UNMIVERSITY QF
CALIFORMIA PRESS

Society for Music Theory

Aspects of Well-Formed Scales

Author(s): Norman Carey and David Clampitt

Source: Music Theory Spectrum, Vol. 11, No. 2 (Autumn, 1989), pp. 187-206

Published by: University of California Press on behalf of the Society for Music Theory
Stable URL: http://www.jstor.org/stable/745935

Accessed: 17/11/2009 08:41

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JISTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of thiswork. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=ucal.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

University of California Press and Society for Music Theory are collaborating with JSTOR to digitize, preserve
and extend access to Music Theory Spectrum.

http://www.jstor.org


http://www.jstor.org/stable/745935?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ucal

Aspects of Well-Formed Scales

Norman Carey and David Clampitt

A single structural principle accounts for pentatonic, dia-
tonic, and chromatic scales. The same structure, that of the
well-formed scale, also underlies the tonic-subdominant-
dominant relationship, the 17-tone Arabic and 53-tone Chi-
nese theoretical systems, and other pitch collections in non-
Western music. This article shows that the concept of a
well-formed scale can serve as a principled basis for tonal
music.

In the past, such a basis was sought in the physical
phenomenon of the overtone series. This approach was
found wanting in important respects: not only did the over-
tone hypothesis fail to generalize to non-triadic music, but it
also inadequately and inconsistently explained features
within the major-minor tonal system, such as the status of the
minor triad as a consonance and as functionally equivalent to
the major triad.! In recent years, diatonic set theory has

A version of this paper was presented at a meeting of the Music Theory
Society of New York State at Barnard College, October 1987.

'The overtone hypothesis has been discussed at length elsewhere. We
refer the reader to critical appraisals in the following: Milton Babbitt, ““Past
and Present Concepts of the Nature and Limits of Music™ and “The Structure
and Function of Music Theory,” in Perspectives on Contemporary Music
Theory, ed. Benjamin Boretz and Edward T. Cone (New York: Norton.

provided an alternative perspective, which generally has
proceeded from the assumption of an ideal equal division of
the octave. For example, the diatonic scale has been exam-
ined in terms of its configuration against a chromatic
background.” While our point of view intersects with diatonic
set theory, we do not begin by assuming the diatonic and
other pitch structures to be subsets embedded within a
chromatic set.

In the theory presented here, every pitch relationship is
defined in terms of the octave and fifth, which are treated as

1972), 3-9 and 10-21; Robert Cogan and Pozzi Escot, Sonic Design
(Englewood Cliffs, N.J.: Prentice-Hall, 1976), 139-141; Fred Lerdahl and
Ray Jackendoff, A Generative Theory of Tonal Music (Cambridge, Mass:
MIT Press, 1983), 290-293.

%John Clough and Gerald Myerson, “Variety and Multiplicity in Diatonic
Systems,” Journal of Music Theory 29 (1985), 249-270; Robert Gauldin.
““The Cycle-7 Complex: Relations of Diatonic Set Theory to the Evolution of
Ancient Tonal Systems,” Music Theory Spectrum (1983), 39-55; Richmond
Browne, “Tonal Implications of the Diatonic Set,” In Theory Only 5/6-7
(1981), 3-21; Clough, “Diatonic Interval Sets and Transformational Struc-
tures,” Perspectives of New Music 18/1-2 (1979-80), 461-482; Clough,
**Aspects of Diatonic Sets,” Journal of Music Theory 23 (1979), 45-61: Peter
Westergaard, An Introduction to Tonal Theory (New York: Norton, 1975),
411-427: Benjamin Boretz, “Musical Syntax (11).” Perspectives of New Music
9/2-10/1 (1971), 232-270.
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primitive terms. These intervals are parameters which may
take on different values but which are fixed for the purposes
of any given discussion. Given this degree of generality,
equal-tempered systems are included in the theory as
extreme or limiting cases.

The particular values assigned to the octave and fifth are of
little importance for the formal theory. However, the theory
will have a significant musical interpretation when these
values are close to the overtone series values 2 and % At the
completely uninterpreted, purely mathematical level, the
octave and the fifth play perfectly symmetrical roles: they are
simply numbers which generate other numbers. At the level
of the formal theory presented here, however, octave and
fifth are assumed to play fundamentally dissimilar roles: the
octave establishes a primary equivalence relation—octave
equivalence—while the fifth determines the different pitch
and interval classes. The fifth generates material which fills
the frame provided by the octave.

We give a definition of a well-formed scale and several
characterizations which involve elements of group theory and
of the theory of continued fractions. Groups and continued
fractions have been applied separately in musical contexts
before, but the relationship between the two mathematical
subjects and the importance of this relationship for tonal
music have not been clearly understood. The two subjects are
introduced informally in Part I, where the scale structure is
defined first in terms of a symmetry condition, and then in
terms of a closure condition. The logical equivalence of these
two conditions is the central conclusion of this paper. The
structural features shared by all well-formed scales, features
which have considerable practical and concrete musical sig-
nificance, may be derived from the symmetry condition. This
might be called the local viewpoint, while the characteriza-
tion in terms of closure provides global information about the
set of well-formed scales.

In Part II, these ideas are restated in a more formal and
more general setting. We present a theorem which deter-
mines in principle all well-formed scales and organizes them
into hierarchies. Following this is a brief treatment of another
characterization which amplifies the local description. This
aspect of the theory is our generalization of an approach
developed by John Clough and Gerald Myerson. Finally, we
turn to the particular case of the diatonic scale and to a
discussion of the major-minor triadic tonal system.

THE SYMMETRY CONDITION

In one of the standard derivations of the diatonic scale, the
seven pitch classes are obtained from a sequence of fifths and
then ordered within an octave (Example 1). In a general
sense, this is a satisfying, systematic derivation. We may be
embarrassed, however, if asked to account for the number
seven in this procedure, to justify halting at precisely this
point. Part of the answer is suggested by the diagrams in
Example 2, in which the sequence of fifths has been repre-
sented as seven points regularly spaced around a circle. In the
first circle the tones have been connected by fifths, in the
second by scale order. Both figures display the same degree
of rotational symmetry. The regular heptagon on the left is
an abstract geometrical representation of the fact that a
diatonic pitch-class set has a realization as a chain of seven
pitches linked consecutively by six identical intervals of a
perfect fifth. The regular heptagon has seven degrees of
rotational symmetry, which means there are seven distinct
rotations of the figure which bring it into coincidence with
itself. The figure formed by connecting adjacent scale ele-
ments also has seven degrees of rotational symmetry. We



Example 1.

express this relationship by saying that the scale figure
preserves the symmetry of the circle of fifths.

