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Periodic musical sequences and Lyndon words

M. Chemillier

Abstract When one enumerates periodic musical struc-
tures, the computation is done up to a cyclic shift. This
means that two solutions which are cyclic shifts of one
another are considered the same. Lyndon words provide a
powerful way to do so. We illustrate this by two examples
taken from African traditional music.

Keywords Infinite periodic words, Lyndon words, tradi-
tional music from Central Africa, cyclic forms

1

Introduction

A formal system is a system of symbols together with rules
to combine them into sequences of symbols which are
considered as meaningful. One of the first assumptions
underlying this approach is that one can recognize that
two sequences of symbols are identical (for instance,
among the three sequences abc, abc, cba, the first two are
identical). A very particular type of sequence of symbols is
the one obtained by combining several copies of the same
sequence in such a way that this sequence is repeated
endlessly, as in abcabcabc... Such a sequence is called
“periodic”.

Periodic structures are a fundamental feature of music.
This fact is illustrated in classical music by well-known
forms such as the chaconne. But this feature appears to be
much more important in traditional music, for instance in
Central Africa, where most of the repertoires are based on
cyclic forms.

From a musical point of view, one can generally con-
sider that two periodic sequences which only differ by a
finite number of elements at the beginning are basically
the same periodic sequence. In fact, you cannot distin-
guish them if you do not hear their first notes. It is pos-
sible to formalize this idea by defining an equivalence
relation on periodic sequences called “conjugacy relation”.

The study of periodic musical phenomena may some-
times lead to the computation of periodic structures
sharing some specific property. In this case, the problem is
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to compute solutions which are not conjugate one with the
other. There is a concept in combinatorics on words,
named Lyndon words, which can help in selecting one
representative among conjugacy classes. Roughly speak-
ing, a Lyndon word is defined as a finite word which is
minimal for the lexicographic order in its conjugacy class.
The properties of these words have been studied in details
[12], and there exists an efficient linear algorithm to
compute them [8].

In this article, we show how Lyndon words can be used in
the study of periodic musical structures, and we illustrate
this by two examples taken from African traditional music.

2

Infinite periodic words

An infinite word is a function u from N to a given set A
called the alphabet. It is said periodic if there exists an
integer m satisfying

u(n+m) = u(n)

for any integer n. We shall say in this case that u is m-
periodic, and we define the period of u as the least integer
m such that u is m-periodic. In this paper, we denote by
Per, the set of infinite periodic words over A, and by
Per,(m) the set of infinite periodic words with period m.
They are both subsets of the set of all infinite words over A
which is usually denoted by A”.

A finite word over the alphabet A is a finite sequence of
elements of A. The set of all finite words over A is denoted
by A*, and we denote by |w| the length of a finite word w,
by |w|, the number of symbols equal to a in w, and by ¢ the
empty word.

For each finite word u of length m, the infinite periodic
word with period m, which has u as its finite prefix of
length m, is denoted by u” using the w-notation [13] page.
The function associating u with 4 maps bijectively A*
onto Pery.

The cyclic shifts of a finite word are defined by intro-
ducing the permutation 6 of A* such that

O(ax) =xa,a € A,x € A", o(e) =¢.

The cyclic shifts of w are the words of the form 5% (w) for
any integer k. Finite words which are cyclic shifts of one
another are called conjugate, and the conjugacy relation is
an equivalence relation on A* [12].

The notion of conjugacy may be extended to infinite
periodic words. For any infinite word u, the translated
word Tu is defined by

Tu(n) =u(n+1)
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for any integer n. We shall say that two infinite periodic
words are conjugate if and only if one is the translated of
the other, and this defines an equivalence relation on
infinite periodic words. The infinite periodic words
equivalent to a given one u are the translated T¥u for any
integer k.

There is an obvious relation between translated
m-periodic infinite words, and the cyclic shifts of their
prefix of length m. It can be written for every u® in Per,
and for any integer k

Tk(uzz)) _ (5k(u)>w.

3

Computation of Lyndon words

When one wants to compute periodic musical structures
satisfying some specific property, two conjugate sequences
are considered as the same solution. It is thus necessary to
limit the computation to only one representative for each
conjugacy class. The natural way to do so is to use Lyndon
words, as we shall see in this section.

Let us denote by the same symbol the conjugacy rela-
tions on both Per, and A* (this convention is justified by
the fact that u” v in Per, if and only if u v in A*, as we
have seen in the previous section).

