under product.

Thus in particular D% is not a generator of Alg.

Proof. In view of Examples 4.6 and 4.7, neither D’* nor S, has an indepen-
dent system of iterative pairs of type (ee)2 Thus by Corollary 6.5 the language
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(S_)? is neither in Rocl nor in Lin. This proves the second part of the
proposition. We already know that D* is not a linear language (Example
V.6.5). To show that Lin is not contained in Rocl, consider the language
L ={x"y?zPt" | n, p=0}. Clearly L is linear and there is an independent system
of type e?6? in L. Thus in view of Corollary 6.7 and Example 4.7, L is not a
restricted one counter language. B

The next proposition extends Example 6.1 and shows the existence of an
ascending chain of rational cones which are all contained in the least full AFL
Lin [ containing the linear languages and which are all, excepted the first,
neither contained in Rocl nor in Lin.

Proposition 7.2 The rational cones (S_Y'I' (n=1) form a strictly increasing
chain of cones.

Proof. Obviously (§_)"*'=(S_)" for n=1. Next (§_)" has an independent
system of iterative pairs of type (e€)", but has no such system of type (eg)"*.
Thus by Corollary 6.7, (§_)"*" does not dominate (§_)". B

There is another interesting chain built of cones of linear languages. Define

A, = (X, UX)*, where X, ={x,,...,x,} and X, ={%,..., &} by

— [k k, 7k, . ik
An_{xl‘.“xn"xn"'. xil'klz---aanO}

Clearly

— I I
An—‘Snmxl ) xhxﬂ X1,

where S, is the symmetric language over X, UX,.

Proposition 7.3 The cones A, I, (n=1) form a strictly increasing chain of
rational cones.

Proof. Clearly A, has independent very strict systems of iterative pairs of

n+lzn+l1

type e"é", but none of type e""'é""’. Thus the conclusion follows from
Corollary 6.7.

The rational cone ¥ = |J A, I’ is not principal, thus £ is strictly contained in

n=1
Lin. It can even be shown that ¥< Ng(Lin)={L eLin| LI'#Lin} (sce Exercise
7.1). The cones A,I" and (S_)"T, (n, m =2) are pairwise incomparable. For a
generalization, see Exercise 7.2. In order to pursue the classification of families
of languages, we now consider systems of iterative pairs in principal fulb AFLs,
and in the syntactic substitution of two languages. We need a definition.

Definition A system of iterative pairs 6 in a language L is called prime if
either 6 is an iterative pair or 6 = * 8.

is a system of iterative pairs in L and clearly Exp(6, L) = Exp(6, (Ld)").
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glearly & is prime iff its type x(6, L) is a Dyck prime in the langnage D over
E. Thus any system @ can be written in the form

G=6"x.. xg»
where 6V, ..., 6 are prime systems.

Proposition 7.4 Ler L be a language, dé& X;. 1f 6 is a prime system of iterative

pairs in (Ld)", then there is a prime system 8 of iterative pairs in L h
Exp(6, L) =Exp(6, (Ld)™). P sl thar

Preof.' We consider first iterative pairs. Let w=(a, u, b, v, c) be a nondegen-
erated iterative pair of a word

w=hydh,d - h,d (heL)

in L. Then w = qubvc. We claim that neither u nor v contains an occurrence of
the letter d. Assume indeed for instance that July
i <j, and factorizations

ho=hihl,  hy=hib!

>0. Then there are integers

such that

a=hyd - -h_dhl,  u=hidh,d--- h_ydh.

1

Sinci (.w"bf)”c e (Ld)*, necessarily hihier, hihje L. Consequently, aubo"c e
(Ld)" implies auPbv"c € (Ld)* for all p =0, whence au*bv*¢ e(Ld)* and = is
degenerated contrary to the assumption. Thus there is an index i, (1<i<m)
and a factorization ’

h;=auh!, with a=h,d- - h_,da.

Then two cases are possible: a) There is an index J> i such that h, = h’vh”, and
b=hid- "hjfldh;. Bu‘t then au"bv"ce(Ld)*™ implies du”hfeL], hfjv"é”.’eL
whence_ again au®bv*c e (Ld)". Therefore we have: b) hi? factorjizes !into’
hi=bvé¢ (and édh,(d - +h,d =c). Then au™bv'c e (Ld)* iff au"bv'éel thus
m=(d, u, b, v, ) is an iterative pair of k; in L, and Exp(, L)=Exp(m (Ld’)*)
Consider next a prime system , .