Although any number of fifths could be represented by
some regular polygon, the preservation of symmetry is by no
means the general rule. The diatonic hexachord formed by
consecutive fifths provides a counterexample, as Example 3
makes clear. However, the familiar pentatonic scale formed
by consecutive fifths does preserve symmetry (see Example
4). This symmetry condition makes meaningful and perhaps
useful distinctions. Therefore we offer the following (infor-
mal) definition:

Scales generated by consecutive fifths in which symmetry is
preserved by scale ordering are called well-formed scales.

The term well-formed refers to the pitch collection as a
whole, where the emphasis is on scale order and not on any
particular mode. A formal definition will be given in Part II.

Continuing to test sets of up to 12 consecutive fifths, we
discover six well-formed scales and six not well-formed. (See
Table 1.) The collections distinguished by the symmetry
condition correspond in a remarkable way to those affirmed
by musical theory and by intuition. All 12 sets of consecutive
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Example 2.
F F
B C B C
E G E G
A D A D
Example 3.
F F
E C E C
A G A G
D D
Example 4.

F F
A C A@C
D G D G

fifths share a certain degree of organization, reflected in the
one degree of symmetry always present. However, the
symmetry condition endows the musically significant scales
with a higher degree of organization, which raises several
questions: (1) What are the properties of well-formed scales,
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Table 1. Scales formed by consecutive fifths

(a) well-formed (1, 2, 3, 5,7, 12)

C
% &

and what musical advantages do these properties offer? (2)
What determines the sequence 1, 2, 3, 5, 7, 12, and under
what conditions would the sequence continue or another
sequence altogether arise? These are the local and global
questions, respectively, which we investigate here. To carry
out this investigation, the geometric point of view is replaced
by an algebraic one.

It is useful to designate pitch class number by position in
the sequence of fifths. This is a non-standard notation,
replacing the more common notation in 12 pitch classes
which follows chromatic scale order:

pitch-class F C GDAE B F ¢ Gt Db Af...
numbers 01 2 3 4 5 6 7 8 9 10 11...

With this notation, the elements of any scale derived from
consecutive fifths, well-formed or not, may be associated

(b) not well-formed (4, 6, 8, 9, 10, 11)

F F F
F
E c % C
D C B G
A G
E D
G D A
F F
¢} C Df C
GY
ct G G
cH
Fi D D
FH A
B A
E B E

with a set Zy = {0,1,...N-1}. For example, the pentatonic
scale consists of the pltch classes F, C, G, D, and A whose
pitch-class numbers are 0, 1, 2, 3, and 4, which are precisely
the elements of Zs. We will use the following names for the
well-formed collections and associate each with the appropri-
ate Zy:

Well-Formed Scale Zy

octave Z,
octave-fifth z,
structural Z,
pentatonic Zs
diatonic Z,
chromatic Z



The circle diagrams above suggest modular arithmetic.
Modular arithmetic is defined according to the congruence
relation, which holds that two integers x and y are congruent
modulo N (written x = y_ .4 ~) if N divides x —y. For
example, 9 is congruent to 2 modulo 7, since 7 divides 9 — 2.3
Congruence plays the role in modular arithmetic that equal-
ity plays in ordinary arithmetic. Congruence is the weaker of
the two equivalence relations, but both are essential in what
follows. To get a sense of the usefulness of the double
description provided by congruence and equality, consider
the diatonic set, represented by Z,:

F C G D A E B (p
0o 1 2 3 4 5 6 (0

+1 +1  +1 +1 +1 +1 -6 ordinary
arithmetic

+1 +1 +1 +1 +1 +1 +1 arithmetic
modulo 7

In ordinary arithmetic, the difference between adjacent
elements is either +1 or —6, where +1 corresponds to the
interval of a perfect fifth and —6 to the interval of the

*Itis easy to check that a = a4 n, and thata = b, impliesb = a_, n-
Furthermore, a=b_, n and b=c_ 4 y implies that a=c_ 4 y for all
integers a, b, and c where N is any positive integer. Let Z represent the set of
all integers. Then if z is in Z, z = Nq + r for unique integers q and r where
0 =r <N, that is, r belongs to Z. Simply put, r is the least non-negative
remainder upon division by N of z. Then r=z_ , so any integer z is
congruent to one and only one element of Zy. Therefore Z may be provided
with an operation “‘addition modulo N*': If z, and z, are in Zy, their sum is
defined to be the unique element rin Z such that z, + z, =1 4 n-
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diminished fifth. Considered in terms of modulo 7, however,
all of the differences are equivalent, since =6 = 1,4 5.

The rearrangement into scale order results in the sequence
0246135, Again, in ordinary arithmetic the difference
between elements is either +2 or —5, where +2 indicates a
whole step and —5 a half step. Nevertheless, considered in
terms of modulo 7 the difference is once again a constant,
since =5 =2_.4

F G A B C D E (F)
0 2 4 6 1 3 5 )
+2 +2 +2 -5 +2 42 -5 ordinary
arithmetic
+2 42 +2 +2 +2 +2 +2 arithmetic
modulo 7

Thus the preservation of rotational symmetry in the diatonic
set is represented algebraically by the fact that multiplication
by 2 modulo 7 arranges the pitch classes into scale order:

0123 456

X2mod7:
0 2461 35

fifths order

scale order

For each well-formed scale of N pitch classes, we will be able
to find an element b in Zy which, operating on Zy, arranges
the pitch-class numbers into scale order. Consequently,
N — b yields reverse scale order. (See Table 2.) We will see
in Part II that the elements of Zy provided with addition
mody form a group, and that the type of correspondence
described above is a mapping of a group onto itself called an
automorphism.
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Table 2. THE CLOSURE CONDITION
order by scale

well-formedscale b N-b  fifths X by order In the procedure defining well-formed scales, we evaluated

the preservation of symmetry by taking advantage of a
fictitious element. We formed a regular polygon even though
the interval which completes the circle falls short of or
exceeds a perfect fifth. Ignoring this difference is tantamount
to introducing an equivalence relation, which in its algebraic
guise is the relation ‘“‘congruence modulo N.” The equiva-
lence relation suppresses information in order to reveal an
important structural feature, the preservation of symmetry.
However, it is precisely this initial element of asymmetry
which enlivens the system, and which is expressed in more
elaborate form in the asymmetry of the scale.

The well-formed collections may also be determined by a
closure condition, which drops the equivalence relation and
takes into account exact interval size. In Example 5, F is fixed
in a given register and every other pitch class is represented
by the member which is closest to F. On this basis, we may
distinguish two types of intervals. The intervals in Example
6a below contain no pitches that occur earlier in the sequence
of fifths, while at least one previous pitch (indicated by
quarter-note heads) lies within the intervals in Example 6b.
The intervals in Example 6a we define to be primary inter-
vals, which provide the closure condition for well-formed
scales. Each well-formed scale contains all of the pitch classes
up to but not including the one associated with the primary
interval. Therefore the numbers associated with the primary
intervals correspond to the numbers of elements in the
well-formed scales.