Definition 1. For any subset R of A*, we define a cross-
section of R for the conjugacy relation as a set T satisfying
the following conditions:

1 two elements of T cannot belong to the same conjugacy
class,

2 any element of R is conjugate to at least one element of T,

3 any element of T is conjugate to at least one element of R.

A similar definition is given for any subset R of Per,.

Here, we make use of an ordered alphabet A. Thus one
can define the traditional lexicographic order on finite
words of A*. One also defines the power of a finite word x
as a word of the form y = x* for some integer k. For in-
stance ababab = (ab)® is a power of ab.

Definition 2. A Lyndon word is a finite word which is
minimal for the lexicographic order in its conjugacy class of
A*, and which is not a power of another word ([12] page 64).

For instance, aaab is the Lyndon word of the conjugacy
class which contains the words aaab, aaba, abaa, and
baaa. The minimal element being unique, the set of Lyn-
don words is a cross-section for the conjugacy relation on
finite words. This can be extended to infinite periodic
words, by taking w® for all Lyndon words w. The resulting
set of infinite periodic words is a cross-section for the
conjugacy relation on Per,.

From a practical point of view, the computation of
Lyndon words may be quite efficient. Jean-Pierre Duval
has given an algorithm which gives the sorted list of all
Lyndon words of length less than an integer n [8]. This
algorithm is reproduced in Fig. 1. Let a be the smallest
letter of the ordered alphabet A and M be the larger one.
Furthermore, for every letter x excepted M, s(x) is the

w[l] ¢ a
1
repeat
forj=1ton-i
do wli+j] < w[j]
/* at this point, w[1...i] is a Lyndon word */

i<n
while i > 0 and w[i] =M
doi«i-1
if i > 0 then w[i] « s(w[i])
until i =0

Fig. 1. Duval’s algorithm for the computation of Lyndon words
of length less than n

letter that immediately larger than x in A. We denote by
w[l..n] an array of letters of dimension n.

The simplicity and efficiency of this algorithm are
incredible. It is far beyond the scope of this article to give a
full explanation of the algorithm. It would require theo-
retical properties of Lyndon words which are presented in
[8], and the reader is referred to it for more details. Here
we only give the trace of the computation for n = 4, in
order to show how it works.

Table 1 gives the successive values of i during the
computation, the corresponding values of array w in line 6
of the algorithm, and the associated Lyndon words w[1...i]
which appear in lexicographic order.

4
Musical applications of Lyndon words
The idea to use Lyndon words for the computation of
periodic musical structures is quite natural. The musical
applications of Lyndon words fall into two categories. In
the first one, the periodic structure applies to time. In the
second one, the periodic structure is considered outside
time, as it is the case in the study of pitch structures such
as modes. The examples that we shall study in this article
belong to the first category. In the same category, one
can also find works of Harald Fripertinger on periodic
rhythmic canons [10].

Before we turn to the examples of the first category, we
shall give a brief example of the second one. The study of

Table 1. Trace of Duval’s algorithm for n = 4

i w Lyndon words
length < 4

1=1 aaaa a

i=4 aaab aaab

i=3 aaba aab

i=4 aabb aabb

i=2 abab ab

i=3 abba abb

i=4 abbb abbb

i=1 bbbb b




periodic structures outside time is generally based on
intervals instead of notes. It is the case in the American
theory of pitch class sets, where the notion of “normal
order” is close to the definition of Lyndon words, although
not identical as we shall see.

A pitch class set is an ordered set of pitches from the
chromatic scale between 0 and 11 where 0 represents the
note C and 11 the note B. Allen Forte [9] has defined the
normal order for any pc set as one of its cyclic shifts which
has

“the least difference determined by subtracting the first
integer from the last” ([9] page 4).

Since two cyclic shifts may have the same value for the
difference, Forte adds a “Requirement 2” when the pre-
vious condition gives many solutions

“If the least difference of first and last integers is the
same for any two permutations, select the permutation
with the least difference between first and second integers.
If this is the same, select the permutation with the least
difference between the first and third integers, and so on”
(19] page 4).

We observe that this second condition corresponds to
the definition of a Lyndon word among the cyclic shifts of
the sequence of intervals. But in fact, it is not taken into
account when the first condition gives a unique permu-
tation. Thus it follows that Forte’s normal order does not
always correspond to the Lyndon word. For instance, the
pc set denoted as 4-10 in Forte’s table has the normal
order [0, 2, 3, 5], corresponding to the notes C, D, D#, F.
The sequence of intervals is 2 1 2 7 (the last interval is
from 5 to 12, since 0 and 12 represent the same pc cor-
responding to the note C). The associated Lyndon word is
1 2 7 2, but it was not chosen as a normal order in this
case, because the first condition gave 2 1 2 7 as a unique
solution.