6= (a09 Uy, Ay, .. s U, aZn)

of iterative pairs of w in (Ld)", and let 8 =2 %8', with ={uy, tp,). Then by
th,e first part ‘of the proof, there are factorizations ag=
w,w"e (Ld)*, such that dyu,a, - - - Us, 85, € L. Thus

1= — .
W'ag, Ay, = d,,w” with
6 =(dy, uy, Aps oy Uny, Goy)

Exmpﬁej,% The symmetric language S, is not in Ocl = D7*I". Assume indeed
that (D4*d)* dominates S,. Since by Example 4.6, S,

has independent very




i VIHL7 licati
254 VIHI Iterative Pairs Applications 255

strict systems of type eP2P for any p=1, the language (D¥dy” must have for fa‘c:t01'izati<:£ns h,(i)zhﬁmhh;’f,-),l ) hs(i):h;(i)l?;g), (i=1,. ,'m), S.ince
independent systems of these types by Corollary 6.7. But then Proposition 74 aoa% as . ain € ’pﬂ;i, we have hlg, h? <) Elf\f ;(I)/r i=1,. o T Szmﬂarly{,\ since
implies that Df¥ itself has independent systems of these types, and this apuia us 'k am-lz,fmam*e {,TM we avi ) "“’EM for z =1,..., m Conse-
contradicts Example 4.7. quently aquyra, € (MX)*h!,, for all k, =0, and by induction

We now extend the previous result to the syntactic substitution LTM, with the aou’lixa] u‘z‘za.z ukg e (MX)*h! .,

aim to prove that S, is not in the substitution closure of the one C(::znter for i=m—1 and k..., k=0,

languages. Consider two disjoint alphabets X, Y, and let L« X™, M < Y™ Let and the desired result follows. o

@ be the projection (XU Y)*— X*.

Proposition 7.7 Let w=(a, u, b, v, ¢) be a nondegenerated iterative pair in L1,
Then

(i) either |ulx>0, [v|x>0 and ¢(w) is an iterative pair in L;
(ii) or ubve YY", and theve is an iterative pair # in M such that Exp(a, M) =

We first consider two special cases.

. . P
Lemma 7.5 Let 6 =(ag, Uy, . . ., Uz, do,) be a system of iterative pairs in L I\/{,
and suppose that u Gy * * Gan1Uz, € Y*. Then there exists a system of iterative

pairs 6 in M with Exp(8, M) =Exp(6, LTM). Exp(ar, LTM).
Proof. Set w=aol;  * Usnla,. Since weLfM, w=hx, - hx, for some Note that we do not claim that ¢(7) is nondegenerated. Indeed this stronger
h -h €M, x4 X, E'X'. x; ++* x, € L. The assumption implies that there result is false in general.

To» +«s¥tp 1 EEEER B 7} >

is an index i, (1=<i=<p) and a factorization Example 72 Let X={uyl, Y—{abcl. LexyUS. and M-

= Gty @y * * * Uandion {1, a, bc, ¢, ab}. Consider the iterative pair w=(a, % b, cy,y) in L1M.
' _ Then Exp(m LTM)={(n,m)|0<sn<m}. Next ¢(n)= (Ix,1,y,y) and
ag=hyx; - X440, G = Aol 1 X+ hfx"' Explo(m), L) =NXx{0}U{(n, m) |0 n=m}. Thus = is left strict and o) is

Then 6 =(do, Ur, Gy, - - - , Unns Gpy) clearly satisfies Exp(6, M) =Exp(6, L 1 M). degenerated.

& . . N .
However, the previous example is somewhat artificial as is shown by the

Lemmma 7.6 Let 0= (aq, Uy, . . ., Uz, G2,) be a system of iterative pairs in LTM,
and suppose that |ulx>0, (i=1,...,2n) and |a|x>0, (i=1,..., %n—l).
Then ¢(8) is a system of iterative pairs in L and Exp(¢(6), L) =Exp(, LTM).

Corollary 7.8 Let w=(a, u, b,v,¢) be a nondegenerated iterative pair in LM
and suppose |ulx >0,|v|x>0. Then #'=(a, u, ub, v, vc) is an iterative pair in
LM with x(w', L1 M) = x(w, L1 M), and @(w"y is an iterative pair in L satis-
fying Exp(e(#"), L) = Exp(n’, LTM).

Proof. Clearly (k,)eExp(«', LTM) iff (1+k, 1+DeExp(w’, L1M). Thus
x(w', L1M) = x(m, L1 M). Next by Proposition 7.7, @(a") is an iterative pair in
L. Finally ' satisfies the conditions of Lemma 7.6, and this lemma gives the
required equality.

Proof. Clearly Exp(8, L1M)<Exp(¢(8), L). In order to prove the converse
inclusion, observe first that L1M = "(L)N(MX)*. Next Exp(e(8),L)=
Exp(6, ¢ " (L)). Set K =aqu¥a, - - - ui,a,,. Suppose proved already that K¢
(MX)*. Then

Exp(6, ¢ (L)) =Exp(8, ¢ (L) N K) <= Exp(6, LTM),

whence Exp(e(8), L) =Exp(6, L1M) as desired. Thus it suffices to verify the
inclusion K < (MX)*. For this, set m =2n,

Proof of Proposition 7.7. If u|x >0 and |v|x >0, then ¢ () is an iterative pair
in L since |¢(uv)|>0 and Exp(m, LTM) < Exp(e(r), L). Next if ubv e Y, then
the conclusion follows from Lemma 7.5. Thus it remains only to prove that no
other possibilities arise. For this, we show that ue Y™ implies ubv e Y. The
symmetrical implication: ve Y*=>ubve Y* is proved in the same way. Set