Some finer distinctions can be drawn by extending pitch-
class notation to intervals. Interval-class numbers are desig-
nated in Example 7. Each interval class is represented by its
smallest member, which is considered to be normal form.
The normal form of interval class n is the smallest distance
between pitch class n and pitch class 0 (= F). The normal

Z, octave 00
Z, octave-fifth 1 1

Z;  structural 21

Zs pentatonic 2 3

O WFE RANO|—~R,NDO | ~=O| O

Z, diatonic 25

B OLONRFRLR O PARRNNRO[(INNRFRO|—~=O|O
[o NN SN S}

Z,, chromatic 75

—_

[E
N O WO N B ONJIO | L W=

_ O WO NNV AR W= O N WD
[

—_




Example 5.

e ——feo O To (o To6 ¢ o o [ofyg
(a) 2 [ \ p— T o— T 1t |
| 1 T 1 1 T
1 2 3 S 7 12
0 © W
(b) = =+ o * Uy | ! #3{ —
4 6 8 9 10 11

Example 7. Intervals in normal form

[
ic: 0 1 2 3 4 S 6 17 8 9 10 11 12
normal

fom: P1 P4 M2 m3 M3 m2 d5 Al d4 A2 d3 A3 d2

-+ - o+ - -+ - 4+ -+ %

form interval of interval class n > 0 is positive if it is upward
from F, otherwise it is negative. Primary intervals are repre-
sented here in whole-note or half-note values according to
the following distinction: A whole-note interval is smaller
than any interval preceding it except unison, while half-note
intervals are smaller than any preceding interval with the
same sign. All other intervals are given quarter-note values.*

*The normal form classification of three intervals is contingent upon an
implicit assumption of Pythagorean tuning, which serves as our model. The
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Again, each primary interval marks a well-formed scale by
virtue of being the first interval excluded from that scale.
However, the two scale steps in the well-formed scale are
themselves primary intervals and the sum of their interval-
class numbers is the class number of the determining primary
interval.

The following diagram shows the case for N > 2:

determining

well-formed scale  stepwise intervals interval
Structural 1(P4) 2(M2) 3(m3)

- +
Pentatonic 2(M2) 3(m3) S5(m2)

+ —
Diatonic 2(M2) 5(m2) 7(Al)

+ -
Chromatic 5(m2) 7(A1) 12(d2)

- +

In each well-formed scale, the two step intervals have oppo-
site signs. At least one of them is a whole-note interval
according to the distinction drawn above. Furthermore, the
intervallic difference between the two step intervals is exactly
equal to the determining primary interval. Also, the interval
numbers of this pair correspond to b and N — b. (See Table
2))

diminished fifth is the normal form of interval class 6, since in this tuning it is
smaller than the augmented fourth. Interval class 7 is given a half-note value,
since the chromatic half step is larger than the diatonic half step of interval
class 5. Finally, the polarity of interval class 12 is positive. since its normal
form is the Pythagorean comma, where Ef is higher than F. In Part II we
introduce tuning in a general setting.
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The hierarchy of well-formed scales is paralleled by a
hierarchy of primary intervals which seems to be generated
recursively. To understand the whole ensemble of interrela-
tionships that has been suggested requires the introduction of
more powerful mathematical theory. The theory of groups
and the theory of continued fractions provide the appropriate
languages for describing, respectively, the symmetry condi-
tion and the closure condition. In Part IT we state a theorem
which completely characterizes the relationship between
these two aspects.

II

The heuristic presentation given in the first section left
undefined the terms which all our procedures depended
upon, the octave and fifth. Implicit in the whole discussion
was a shared understanding of what was meant by octave and
fifth. The question of the tuning of these intervals did arise in
the classification of three intervals, the tritone, augmented
prime, and diminished second. The more important point,
however, is that we were able to forego explicit reference to
tuning because the basic structures are left undisturbed by
small variations in the values assigned to the octave and the
fifth. The frequency ratios of the acoustically pure octave and
fifth derived from the overtone series are % and %respectively,
and it will turn out that as long as these intervals are assigned
values sufficiently close to % and 2, the hierarchy of well-
formed scales begins with the sequence N = 1, 2, 3,5, 7, 12.
The next step is to introduce the frequency ratios of the
octave and the fifth into the theory.

We are positing what is effectively a generalized Pythago-
rean system, of which the paradigm is Pythagorean tuning
itself.” The theory may be developed without loss of gener-

“Eric Regener proposed studying such generalized Pythagorean systems
in his article, “‘Layered Music-Theoretic Systems,” Perspectives of New Music

ality if the octave is given its usual value 2 and a formal fifth
is introduced, which may be fixed at any value p where

ST

22 =p=2.

(Every possible unordered interval class has a unique repre-
sentative between the equal-tempered tritone and the
octave.)

The reader is cautioned that this degree of generality is
introduced to underscore the structure of the theory, to
illuminate the formal roles of the octave and fifth, not to
postulate some uncountable infinity of musically interesting
structures. On the contrary, many of the theoretically “‘well-
formed™ scales resulting from variation in the value of the
formal fifth would be musical absurdities. Within the theory,
the octave and fifth have the status of primitive terms. The
paradigmatic status of the pure octave and fifth as they
appear in the overtone series is an important issue but one
which lies outside the formal theory.

GENERALIZED PYTHAGOREAN SYSTEMS

A generalized Pythagorean system can be represented by
the set P={2u" I a,b € Z}. P can be thought of as represent-
ing all possible intervals formed by combining octaves and
fifths, since the frequency ratios of the octave and fifth are
assumed to be 2 and p, and the frequency ratio of the
combination of two intervals is the product of their frequency
ratios. Unison is represented by 1 = 2°u°, with numbers

6/1 (1967), 52—62. He carried out this project from the point of view of
notation in Pitch Notation and Equal Temperament (Berkeley: University of
California, 1973).



greater than 1 representing upward intervals, and numbers
strictly between 0 and 1 representing downward intervals.

The elements of P can also represent pitches in the
following way. If we assign a pitch X to the number 1, then
the pitch associated with 2°u® is the pitch a octaves and b
fifths from X, upwards or downwards depending on the signs
on a and b. One must be careful to distinguish between two
cases, according to whether p is or is not a rational power of
2. In the more general case, p is not a rational power of 2,
and it can be shown that any such set P can be put into
one-to-one correspondence with the notes of ordinary
notation.® In the special case p,=2% for positive integers M
and N, and some form of equal temperament obtains. For
example, 2% corresponds to the fifth of 12-tone equal tem-
perament.

The set of all pitch classes is determined by a many-to-one
mapping, 2°w°—b. This is a mapping from P to the set Z, if
W is not a rational power of 2, or to a set Zy, if p = 2% If
w = 2% then for any integer t, p ™ is a power of 2: p™ =
(@%™N = 2M and a pitch represented by 2'w™’" where
0 =r <N belongs to pitch class r, since 22p™N "1 = 22 +Myr
Therefore, 2°w° and 2°u? are in the same pitch class if and
only if b =d_,,q n» and consequently Zy is the set of all pitch
classes.