5

Length decreasing functions

The general idea developed in the present article can be
summarized as follows: when one wants to compute a
cross-section of a given set R of infinite periodic words
with regard to the conjugacy relation, one first computes
the Lyndon words w of A*, and then one checks whether
their periodic counterparts w” in Per, are conjugate to
sequences of R or not.

We introduce the additional notion of a “length
decreasing function” associated with an auxiliary alphabet
B. The main contribution of this article is to show how this
notion can improve the process in certain cases.

Definition 3. We shall say that a function f from A* to B*
is length decreasing if f(x) is a word of B* which is shorter
than the corresponding word x of A*

F)] < -

The idea is to replace the computation of Lyndon words
of A* by the computation of Lyndon words of B*. This is
possible when the function fis “compatible” with the
conjugacy relation, in a sense that we shall make more

precise. When fis also length decreasing, the computation
becomes more efficient since f(x) is shorter than the cor-
responding word x of A*.

Definition 4. A mapping f from a subset R of A* to B* is
said to be compatible with the conjugacy relation if and
only if for any x,y € R, f(x) ~ f(y) is equivalent to x ~
y. This notion is extended in a natural way to the conju-
gacy relation on Per, and Perp,

Proposition 1 proves that in order to get a cross-section
of R, it suffices to compute the Lyndon words w of B*, and
for those which are equivalent to words of f(R), to choose a
word in f~1(w).

Proposition 1. If fis a mapping from a subset R of A* to B
which is compatible with the conjugacy relation, then it
suffices to choose a word in f " (w) for any Lyndon word w
of B* equivalent to a word of f(R), to get a cross-section of R
for the conjugacy relation.

Proof. We first show that two words x and x” obtained
in this way cannot belong to the same conjugacy class of R.
If it were so for two words x € f~!(w) and x’' € f~1 (W),
then x ~ x’ would imply f(x) ~ f(x') according to the
compatibility hypothesis, thus w ~ w’and since w, w’ are
both Lyndon words, w = w'.

We now show that every class of R is represented once.
In fact, for any element y of R, let c, be the class of y.
Furthermore, let w be the Lyndon word equivalent to f(y)
in B*, and x the chosen word in f~!(w). One has f(x) f(y),
which implies by hypothesis x y, so that x is a represen-
tative for the class c,.

A similar proposition may be stated for infinite periodic
words.

Proposition 2. If f is a mapping from a subset R of Per, to
Pery which is compatible with the conjugacy relation, then
it suffices to choose a infinite periodic word in f~'(w®) for
any Lyndon word w of B* such that w” is equivalent to an
element of f(R), to get a cross-section of R for the conjugacy
relation.

When the mapping fis length decreasing, Proposition 1
shows that it is possible to replace Lyndon words of A* by
shorter Lyndon words over the alphabet B, the computa-
tion of these being faster because of their smaller length. In
the case of infinite periodic words, we can introduce a
similar notion of length decreasing function.

Definition 5. We shall say that a function f from Per, to
Pery is length decreasing if the period of flw) is strictly less
than the period of w.

Then Proposition 2 adapts the same idea to the case of
infinite periodic words.

It seems that this method involving an ad hoc length
decreasing mapping fis a general technique, which applies
to different musical situations. We have encountered two
examples of this type, in music formalization researches
made on African traditional repertoires. The first one deals
with harp melodic canons played by Nzakara people from
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Central African Republic. The second one deals with
asymmetric rhythmic patterns which can be found in
many cultures in Central Africa.

6
Two applications dealing with African traditional music

6.1

Computation of Nzakara melodic canons

The first musical example involving a mapping which is
compatible with the conjugacy relation is related to eth-
nomusicological researches I have made on harp music
from Nzakara people of Central African Republic. Each
piece of poetry sung with the accompaniment of the harp
relies on a short harp formula which is repeated endlessly
as an ostinato. The traditional repertoire contains many
such formulas, which were strongly related to the political
organization of the former Nzakara kingdom.