W= doUy * Ul = Haxq 0 X,

with hy, ..., h,eM, x4,...,%,€L. The conditions ¢(1;)# 1, ola) #0 imp%y ‘
that there exist indices 1=r(1)<s(1)<r(2)<: .- <r{m)<s(m)<p such that

w = aubvc = hyx; « - hyx,,
w = hloXem - Xew-1hko i=1,...,m with y, ... h, €M, xi,...,x,€X, x, - x,eL If ueY", then there is an
a; = hiwXam  %rasn-1hiaen i=1,...,m-1 index i, (0<i=p) such that

— Lt e .
a() = hlxl e xr(l)h£(1)> (lm - hs(m)xm hpkp

a=hyxy - h_x_h, h = hiuh!, buc=hix « - hyx,.
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We claim that bv is a left factor of h’, showing thus that ubv is in Y. Assume
the contrary. Then hf is a proper left factor of bv, and for n=1,

I
aubv"c=hyx; - - - by x_hiuthixg,

where f, € (MX)¥ is such that x; -+ x¢(f,) € L. Since hju"hie M for all n=1,
we also have

hix, - hoixi_hiu™hixf, =au™bv"ce LT M
for all m, n>0. Thus + is degenerated, contrary to the assumption. &

Theorem 7.9 The symmetric language S, is not a finite counter language. The
cones Fcl and Lin are incomparable.

Thus the relation Lind Rocl of Proposition 7.1 is strengthened to: Lin ¢ Fel.
The “dual” result, namely Rocld Qrt, will be proved below. Recall that
Fcl= {J Fcl(n), where Fel(1)=Rocl and Fel(n+1)=RocleFcl(n) for n=1.

n=1

The theorem is a direct consequence of the following proposition.
Proposition 7.10 Let A € Fcl(n) and suppose that A has an independent system
of iterative pairs of type ePe?. Then p=n.

Proof of Theorem 7.9. The symmetric language S, has independent systems of
iterative pairs of type efe” for any p=1 (Example 4.6). Thus })y the previous
proposition, S, is not in Fcl{n) for any n= 1. Thus Lin¢ Fel. Since Rocl4 Lin,
the converse relation is obvious.

Proof of Proposition 7.10. (i) We first consider the following situation.: Let
A=D1 M, where D/* < X* with X ={x, X}, Mc Y*, XNY = @, and ¢ is the
projection of (X U Y)* onto X*. Suppose that

6 = (ag, Uz, Ay, Us, o, Us, A, Uy, Gg) = T ¥ 775

is an independent system of type e¢’&” in A. We claim that then [yl =0 or
luslx =0. Indeed, assume the contrary. Then by Proposition 7.7, |usjx >0 and
|ualx > 0. Consider the system

0'=(ag, Ur, UGy, Ua, Uz, Us, UsQs, Us, Uasy).
Since Exp(8, A)=A4 = 4, we have Exp((¢', A)=4 = A. In view .of Limmz% 7.§,
©(#") is an independent system of iterative pairs of type e’2> in Df* which is
impossible by Example 4.7. -
(i) Next we claim that if A =D%*1 M has an independent syste;n of type eve
with p=2, then M has an independent system of type e? '¢*"'. Let indeed

6 = (ay, Ml)""”?,paaZp):Wl*ﬁ-Z*l.‘*Trp

be an independent system of type eP€® in A. Then =, * 5 is an indepen:ient
system of type e?2% in A, and by part (i), we have w0, * -+ Gz, 1up, €Y' In
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view of Lemma 7.5, there is an independent system of type ¢ ~'aP7! in M.

(ili) We now define languages A,, (n=1) as follows: A=DF A L=
DALY, where Al is a copy of A, over an alphabet disjoint from X, and
where d,, is a new letter, By Theorem VI.5 7, A, is a generator of .the rational
cone Fcl(n). (Note that the use of Exercise VI.5.7 would supply generators of
simpler form.) If A eFcl(n), then A=A, and by Corollary 6.7, A, has an
independent system of iterative pairs of type e”e”. Thus we have to prove that
if A, has an independent system of type e"e", then p<n. This will be done by
induction, the case n=1 being true in view of Example 4.7. Thus suppose
n>1 and p>1. Then by part (ii), the language (A’ _,d,_,)" has an indepen-
dent system of type e?™'@" !, Since this system is prime, we apply Proposition
7.4. Consequently, A/,_,, whence also A, _,, has an independent system of type

eP"1eP71. By induction, n—l=p-—1. &

We now want to prove a result “dual” to Theorem 7.9, namely that D/* is not
a quasi-rational language. The proof cannot use independent systems of
iterative pairs, since such systems in D* are all of type eé. Instead of

independent systems, we shall use grammatical systems and apply Proposition
6.2. Recall that

Qrt= |J Ort(n),

n=1

where

Qrt(1)=Lin,  Qrt(n+1)=Lin" Qri(n).