The elements of P together with multiplication form a
group, an algebraic structure of fundamental importance in
mathematics and an essential concept for studying Pythago-
rean systems and the well-formed scales which they contain.’

®Regener, Pitch Notation.

7A generalized Pythagorean system may be usefully studied as an example
of a Generalized Interval System (GIS) as defined by David Lewin in
Generalized Musical Intervals and Transformations (New Haven: Yale Uni-
versity Press, 1987).
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GROUPS AND SYMMETRY

A group consists of a set of elements together with an
operation, that is, a rule for combining any pair of elements.
A set G with an operation * is a group if:

(1) the operation is closed, that is, if g, and g, belong to G,
then g, * g, € G;

(2) the operation is associative, that is, if g,,g,.8; € G, then
(8178 %e =& " (2" &)

(3) G contains an identity element, that is, there exists an
element e in G such that foranyge G,e*g =g = g*e; and

(4) every element in G has an inverse element, that is, if

g € G, there is an element g~ 'eG such that g * g™' = e =

gl re
For example, the set of all integers Z with ordinary addition
forms a group, because:

(1) the sum of any pair of integers is always an integer;

(2) addition is associative;

(3) the identity element is 0: 0 + n =n =n + 0 for any
integer n € Z; and

(4) inverses exist, sincen + (—n) = 0 = (—n) + n for any
neZ.

Every element in Z can be represented as the sum or
difference of 1’s (or —1’s). Then we say that 1 is a generator
of Z. A group which admits a generator is called a cyclic
group, and Z is referred to as the infinite cyclic group. The
finite cyclic groups are represented by Z, with addition
modulo N. The reader can check that Zy with this operation
satisfies the definition of a group, and that 1 or any element
relatively prime to N is a generator of Zy.

The set of ordered pairs Z x Z = {(a,b) I a,b € Z} can be
considered to be a group as follows: Two elements x = (a,b)
and y = (c,d) are considered equal if and only if a = ¢ and
b = d. If x and y are elements of Z X Z, addition is defined
by x + y=(a + ¢, b + d). It is easy to verify that this
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addition is closed and associative, that (0,0) is an identity
element, and given an element (a,b) in Z x Z, the inverse
element is (—a,—b).

P provided with ordinary multiplication is a group: if p;,p,
e P, then p,p, € P; multiplication is associative; 1 is a
multiplicative identity element and belongs to P; and if 2°p°
e P, then 272" is an inverse and is in P.

Group theory provides a way of defining the degree to
which apparently dissimilar objects are alike. Two groups
that are structurally identical are said to be isomorphic.
Suppose G with the operation * and H with the operation °
are groups. If a mapping i:G—H sets up a one-to-one
correspondence between G and H where, whenever g,.g, €G,
i(g; * g) =1i(g,) ° i (g), then we say that G and H are
isomorphic, written G =H, and is called an isomorphism.
Since i sets up a one-to-one correspondence, this insures the
existence of an inverse mapping i~ ':H — G, which is also an
isomorphism. That is, if h;,h, € H, then i !(h; ° h,) =
i7(hy) i (hy).

The isomorphic groups G and H may arise in very different
contexts, yet every feature of one which may be expressed in
terms of its elements and operation has its counterpart in the
other. The isomorphisms i and i~! provide the means for
translating from the language of one group into that of the
other.

For example, with the proviso that w is not a rational
power of 2, P is a group with multiplication isomorphic to the
additive group Z X Z: Let i:Z x Z —P:(a,b) >2°u’. Then
if x and y are elements of Z X Z where x = (a,b) and
y=(cd), i(x + y)=i(a + ¢, b + d)=2""pt7d=
(2* w?)(2°u?) = i(x)i(y). Furthermore, if x #y, i(x) # i(y)
since 2°uP#2°u9, here recalling the proviso. Finally, if p € P
there is an x ¢ Z X Z such that i(x) =p, so i is an
isomorphism and P=7Z x Z.

The statement that P represents a system of musical
intervals is really the assertion of an isomorphism. Because
an interval is determined by a frequency ratio, because there
is a one-to-one correspondence between distinct elements of
P and intervals formed by adding octaves and formal fifths,
and because the frequency ratio of the sum of two intervals is
the product of their frequency ratios, we may regard P as
being the group of all such intervals.

The special case of an isomorphism of a group onto itself is
called an automorphism. For example, the mapping of Z
onto itself which multiplies every integer by —1 is an auto-
morphism of Z. In the diatonic set, the permutation which
rearranges the pitch-class numbers into scale order is an
automorphism of Z,. Recall that this rearrangement is
effected by multiplying each element of Z, by 2 mod 7. If
2,,2, € Z4, then 2(z; + 2,) = (22, + 225)moa 7> and if z; # z,,
2z) #2Z5(1mod 7)» S0 the mapping O: Z;, >Z,:2 -2z, 7 is an
automorphism. The inverse automorphism Q' is given by
multiplication by 4 mod 7. The mapping )~ ! takes pitch-class
numbers in scale order and transforms them back into order
by fifths:

><4m0d7
0 1 2 3 4 5 6

We can generalize the mapping () defined above to give
the formal definition of a well-formed scale:

Definition: Let Zy ={0,1 ... N-1} represent a set of pitch
classes of P produced by consecutive fifths. These pitch classes
are the elements of a well-formed scale if there exists an
automorphism which arranges Zy in scale order.

Recalling the earlier discussion, one can associate the value b
with an automorphism of Zy which places pitch-class num-
bers in scale order, and N — b with an automorphism which
places pitch-class numbers in reverse scale order.



CoNTINUED FrRACTIONS AND THE CLOSURE CONDITION

A mathematical statement of the closure condition is also
possible in terms of continued fractions. The primary inter-
vals are approximations to unison. Referring back to Exam-
ple 7, the reader can see that the primary intervals generally
become smaller, until the enharmonic interval of the dimin-
ished second is reached. In particular, the primary intervals
designated by whole notes decrease in size, and in the
sequences of both the positive primary intervals and the
negative primary intervals the intervals become progressively
smaller, that is, they approach unison.

In the general setting of P, it can be shown that if B
determineAs a primary interval, then there is a normal form

2
interval —g which is, in a well-defined sense, approximately

unison, ;:hat is 2%~ u®. Equivalently, % ~ log,p, or —3
# log,p, and % is a rational approximation to log,w. Unless p
is a rational power of 2, log,u is irrational, that is, % # log,
for all integers A and B. The theory of continued fractions is
concerned with such rational approximations.

A simple continued fraction is an expression of the form

+1
t, +1
t

t

o

+1
tN
where t, can be an integer which is positive, negative, or

zero, and the other t; are positive integers. For convenience
the fraction is usually written [t,, t,, t,, . . . ty]. For example,
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1+1=%’
2
1+1 _IT?’
2+1
5
1+1 %
271
541
3

The successive values [1] = 1, [1, 2] =3, [1, 2, 5] = &,
[1,2,5,3] = %are called the convergents of the continued
fraction. The name is appropriate because if x =
[to» t; , - . . ty] is @ continued fraction, each convergent
c = [to, t;,...1t] is closer to x than the previous
convergents. The convergents can be computed recur-
sively as follows: Leta_, =0,b_,=1,a_, =1,b_, =0.
Then

Cy .8

A L + Qg
N

by~ 4bioy + by

8The proofs for this and other statements about continued fractions can be
found in most introductory number theory texts. An elementary treatment is
C. D. Olds, Continued Fractions (New York: Random House, 1963).
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Infinite continued fractions can be shown to be well defined
by using this fact to prove that the convergents approach a
limit. Every irrational number can be expressed uniquely as
a continued fraction. It is easy to see that
1 1
1+ 7= 1+ m,

or in general that [ty, t; , . . . tny_p, tn] = [tos t1 5 - - - N s
ty—1, 1]. Every rational number can be expressed uniquely
as a finite continued fraction [ty,t, , . . . ty] with the proviso
that the last term ty be greater than 1. Conversely, every
finite continued fraction determines a unique rational num-
ber, and every infinite continued fraction determines an
irrational number; thus in each case there is a one-to-one
correspondence between numbers and continued fractions.

The continued fraction which is crucial in the theory of
well-formed scales is the continued fraction which represents
log,p. There is a complicated division algorithm for deter-
mining the continued fraction representation of log,y. Sur-
prisingly, a musician can use simple interval calculations to
carry out this algorithm and compute the first five terms of
the continued fraction for log,3 = [1,1,1,2,2,3,1,5, .. .].
Table 3 illustrates the procedure The first five convergents
are [1] = 1, [1, 1]—-[111] [1112]—§,and
1.1,1,2,2] = & . Since log,s = 1og,3 log,2 = log,3 —
the continued fractlon for log22 is[l,1,1,2,2...]-1=
[0,1,1,2,2, ] and the first five convergents of log22 are
therefore 0, 1, 3 i, and —2

The convergents of the continued fraction x are the best
approximations to x in the sense that no rational number with
the denominator the same size or smaller is closer to x. The
convergents alternately approach x from below and above.
For example, the decimal representation of logzg begins
0.5849 . . ., and the first five convergents in decimal form are
0.0, 1.0, 0.5, 0.6, and 0.5833 . . .

There are also weaker convergents, called semi-
convergents, which are the best approximations from one
side. If % is a semi-convergent to x and %< X, there is no
rational number between = and x with denominator less than

B
or equal to B, and similarly if % is greater than x. If the
continued fraction is [ty, t; , . . ., t,...] and t, > 1, we
can form semi-convergents [ty, t; , . . . t,_, 1], [to, t; , . . .

teets 2], -« - [tos - - - ey, te—1]. For example, the semi-
convergents tol7—2 =100,1,1,2,2]are [0, 1, 1, 1] = ¢ and
[0, 1, 1, 2, 1] = =. Now the sequence of convergents and
semi-convergents reads [0] = 0,10, 1] = 1, [O 1, 1] = 5,
[o,r,l,l]=§,[o,1,1,2]=§,[0,1,1,2 1=12.00,1,1,2,2]

”ll“he correspondence between the denominators of these
fractions and the sequence of primary intervals is not acci-
dental. It is not obvious, but in fact an interval between 2%
and ()B is primary if and only 1f = is a convergent or
semi-convergent of log2 That is, 1n a generalized system
P, the 1nterval between 2" and p® is a primary interval
exactly when 2 3 Is a convergent or semi-convergent of log,u.

The classification of primary intervals into whole-note and
half-note and positive and negative categories corresponds to
distinctions made in continued fraction terms. The primary
intervals designated by whole notes in Example 7 correspond
to convergents, and those designated by half notes corre-
spond to semi-convergents of logzg." The positive primary
intervals correspond to the convergents and semi-
convergents where 2 5 < log2 s whlle the negatlve primary
intervals correspond to those where = > log22

“We refer to logzg because Pythagorean tuning is our model. The same
statements can be made for any system for which the continued fraction
begins [0.1,1,2,2, . . .], finite or infinite.
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This entire development leads to the following theorem
characterizing well-formed scales:

Characterization Theorem: In a generalized Pythagorean system
P, a scale with pitch classes 0, 1, . . .B — 1 is a well-formed scale
if and only if B is the denominator in a convergent or semi-
convergent in the continued fraction representation of log,p.
Moreover, the automorphism of Zg which places pitch-class
numbers in a scale order is the mapping
Q:Zy > Zgiz > 2by (— D) 00 b

where b_ is the full convergent immediately precedmg = in the
continued fraction of log, .

The theorem asserts that each value p gives rise to a unique
hierarchy of well-formed scales, a hierarchy which is recur-
sively organized by the continued fraction of logzu Consider,
for example Pythagorean tuning. Then P = {2°( 3 la,beZ},
and log22 = [0,1,1,2,2,3,1,5,2,23,2, . . .], an mﬁmte contin-
ued fraction. The sequence of (seml )convergents = begin-
ning with c, is 1234 2 101724031 . and Zl, Z,, Z,

1’ IP TR a5

1°A proof of this theorem is contained in our unpublished paper, “Two
Theorems Concerning Rational Approximations: Number Theory and Music
Theory.”

Table 3.
k  smaller interval larger interval t, remainder interval
0 octave goes into perfect twelfth 1time leaving perfect fifth
1 perfect fifth goes into octave 1time leaving perfect fourth
2 perfect fourth goesinto fifth 1time leaving major second
3 majorsecond goesinto fourth 2 times leaving minor second
4 minorsecond goesinto major second 2 timesleaving diminished second

Zs, and so on represent well-formed scales. Z,, represents

the Arabic theoretical scale of 17 notes to the octave,'" while

Z, represents a system in Chinese theoretical writings.'?
Consider the pentatonic scale, represented by Zs. In this

case,% = [0,1,1 2] = '3 Then the previous full convergent is
%— =[0,1,1] = 5 The characterization theorem states that

the defining automorphlsm for the pentatonic scale is associ-
ated with the value by(—1)* 04 5 = 2(—=1)% 04 s = 2. This is
closely related to the fact that the steps of the pentatonic
scale belong to the interval classes 2 and the equivalent of 2
modulo 5, —3. Indeed, the proof of the characterization
theorem shows that the step intervals are themselves primary

"'Curt Sachs, The Rise of Music in the Ancient World: East and West (New
York: Norton, 1943), 279-280. Sachs points out that the 17-note scale is more
properly considered a ‘“‘set of elements,” from which various seven-note
scales are derived.