The idea of the proof is the following: We observe first that for a fixed
grammar generating a fixed generator of the cone Qrt(n), any grammatical
system of iterative pairs of some special type satisfies an additional constraint
(Proposition 7.12). Then we construct a restricted one counter language having
systems violating this constraint, whatever is the grammar generating it
(Lemma 7.13. This is the main part of the proof). By an application of
Proposition 6.2, we conclude that this language is not in Qrt(n). Consequently,
the cone Rocl is contained in none of the cones Qrt(n), and therefore D7* is in
none of the Qrt(n).

We begin with construction of an algebraic grammar generating the language
S, 1 (Md)*, where S, Z¥ is the symmetric language, M < Y™ is some algeb-
raic language. Z,NY = @ and d ¢ Z,U Y is a new letter. This will be used below
with M a generator of Qrt(n), and thus yields a grammar for a generator of
Qrt(n+1). As for the Dyck language D’¥, the application of Exercise V1.5.6
could simplify the construction.

Let G, be the grammar generating S, with productions

E— X 18X+ .87, + 1,
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and let G=(V, Y, P) be an algebraic grammar such that Lo{o) =M for some
oc V. We assume £¢ V, and consider a new symbol . Define a grammar

G, 1 G=(Uo, UV, Z,UYUd, PUP)

by P ={t—>0,x 80,5, E>0.%,60.%,, E— 1,0, > ado,, 0, ~od}.

Then a straightforward verification shows that

LG, 1 G(‘f) = Sz T (Md)“L‘

Lemma 711 If S, 1 (Md)" has a system of it_eraz‘ive pairs grammqtical ‘tvitk
respect to G, 1 G of type B = exce, where ae {e, ?}+ is .the type of a prime systzfem[
of iterative pairs, then M has a system of iterative pairs of type o grammatica
with respect to G.

Proof. Let 6 =(aq, Uy, . .., Uz d,) be a grammatical system of type B. Thgn
by definition, there are variables , 71, M€ VU¢é¢Uo, such that, in G, 1 G,

(7.1

- - a
&— agMas,, n —> Uy Ny, n—> 01 A Nalon -1

and since « is a Dyck-prime

(7.2

s = Ua My Uy, Mo = Upr1M2Uon—1

Observe that m, # o, since the iterative pair {Us, U, is nondegineraitedt?]nd
consequently u, # 1. Similarly n, # 0. Thus M, M€ VUE B ny=mn,=¢ then
by (7.1), & s apa,éa,£05, 14, This is impossible since £ appears at most \(;n}:e
in the right side of each production of G, 1 G. Thus eithq meVormneV.in
the first case, the first of the derivations (7.2) holfjs alsg in G, and (u,, . . ., ul,1
is a system of iterative pairs of type « grammatical with respect to G. In the

., Us,q) 15 grammatical with respect to G. (Note that we
El n— @

second case, (U1, - - ‘
do not claim that both %, n, are in V.)

We now define languages B,, (n=1) as follows:

B,1=5; T (Bid)" (n=1),

B, =5,

where B’ is a copy of B, over an alphabet disjoint from Z,, and where .dn is ?
new letter. Next let G, ., =G, 1 G, where G, is the grammar generating B/,

derived from G, in the obvious way. Then Lg (€)= B,, (n=1). Define a
sequence (a,) of types by

oy = eé? Q1™ eq, €

Proposition 7.12 If B, has a system of iterative pairs of type o, grammatical
with respect to G,, then p<n.
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Actually, it is easy to show that B, has systems of type «,, grammatical with
respect to G, (Exercise 7.3).

Proof. The result is true for n=1 by Example 4.6. Assume that B, has a
system of iterative pairs of type a, = ea,_;a, & (p=2) grammatical with
respect to G,. Then by the previous lemma, B, , has a grammatical system
with respect to G,_; of type p~1. By induction p—1sn-1. &

The main lemma for the proof of the announced result is the following:

Lemma 7.13 Define L(k)=D*N(x" "%, (k=1). For any grammar H
generating L(k), there exists a system of iterative pairs in L(k) of type «, which is
grammatical with respect to H.

Take the lemma for granted for a moment. Then we can prove

Theorem 7.14 (Yntema [1967]) The language D’¥ is not quasi-rational. The
cones Rocl and Qrt are incomparable.

Proof. If D{*¢Qrt, then Rocl¢ Qrt. Since Lin & Rocl by Proposition 7.1, the
cones Rocl and Qrt are incomparable. Thus it suffices to show that D#* is not
quasi-rational. Assume the contrary. Then D¥eQrt(n) for some n=1. Let
k>n. Since D{¥*=1L(k) and Qrt(n) is a cone, we have L(k)e Qrt(n), whence
L(k)=B,. Next in view of Lemma 7.13 and of Corollary 6.4, there is a system
of iterative pairs ¢ in B, grammatical with respect to G, and such that
x(6, B,)= a,, whence x(6, B,) = a,. By Proposition 7.12, we have k<n. This
yields the desired contradiction.
Thus it remains to prove Lemma 7.13. The proof which follows is similar to a
proof given by Gruska [1971b]. Fix an integer k=1, set X={x, %}, L=L(k),
K=(x"%")"", and let H=(V, X, P) be a grammar such that L =L, (o) for
some o€ V. We first give two preliminary lemmas.

Lemma 7.15 One can assume that H is strictly reduced in o, lLe. satisfies the two
following conditions:
(i) Forany £V, there are a, b € X* such that o > aéb.

(it) For any €€ V, L (&) is infinite.

(7.3)
(7.4)

Proof. In view of Lemma I1.2.6, a strictly reduced grammar H' generating L
exists. By the construction given in Section 1.2, it is straightforward that any
system of iterative pairs which is grammatical with respect to H' is also
gramrmatical with respect to the original grammars, since all pivots satisfy

condition (ii). .
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For the rest of the proof, we assume that H satisfies (7.3) and (7.4). Then we
have

Lemma 7.16 (i) For all £€V, u, ve Ly (&) implies lul =|vl.
(it} For all £V, Ly(&) & x*Ux™.
Gii) If n~>ump for u,0e(VUX)", then u=x" v=23%" for some p>0.

By (i), there is an integer 8(¢) for each &€V such that lul|=8(&) for all
ueLy(g).

Proof. (i) By (7.3), there are a, b € X* such that o — aéb. Thus aub, avbe
#* whence 0 =||laubl|=|avb|. Consequently [luf =]
(i) If Lg(®)cx*Ux*, then Ly(&) consists of a single word x3® or x7%®
according to 8(&) being positive or negative. This ;ontradicts (7;4). )
(i) In view of (7.3) and (7.4), there are a, b, c € X™ such that o = anc, n— b.
Further o <> au"bv"c for n=0. If ué X", then |ul, >0 for some &€ V. By (i)
L&) contains a word in X*(xx U%x)X™. Consequently U= u' for some
u'e X*(x% U #x)X*. Then u'™e X*(x%)"X* U X*(xx)"X* < X*(xx)" "' X", and
au"bv"c derives into a word which is not in K for sufficiently large n. Thus
ue X* and by the same argument as above u € x*UX". Since au™ is left factor
of a word in D* for n=0, we have |lau"||=|al/+nllu=0 for all n whence
|ul|=0. Thus uex*. Symmetrically v e x*. Finally [lul|+[v]=0.

Now let T be the integer associated to the grammar H by Ogden’s Lemma
11.2.5, set D =max{|d(¢)|: £€ V} and set N=D +T. The two main lemmas of
the proof are the following.

Lemma 7.17 Suppose that o™>w=gx"%"h for some g he(VUX)*. Then
there exist £€ 'V, and integers 1, s =0, p >0 such that

Q) r+p,s+p=N,;
(ii) ol gxERCh, > xPERP,  xPVERPT T xNEN

Thus the lemma asserts that w admits an iterative pair (in the language Ly (o)
of sentential forms) such that both iterating elements are in the central factor

xNEN of w.

Proof. Mark the T rightmost positions in the left factor ex™x™N of w, and
apply Ogden’s Lemma I1.2.5 to w. Then there exist a factorization w = aubuc,
and a variable & such that o = ae, €55 ufv, § > b. By Lemma 7.16 (ii1),
u=xP, v=x" for some p>0. Further ¢ =%’h for some s =0, and p+s<=T=
N. Two localizations are possible for the iterating element u:

(i) |a|=|g|. Then a=gx" for some r=0, and clearly r+p<N. Further b=
NPT NP,

(ii) |al<lg|. Then w'=ubv=_g'x"&""°, where g’ is some right factor of g

Mark the T left most positions in the right factor x"x™™* of w', and apply
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QOgden’s Lemma, noting that £-% w'. Then there are a factorization w'=
a'u'b'v'c’ and a variable n such that £ = a'ne’, 15 u'nw'. 7> b'. As above.
u'=x% v'=%* for some q >0, and a’ = g'x" for some r'=0. Moreover r' +g=<
T. Further ¢'=%* for some s’ such that g+s'<N—s, whence (s'+s)+g<N.
Since o> aa'nc'c=gx"mE h and b =xN""ENEF the lemma is verified
also in this case. B

Lermmma 7.18 Suppose that

o= w=gxN T Ehxtean, 55

for some g, he (VUX)*, and that further

i ry, T, Sy, S5 N

. S _ = _ ,
(i) X &S 1Ny 7N, X% 5 xMu, N for some u,, u, € DI
Then there exist £€ V, 1,, ,=0, p>0 such that

(iii) ti+p, fLtp=N,

s

@iv) o gnhéith; £55 XPERP,  xUIPERLTP I NI Fhiytg 5N,

(v) xPERRYP D Ny N for some  us € D7

The lemma claims the existence of an iterative pair of w whose iterating
elements are contained in the N first x’s of the block x™*" and in the N last ¥’s
of the block "N of w respectively.