'2Alain Daniélou, Introduction to the Study of Musical Scales (London:
The India Society, 1943), 77. The S53-note division is also familiar in its
equal-tempered guise as a tuning scheme for devotees of just intonation. See
Hermann Helmholtz, On the Sensations of Tone, trans. Alexander J. Ellis
(London: Longmans, 1885; reprint ed., New York: Dover, 1954), 479-481;
Ben Johnston, ‘““Scalar Order as a Compositional Resource,”
New Music 2/2 (1964), 56-76.

Perspectives of
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YIS

intervals associated with %—' nd A~ , in this case 3 Land : In
the Pythagorean example, the 1ntervals are the whole step,
(2)"'()* = % and the minor third, (2)2(3)* = 3.

27

Families

FEach convergent of log,p gives rise to a finite sub-

hierarchy of well-formed scales which we call a family. If % is
a full convergent to log,p = to.ty, . . .t . . .] (where k <N
if there is a last term ty), we define the b, family to be
F(b,) = {Zz 1B = nb, + b,_,;,0=n=t,_,+ 1}. The most
musically significant example is the whole-step family: The
whole step is associated with interval class 2, and F(2) = {Zg
IB =2n+ 1,n = 0,1,2,3} = {Z,, Z;, Zs, Z,}, the octave,
structural, pentatonic, and diatonic scales.'? (See Table 4.)
Each member of a family except the initial one has as one

step an interval associated with the convergent B— and the
final well-formed scale of the family is the last scale which
contains this interval. For example, the last member of the
Pythagorean diatonic half-step family F(5) is the Arabic
17-note scale.

Some accounts of Javanese and Balinese pelog and slendro
describe them as embedded within a nine-tone equal division
of the octave." This corresponds to a system with formal fifth

= 27, associated with the continued fraction [0.1,1,4]
which gives rise to the hierarchy Z,, Z,, Z;, Zs, Z,, Z,y. In
this case the family F(2) = {Z,, Z, Zs, Z,, Zs}.

*Membership in F(2) underlies the ‘“‘remarkable property”” Jay Rahn
discerns in pentatonic and diatonic scales as well as in slendro, pelog, and
others, wherein “odd members are adjacent and form a unit registrally
distinct from that formed by even members . . .” Recall that the diatonic
scale, for example, is represented 0 2 4 6 1 3 5 (0). See Jay Rahn, “‘Some
Recurrent Features of Scales,”” In Theory Only 2/11-12 (1977), 47. 51.

“Ibid.. 49-50.

Table 4. Whole-step family

Z
Z;
Zs
Z;
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Degenerate Well-Formed Scales

Every equal-tempered scale is the last scale of one or more
finite hierarchies. We call the equal-tempered scales the
degenerate well-formed scales, degenerate in the same sense
that the geometer can consider a straight line to be a
degenerate circle. Straight lines have their own beauty and
usefulness, but they are uninteresting circles. The degree of
asymmetry present in the general well-formed scale has been
smoothed out in the special case of the symmetrical equal-
tempered scale.

Every hierarchy can be considered to be equivalent in
some degree to a finite hierarchy. We will say that two
hierarchies are nth-order equivalent if the first n (semi-)
convergents of each are identical. Thus the Pythagorean
tuning hierarchy and the %—comma mean-tone temperament
hierarchy are sixth-order equivalent, and are both equivalent
to the finite hierarchy of ordinary chromatic equal tempera-
ment.

111

Another characterization of non-degenerate well-formed
scales can be given in terms of scale-step measure. In the
diatonic scale, an interval can be described either in terms of



the number of scale steps it spans or by its exact size. Each
span is represented by two intervals. Seconds and thirds,
sixths and sevenths come in two sizes—major or minor—
while fourths are perfect or augmented and fifths are perfect
or diminished. A generalization of this two-to-one property
applies to all non-degenerate well-formed scales, as we will
show.

The pitch classes and interval classes of P are represented
by Z, in general, or by Zy, in the case where p =28 If 22
is a pitch or interval, it belongs to pitch or interval class b in
the first case, and to class b modulo N in the second case.
Two pitch classes x and y determine at most two distinct
ordered interval classes x — y and y — x. (We will see that in
special cases it may be that x —y and y — x refer to a single
interval class.)

When we say that a well-formed scale is represented by
Zy, we mean first of all that the elements of Zj are the pitch-
class numbers of the scale. The ordered interval classes
possible with these pitch classes are then contained in the set
of all differences a — b where a and b are elements of Zj.
(The subtraction here is ordinary arithmetic, not modular
arithmetic.) The possible interval classes are therefore 1 — B,
2-B,...-1,0,1,...B~2,B ~ 1. We will call these the
specific ordered interval classes of the well-formed scale.
There are at most 2B — 1 of these since they may not all be
distinct if P is an equal-tempered system. For example, if Z
is a degenerate well-formed scale, the distinct classes are 0, 1,
...B-1.

Even in a non-degenerate scale, such as the diatonic scale
in ordinary equal temperament, there may be some duplica-
tion: Class 6 contains the augmented fourth and its octave
equivalents, and class —6 contains the diminished fifth and its
octave equivalents, which in this tuning are indistinguishable
classes. However, if Zg is non-degenerate well-formed, it
must be that classes n and n — B are distinct, for n = 1, 2,
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.. B —1. Otherwise we would have 2*'u" B = 247" for
some integers A’ and A”, that is 2™ = pB Setting
A = A’ = A", than 2* = u”, that is, £ = log,p. and Zy is
degenerate, contrary to the assumption.

The non-zero specific interval classes can be collected into
B — 1 pairs of congruent interval classes: n=n — B, 4 5, but
n and n — B represent distinct interval classes for n = [, 2,
... B — 1. We define the generic interval classes for the
well-formed scale to be these B —1 classes, each of which
contains two distinct specific interval classes, plus the zero
class.'” (See Table 5.) Then Zjy represents a set of generic
interval classes. Since generic ordered interval classes have
been defined in terms of the congruence relation, it makes
sense to define the sum of two generic interval classes x and
y to be the generic interval class (X + ¥)n0q 5- SO the group
Zy with addition modulo B represents the group of generic
interval classes with addition. This is the meaningful sense in
which it can be said that a well-formed scale is a group.