Proof. The conclusion (v) is a direct consequence of (iv) and (ii), since
xOTPERETP s x NNy #Nx Vi, #VEN, whence s = xNuy BN Mu, N € DI¥. We pro-
ceed as in the proof of the previous lemma: Mark the T rightmost positions of
the left factor gx™'m, T9x=m, "N of w, and apply Ogden’s Lemma to w.
Then there are a factorization w = gubvc, and a variable ¢ such that o= aéc,
E-sufv, €5 b, By Lemma 7.16, u =x", v = %" for some p >0, and ¢ = %=k for
some 1, such that t,+p=<T=N. Three localizations are possible for the
iterating element u:

a) la|=|gx™N*"a, 5% and  |buc|= %N,
b) la|=|gl and |au|=s|gx™™|.
c) lal<l|gl.

We first verify that case a) is impossible. Assume the contrary. Then ubv =
x"M, %N for some r<r,. Next, by (i), ubv > x" "Ny, 7N "%, Since £ ubv,
we have —D=<d(é)=r—r,— N+t,s—-N+t,<~N+T, whence N<D+T=N.

Consider now case b). Then a=gx" for some f,=0, whence ubv=

KN TR B x e, £V, Since
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t

£ uby > 12Ny, TN N, 2N, The verification of these formulas is straightforward. We claim that for n =
L.,k
—-D=sd(&)=t,—t;=<T—(t;+p), whence t1+p<T—&~D N. -

Yarl O"-;h": 1,0 W n1 W S Bruzou—1 Wiz 00 8nz (n)s 7.8
Finally assume that ¢) holds. Then ubv =w’= g'xN*"in, %9 x"2m, %% "N, where 8r0Wn18r1Wn2 ' " Brzin -1 Wnz 8z ) (7.8)
g is a right factor of g. Mark the T Ieftmost positions of the right fac‘tor where for i=1,...,z(n), w,, has the form
kN, Fixn, 522N of w', and apply Ogden’s Lemma to w'. Remembering Cvbrs estun)
that 5% w', we obtain a factorization w'= a'u'b’v'¢’ and a variable 7 such that Wy = XTPHE ESY (7.9)
¢ a'ne’, n > u'qe’, n=>b'. Then a'=g'x", and u'=x% v'=%7 for 1'=0, with r(n, i), s(n, i)< N, and where &,, is the pivot of a grammatical system of

g>0and ¢ +q<T Next either ||z ]xmn %% ’“"[ or ¢'=# for some L In the

iterative pairs of type e, of the word f,. If this assertion holds, then by (7.8), fi
first case, u'b'v T= xNTTUn % for some s'<s;, and since nSu'b'y

admits a system of type (e, )" as desired. We verify first the assertion for

22Ny, x”*‘ ~si we obtain d(n)=N-—~t'-(s'—s;). Consequently N= d(n)-{? n =1, by induction on i=1, _2(1). Assume that
{'+s'—s;<d(n)+t'<D+T=N, which is impossible. Thus the second case .
holds. Then ; T=wW=gi Wit Wii18i-1l1800 0 i€z

where wy,,...,w,;_; have the form (7.9). Since f,=x %™, Lemma 7.17

l+:
o> aa'nc'c = gx'mih, applies to w, and consequently

x At = 1y o B S N i ETa e, X N 05 8ot GriciWBuifh “fi81xa
where wy; has the form (7.9), and further ¢, is the pivot of an iterative pair
g ; ' q+1+6,<N Li % i P
Since t'+q=T=<N, it remains only to show that g 2 (of type e€ =a;) of f. This proves the case n=1.
By (i), n 2 u'b'v' = x*N "y, #NxNu, N7 Thus d(n) =1+1,— 1, whence Suppose now that the assertion is true for some n <k, and consider the case
q+l+t=dn)+q+i'sD+T=N. B n+1. By the induction hypothesis, (7.8) holds.

Write h, = h'h", with h' = g 0Wn18n1Wn28no Then in view of (7.6), (7.7) and

k) of words by (7.9),

Proof of Lemma 7.13. Define a sequence f,, (n=1,...,

= Ng g =N _ _ _
fi= xNEN, farv1 =X fu®, n=1,..., k-1 h,= gHH’(xN'H(n 1)5 st r(, 1)§ Zs(n, 2)+I\gn+l,lhm (7.10)

Then f;ex’%"=(x*%")?, and assuming by induction that f, e (x™%%)*"", we
have . €x (x*%*)>% = (x"%")*". Thus f, € L(=L(k)). We shall prove by
induction on n that f, admits a grammatical system of iterative pairs of type
(2,)?*". The desired conclusion results for n=k.

For sake of simplicity, we set z(n)=2*" Then for n=1,...,k, fi can be
written as

fi

where the words g,; are defined by:

with h"=x"h" if n+1<k, and h"=h"(=1) if n+1=k. By (7.10), Lemma
7.17 applies to h,, and consequently

* "
T = Znua1,0Wnr118r1a

with w, ., described by (7.9). Assume now that

s h = . N ' .
Zrzo)-1fnnz ) (7.5) o= h=g, 1 oWii1, Wia1i-18n+1i-1% Wy 2i—18n2i1
n,z(n)—1indn,z(n

= W, g,
o z{n)bz
gn,()fngn,lfn n,z{n (n)s

for some i<z{(n+1). Then h=h'w'h", with

f = e o r— N N
0= 1=1, h =g, 10 Bh+1.i-1s W =X W, 0 W, 0, X (7.11)
"__ N - "o__ °
dfor lsnsk-1 R = g Wazier " Wasgo8eon OF R'=1,
arn Oor lsnsK—1.

gn,O = gh-%I,OxN’ gn z(n) =X gn+1 z(n+1)7
Zu2i =X 8rr, XN (0<2i<z(n));
=1 (©O<2i+1<z(n)).

according to i<<z(n+1) or i=z(n+1). In view of (7.11) and (7.9), Lemma
7.17 can be applied to h, and consequently

i DY "
Bnaiv1 = a— 8n+10 gn+l‘iwn+l,ih 5
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where w, ., satisfies (7.9). Thus the induction step is verified and the proof is
. n N -
achieved.

Exercises

7.1 (Boasson) Let S, be the symmetric }anguage over Z=XUX, \ylxere Xz{‘x.,_y};

X={z 7} Let 0:Z%—Z% be thfa rational substitution defined by o(x)==x, o(y)=y,

o(8)=%X*, o(§)=9X" and let §,=o(S,). ) | _

a) Show that any nondegenerated iterative pair- in S? is left strict bu&pn_gt‘ngAhtfs‘mct.,

b) Show that there are independent systems of iterative pairs of type [’I” in S, for any
= Py

g) Si].ow that S, is not a generator of Lin, and that S,& |J A,[, where the A, are the

n=tl

languages of the text. (A similar argument is used in Boasson [1973b] to show that the
family Gre is properly contained in Ng(Alg).)

7.2 Let $={x"y" | n=1}. For two languages A, B, derﬁne"AOB :A'B,‘wheren/&') is a

copy of A such that X, NXp=@. Define S*A ={xhx}|n=1, h.e‘A . where x,, x‘2

are letters not in X,. Let R be the least family of languages ci)ntaml_ng S and Cl(iSCEl

under the operations © and *. Next define a mapping o R — Di* < e, 2} by: a(S) =eg,

oA B)=a(A)a(B), a(§* A)=-ca(A)e.

a) Show that A € & has an independent system of iterative pairs of type a;(A).

Let w,weD{". Say that w' is a Dyck—subwor_d* of w” if w =x.1 T <x,,

W= U Uyt 0 U XUy, Xp, ..., X E{€, 8}, Ug,...,u e, &} and if for Isi<j=r,
Xiv1 X 1D XXy WX € DY

g‘)xgimw ;jtf?(;?/&, B 61%, A%B iff a(A) is a Dyck-subword of o(B).

7.3 Show that the languagc B, has independent systems of very strict iterative pairs of
type a,.

7.4 Define languages A,, (k=1) by A;=S,, and A,., =[(a., b.)*, A AL], where Al is
a disjoint copy of A,, and a,, b, are new letters. Show that A, € Ort(k)\Crt(k — 1) for
k=2,

7.5 For k=1, let Lin™ be the family of all languages which are finite unions of
products of at most k linear languages.
a) Show that Lin" is a principal cone for k=1. . e e
;)) ShO\\Z that Lin® ¢ Lin*"" for k=1, and that the cone Mlin= {} Lin®’ is nonprinci-
. k=1
al (Mlin is the family of metalinear languag.es); ' . .
S) Show that MlingLin I, and that Miling: Ng(Lin I'). (Hint. Show that (S.#)" is not'in
Miin.)

IX Open Probiems, Further Developments

Fig. IX.1 summarizes the resuits concerning cones of context-free languages
proved in the preceding chapters. Inclusion is represented by containment. A
prineipal cone is represented by a sharp peak, a nonprincipal one by a rounded
peak. There are several question marks in the figure. They refer to open

problems which we are going to discuss now:

L. It is unknown whether the full AFL Ng(Alg) of nongenerators of Alg is
principal or not. A positive answer to this question would imply, by Theorem
VIL3.5, that Ng(Ng(Alg)) is a full AFL closed under substitution. Thus the
same question would hold for that full AFL. Thus there may exist a finite or
infinite decreasing chain of substitution closed full principal AFLs Algpe
Ng(Alg) 2 Ng(Ng(Alg) 2 . . ., having some similarity with the sequence of
powers of the maximal ideal in a local ring. However, it is conjectured
(Greibach [1970]) that Ng(Alg) is nonprincipal

2. Is there a cone ¥ of context-free languages containing no nonregu-
lar linear (or one counter) language, i.e. such that $NLin=Rat (resp.
£ M Rocl= Rat)? More generally, say that two cones % and M are disjoint if

LNM=Rat. Then the question is: Are there disjoint cones of context-
free languages?