If  is the automorphism of Zy which places pitch-class
numbers of the well-formed scale in scale order, then Q(1),
Q(2),...Q(B — 1)is that scale order, which one can relabel
0, 1, ... B — 1. Automorphism Q also relabels generic
interval classes according to scale order: (1) is the generic
scale step, 2(2) is the generic “third” in the scale, third
meaning “skip one step,” just as in the diatonic scale,
“fourth” and “fifth” similarly defined, up to the generic
“Bth,” Q(B— 1). In a well-formed scale, then, the notion of
a generic interval is consistent with, indeed equivalent to,
scale-step interval measure. Since there are two distinct

The terms “generic” and “specific” are those of John Clough and
Gerald Myerson; see “Variety and Multiplicity.” We have extended the
meaning of specific interval to interval size in a generalized Pythagorean
system. Clough and Myerson restrict their study to diatonic structures
embedded in chromatic universes.
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Table 5.
Diatonic ordered interval classes - 0)
generic ic 1 2 3 4 5 6
specific ic +1 +2 +3 +4 +5 +6
interval P5 M2 M6 M3 M7 A4
specific ic -6 -5 —4 -3 -2 -1
interval ds m2 m6 m3 m7 P4

specific interval classes in each non-zero generic ordered
interval class, we can say that within the octave exactly two
specific intervals correspond to each non-zero generic inter-
val. Following Clough and Myerson, we call this two-to-one
property Myhill’s property.

A stronger assertion can be made, namely that Myhill’s
property characterizes non-degenerate well-formed scales. In
an arbitrary scale we can define a generic interval in terms of
scale-step measure. If the scale possesses Myhill’s property,
that is, if seconds, thirds, and so forth come in exactly two
distinct sizes, it can be shown that the scale is a non-
degenerate well-formed scale.'®

In most cases, there are exactly 2B — 2 = 2(B — 1) dis-
tinct, non-zero, specific ordered interval classes in a well-
formed scale Zg. That is, there are twice as many non-zero
specific interval classes as there are non-zero generic interval
classes, and the generic interval classes partition the set of
specific interval classes into pairs. If there are fewer than
2B — 2 specific classes, it is an anomaly due to tuning. We will
say that a well-formed scale Zg is in a normal tuning when
there are 2B — 2 non-zero specific ordered interval classes
defined by the scale. It can be proved that a well-formed scale
is in a normal tuning as long as it is in a universe P where

'*Carey and Clampitt, “Two Theorems.”

is not a rational power of 2, or, if u=2%, as long as B =
R

The usual diatonic scale in ordinary equal temperament
is not in a normal tuning, because partitioning fails in
the isolated case of the tritone. Whenever N is even and
B = % there is such a singularity. Two points are notewor-
thy in these cases. First, that partitioning may be rescued by
considering unordered interval classes. For example, in the
diatonic scale, in any tuning, there are three non-zero generic
unordered interval classes, which partition the six non-zero
specific classes into disjoint pairs. Second, that because of
this duplication at the tritone, these scales have what Gamer
refers to as depth of transposition.'® The number of specific
ordered interval classes is 2B — 2 = N in these scales. These
are exactly the N interval classes of the equal-tempered
system P; thus the scale can be transposed to any pitch in the
system by one of the intervals of the well-formed scale. This
is also the case when N is odd and B = ~2-1 1

In view of the equivalence of non-degenerate well-formed
scales and scales with Myhill’s property, the results obtained
by Clough and Myerson for scales which have Myhill’s
property carry over to well-formed scales, although our
definition of specific interval is more general in that it does
not appeal to the assumption of equal division. Unordered
pitch-class sets (chords) and ordered pitch-class sets (lines) in
a non-degenerate well-formed scale can be described both
generically and specifically, according to their constituent
intervals. Lines which share a generic description are “tonal”

7[® 2 ) means the integral part of &2 _ that is, the largest integer

less than or equal to &1
=4 3Carlton Gamer, “‘Some Combinational Resources of Equal-Tempered
Systems,” Journal of Music Theory 11 (1967), 32-59.
"“Here also see Clough and Myerson, ‘‘Variety and Multiplicity,”

267-268.



or “diatonic” transpositions of each other, while those shar-
ing a specific description are “real” transpositions. The
number of specific types of lines which share a common
generic description is equal to the number of distinct pitch
classes per line. Moreover, the number of “real” transposi-
tions of each specific type is determined by the shared generic
description. For example, in a well-formed scale represented
by Zy there are B distinct modes, each one a diatonic
transposition of the others. That is, all share the same generic
description, but each has a unique specific description.

The property of partitioning, under which the double
description of intervals is completely consistent and unam-
biguous in that a specific interval always has the same generic
description, is a property of any well-formed scale in a
normal tuning. This partitioning property is inherited by
chords and lines when the scale’is in a normal tuning. That is,
chords or lines of a given specific description always have the
same generic description. While partitioning is a rare prop-
erty from Clough and Myerson’s point of view, in this more
general setting it is the rule rather than the exception.

THE DIATONIC SET

The symmetry condition, subsequently reinterpreted as a
group automorphism condition, provided the point of depar-
ture for our theory. This defining property results from the
intersection of two conditions, symmetry preservation and
scale order, which easily could be met independently, but
when met simultaneously characterize the well-formed scale.
In this section we consider the special case of the diatonic set
and the implications for the major-minor tonal system of the
existence of a third symmetry transformation.

If Z represents a well-formed scale, two automorphisms
of Zg are involved by definition: the identity automorphism,
which maps each pitch class onto itself; and the automor-
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phism defined by b,(—1)¥,.4 5 Which arranges the pitch
classes into scale order. (There are trivial cases where
bk(—l)“mod g = 1 and there is a single mapping.)

If we drop the scale order condition, there are other
symmetry-preserving mappings possible. The number of
automorphisms of a cyclic group Zy is equal to the number of
elements of Zg relatively prime to B. Thus, if B is prime,
there are B — 1 automorphisms. In general, if ®(B) repre-
sents the number of elements less than and relatively prime
to B, then the number of automorphisms is ®(B). It is easy to
show that ®(B) is even if B > 2. For our purposes, only half
of these mappings are essentially different. For example, if
bk(—l)“l11od g determines the automorphism arranging pitch
classes into scale order, —b,(—1)*,.4 g determines the com-
plementary mapping placing the elements in reverse scale
order. The essential sameness of these mappings is reflected
geometrically in that the circle diagram representations of
these mappings are indistinguishable, unless arrows marking
clockwise and counterclockwise order are added. Therefore

we will consider 22 different automorphisms of Z.2°
2 p B

In the case of the diatonic set Z,, % = £ = 3, 50 a third
automorphism, distinct from those defined by fifths order and
scale order, exists in this system. In this mapping the pitch
classes are in order by thirds. The three essentially different
symmetry transformations of the diatonic set are displayed
below; the geometric representation of the thirds automor-

phism appears in Example 8.

*The reader with a background in group theory will recall that the
automorphisms of a group themselves form a group with ordinary composi-
tion of mappings. For the cyclic group Zg, B — 1 determines an involution, an
automorphism of order 2, and we are concerned with the quotient group of
the automorphisms modulo the subgroup {1.B —1}.
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Example 8.

X145 (fifths)

X 2 0d 7 (seconds)

X 4 od 7 (thirds)
0 4 1 5 2 6 3

In the double description given by ordinary arithmetic and
arithmetic modulo 7, we see the following:

0 4 1 5 2 6 3
+4 =3 +4 =3 +4 -3 ordinary
arithmetic

+4 +4 +4 +4 +4 +4 arithmetic
modulo 7

The diatonic set is generated by 4 mod 7, or by the threefold
repetition of the cell [4 — 3]. These cells correspond to the
three primary triads, FAC, CEG, and GBD:

F A C E G B D
(4 -3] (4 -3] [4 -3]

The importance of the major mode in triadic harmony can be
inferred from the central position of the tonic triad, flanked
by the dominant and subdominant.

The minor triad, represented by the cell [—3 4], generates
the diatonic set in an analogous way, starting from D:

D F A C E G B
-3 4 3 4[5 4

The complementary role of the minor mode is illustrated
here, where the central position is held by the tonic triad.
Thus the triad emerges as a structural feature of the diatonic
set.?!

Any pitch-class set generated by N consecutive fifths has
an axis of inversional symmetry. This axis is a pitch class if N
is odd, and is an interval class if N is even.?? In any such set,
the imperfect fifth which completes the cycle of fifths is also
such an axis of symmetry. (See Table 1.) In the diatonic set,
the pitch-class axis of symmetry is D, and the imperfect fifth
is the diminished fifth B to F.

The pivotal position of the tritone (and of the diminished
triad) flanked by major and minor triads, and the interrela-
tionship of the cycle of thirds and the cycle of fifths, is
displayed in Example 9.?* One aspect of the polarity between

!This is, of course, an old observation, presented here in yet another
context. See also Lewin, “A Formal Theory of Generalized Tonal Func-
tions.” Journal of Music Theory 26 (1982), 23-60, and Ramon Fuller, “A
Structuralist Approach to the Diatonic Scale.”” Journal of Music Theory 19
(1975), 182-210.

2Gauldin, “The Cycle-7 Complex,” 41.

**The structural importance of the tritone in the diatonic set is discussed
in Browne. “‘Tonal Implications of the Diatonic Set.”” Experimental evidence



Example 9.
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the tritone and the tonic major and minor triads is the fact
that the C-major and the A-minor triads are the only triads
which are “tritone-free,” in the sense that every other triad
contains either an F or a B.?*

The intrinsic complementarity of the major-minor contrast
makes it unnecessary to justify the minor triad in terms of the
overtone hypothesis. In this theory, then, the triad is derived
from the diatonic set, rather than the other way around.
There has been a failure to recognize the correct logical
status of the triad not only on the part of theorists who have
embraced variants of the overtone hypothesis, such as
Schenker, but also among those who have considered the
formal structure of the diatonic scale against a notional
background of equal division of the octave.”® The logical

for the importance of the tritone in establishing a tonal context is found in
Helen Brown and David Butler, “Diatonic Trichords as Minimal Cue-Cells,”
In Theory Only 5/6-7 (1981), 39-55. Browne’s dialectic of ‘‘pattern match-
ing” versus “position finding” parallels our “‘generic” versus ‘‘specific” and
“symmetry’’ versus ‘“‘asymmetry.” Pattern matching is further explored in
Edwin Hantz, “‘Recognizing Recognition: A Problem in Musical Empiri-
cism,” In Theory Only 5/6-7 (1981), 22-38.

*Diatonic complementation is discussed in Browne, with clarifications in
Clough and Myerson. Assuming set classes determined by transpositional
equivalence only, the tonic major and minor triads are the only triads with
unique complements. That is, BDFA is the only half-diminished seventh
chord and GBDF the only dominant seventh in the C-major collection. The
other triads are not uniquely determined by their complements.

**For examj=+ Gerald Balzano, ““The Group-Theoretic Description of
12-Fold and Microtonal Pitch Systems,”” Computer Music Journal 4/4 (1980).
66-84.
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error both stems from and leads to an ethnocentric view of
music history, which overlooks the fact that triadic tonal
music is only a small subset of world diatonic music. On the
other hand, the acoustical resemblance between the major
triad and the fourth, fifth, and sixth harmonics is not to be
denied. Undoubtedly there is a correlation between the
physical phenomenon and the perception of consonance and
dissonance, although the correlation is by no means a simple
one.

Tonality is an extremely complex phenomenon, to which
the static, formal view given here does not do justice. For
example, a satisfactory theory of tonality must embrace
rhythm, which we have not considered. The point of our
analysis is simply that the diatonic set does possess a third
dimension which permits the strong definition of a tonic,
which diatonic music may or may not exploit. By contrast, no
matter what the tuning, any well-formed scale of 12 tones
contains only the minimal two distinct automorphisms, since
®(12) = 4. In this regard, the 12-tone set is poorer than the
diatonic. In the pentatonic scale as well there are just two
automorphisms. On the other hand, many theoretical well-
formed scales are much richer in automorphisms.

Gregory Bateson, in his book Mind and Nature, insists
upon the value of double description in contexts ranging from
binocular vision to theory formation.?® An opposition which
has been thematic in our discussion is the double description
which arises from the interplay of symmetry and asymmetry.
At the top of the logical hierarchy there is an opposition
between octave and fifth. These terms may be regarded
mathematically as playing symmetrical roles, but an initial

*Gregory Bateson, Mind and Nature (New York: Dutton, 1979).
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element of asymmetry enters with the introduction of octave
equivalence. This primary equivalence gives rise to the
notions of pitch class and interval class and to the notion of
scale as an ordered set of pitches spanning an octave. A
secondary equivalence relation, based on the sequence of
fifths, together with the notion of scale order gives rise to the
well-formed collections, in each of which is inherent a
consistent double description, a generic description which
applies within the well-formed scale, and a specific descrip-
tion which applies throughout the given generalized
Pythagorean system.

Associated with each Pythagorean system is a continued
fraction, which organizes all the well-formed scales of the
system into a hierarchy. Continued fraction theory has
previously been applied to aspects of tuning. Although
tuning is important in our theory, in that the value of the
formal fifth determines the continued fraction, our interest
lies primarily in the organization of well-formed scales,

expressed in group-theoretical terms. The connection
between continued fractions and the appropriate application
to music of group theory has been hitherto unacknowledged.
We hope that an understanding of familiar musical entities
within the well-formed scale context will lead to a greater
awareness of the way pitch is organized and of the way the
mind organizes musical pitch.

ABSTRACT

Pentatonic, diatonic, and chromatic scales share the same under-
lying structure, that of the well-formed scale. Well-formedness is
defined in terms of a relationship between the order in which a single
interval generates the elements of a pitch-class set and the order in
which those elements appear in a scale. Another characterization
provides a recursive procedure for organizing all well-formed scales
into hierarchies. Finally, well-formed scales are defined in terms of
scale-step measure, and aspects of the diatonic set are examined.
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