3. Call a cone ¥ minimal if Rat is the only cone properly contained in £. A
minimal cone is principal, and N g(#) =Rat. Are there minimal cones of
context-free languages? Note that two distinct minimal cones are disjoint. Only
a few partial results concerning this question are known. Thus Latteux [1978]
proves that the cone generated by DY = {x, £)*\ D¥ is minimal among all cones
generated by commutative languages. See also Berstel and Boasson [1974].

4. The previous question is closely related to the following. Say that a cone &
covers a cone J if 4 is the maximal cone properly contained in %. Thus a
cone is minimal iff it covers Rat. For a principal cone &, &£ covers Ng(%). Are
there principal cones & and 4 such that & covers 7 In other terms,
is there a principal cone £ such that Ng(#) is principal? A negative
answer would imply a negative answer to both problems 1 and 3. A related

question is: JIs there a cone ¥ which contains only finitely many
incomparable principal cones?

There are other open problems which are even more closely related to
context-free languages.
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i i i i inNRocl? A of Rocl contains an infinite regular set (since such a generator is not quasi-

S_I' properly contained in the intersection LinM - . .
&ff (‘jtheu:;?c?n is: ispthep intirsection of two principal cones of context-free rational by Theorem VHI.7.14‘), Along these lines, let Idk be the family of
ire a ea gg "alwayg 'a principal cone? (For a negative answer to a related these languages which are rationally equivalent to a I anguage of the form
an%ﬁ)lf ; see Ullian [1971]) Another question is: Is there a least ~ DiFNK for some n=1, and some regular language K. Then Beauquier
gi?ncgan;f cone containing a given family of context-free languages? ~ [1973] shows that for L eldk, either Rocil< LI or L= Ort. Note that this

result is related to problem 6.

We now discuss some developments which were not included in the preceding
chapters, and which are closely related to the topics we are concerned with.
Observe that the classification of context-free languages via cones and full

6. Consider a language L which dominates all quasi-rational 1angqages. IsL a
generator of Alg? In other terms, let &£ be a principal cone containing Qrt. Is. it
true that then ¥ contains Alg? Same question for the family Fcl of finite

counter languages. AFLs is a classification of languages, in opposition to a classification of
There are some results concerning the modification of the hierarchies rep- machines (acceptors) or of gener'a.ting devices (gramma.rs)..ln fa(?t, there exists a
. d in Fig. IX.1 when the attention is restricted to some cutset of the theory of AFAs (Abstract Families of Acceptors) Wthh 1s entirely parallel to
resented in Fig : the theory of full AFLs. For these results, the reader is referred to the book of
Alg Ginsburg[1975]. Up to now, no characterization of the family of context-free

grammars generating the languages of a cone is known. The notions of
grammar form and of family of grammars introduced in Cremers and
GenlAlg Ginsburg [1974] mainly apply to subfamilies of quasi-rational languages.

For some purposes, the concept of cone is too large. Thus the deterministic and
the unambiguous context-free languages are closed under inverse morphism
and intersection with regular sets, but are not closed under morphism. There-
fore, these important families are not cones. This leads to the following
weakened version of a cone: A cylinder is a family of languages closed under
inverse morphism and intersection with regular languages. There is another
reason why cylinders are interesting: cylinders preserve complexity of recogni-
tion. More precisely, consider a language L. If one has an algorithm A for
deciding membership in L (say on a nondeterministic Turing machine) then for
a language L' of the form L'=¢ (L) or L' =L NK, where ¢ is a morphism
and K is a regular language, one can easily obtain an algorithm A’ for deciding
membership in L' such that the order of running time of A’ is the same as the
order of running time of A. (Thus for L'=¢ (L), A’ is simply the following
algorithm: For a word f', compute first f = ¢(f') and then apply A to f.) Similar
considerations hold for space complexity. In this sense, L is “harder” to
analyze than L' (since there may exist other algorithms for L' which are faster
than A'). In other terms, the language L is the “hardest” language in the
cylinder generated by L. The question whether a given cylinder & is principal
thus is equivalent to whether there exists a ‘“hardest” language in £
Greibach [1973] has given a hardest context-free language. Autebert
[1977b] and Boasson and Nivat [1977] have proved that neither the cone of
restricted one counter languages, nor the cone of linear Ianguages is a principal
cylinder. For a general method, see Autebert [1977a]. The techniques are
similar to those exposed in the previous chapters. Thus the theory of transduc-
tions and of abstract families of languages serves as starting point for further
developments.

Fig. IX.1

context-free languages characterized by an additior?al res.trict%on‘ Thus consxc}er
the family Irs of context-free languages that coxlltam no infinite r(?gular selt 9(;;
satisfying the IRS-condition described in Sect.lon V.}). S. Greibach [ : t. !
proves that Irs N\ Gre =Irs N Qrt. This implies in particular that any generator
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