Some of these formulas have a quite regular structure,
the strings being plucked by pairs, one with another. The
formula can thus be considered as the superimposition of
two melodic lines, one made with the upper note and the
other one made with the lower note of each pair. Figure 2
shows an example of such a formula (time is on the hori-
zontal axis, and points indicate which strings are plucked).
As one can see, the upper voice is reproduced, with just a
few exceptions, in the lower voice, with a delay as indicated
by the two broken lines. This formula has the structure of a
two-voice melodic “canon” (see [2, 5, 7] for more details,
and [3, 4] for audio samples of these harp canons).

In order to describe more precisely the structure of
these Nzakara harp canons, we consider as an alphabet the
set of couples of strings plucked simultaneously, actually
played by Nzakara musicians. These couples of strings are
indicated in Fig. 2 by integers. One can verify that there
are only five of them, numbered from 0 to 4. Thus the
alphabet is equal to the set {0, 1, 2, 3, 4}.

If we look closely at the harp formula shown in Fig. 2, we
observe that it has a quite regular structure. In fact, it can
be factorized into five words w = vyv;v,V3V,, €ach of them
being obtained from the previous one by adding the same
value to its elements, until we reach the initial word again

vo = 023010,
v = 134121,
v, = 240232,
v3 = 301343,
vy = 412404.

For instance, 1 added to each element of vo = 023010 gives
v; = 134121, and so on. This appears to be a general

construction in the Nzakara repertoire, since every harp
canon is based on the same principle which consists in
translating a given word several times, by adding the same
value to its elements.

In order to give the appropriate mathematical treatment
to this construction, we shall introduce an operation on
the alphabet corresponding to the “translation” described
above. This leads to identify the alphabet {0, 1, 2, 3, 4} with
the finite Abelian group Z/5Z.

More generally we shall denote by G a finite Abelian
group, and we study the set Per¢ of infinite periodic words
over G taken as an alphabet. The group operation defined
on G allows one to define the difference word.

Definition 6. We define the difference word Du of an
infinite word u of Perg by

Du(n) =u(n+1) — u(n)

for any integer n.

In the case of Nzakara harp canons, the infinite periodic
word u corresponding to the formula given Fig. 2 as per-
iod m = 30. The fact that this formula is based on a word
v, followed by its successive translations vy, v,, v3, ¥4 can
be expressed by the fact that the period of Du divides the
period of u. Actually, one can verify that Du has period
r = 6. The following proposition is taken from [7]. It has a
converse part which is restricted to a very special case, and
the interesting fact is that Nzakara harp formulas precisely
fall into this case.

Proposition 3. If two infinite periodic words u and v are
conjugate, then Du and Dv are conjugate. Conversely, if
Du and Dv are conjugate, and the period of Dv divides
the period of v in such a way that the quotient of the
two periods is equal to card(G), then u and v are
conjugate.

For every Nzakara harp formula having the same
structure as the one reproduced in Fig. 2, the quotient of
the periods of u and Du is always equal to 5, which is the
cardinal of the group G = Z/5Z. Let R be the subset of
Perg containing infinite periodic words such that their
period is equal to the product of card(G) and the period of
their difference word. We define a mapping f as the
restriction of the operator D to the set R. Proposition 3
may be rewritten as

Proposition 4. The mapping f from the subset R of Perg to
Perg, associating to each infinite periodic word its differ-
ence word, is a length decreasing mapping compatible with
the conjugacy relation.

- *———" - - »

[o23010[134121[240232f301343[412404

Fig. 2. A canon formula from Nzakara harp
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Thus we want to compute a cross-section of the set
R,, = R N Perg(m) of infinite words u with period
m = card(G) x r, where r is the period of Du. Then f(R,,)
is included in Pers(r), and f(R,,) = S,, where S, is the
subset of infinite words v of Pers(r) satisfying the follow-
ing condition

(C): the sum of the elements occurring in the prefix of
length r of v is equal to an element of order card(G) (see [7]
for details). Note that if this condition is true, then it is
true for any conjugate infinite word. In the Nzakara case,
the sum can be any non-zero element of G, since
card(G) = 5 is prime.

Proposition 4 shows that for each Lyndon word oflength r
such that the corresponding infinite periodic word v satisfies
condition (C), we can choose aword u in f ! (v). Then the set
of corresponding infinite periodic words with period m is a
cross-section of R,, for the conjugacy relation.

Thus Proposition 4 gives an efficient algorithm to
compute a cross-section of R,,.. In fact, words in f(R,,,) = S,
have a much shorter period than those in R,,. For instance,
in the example above, m = 30 and r = 6, so that the
computation of Lyndon words of length 6 is much faster
than the computation of those of length 30.

6.2

The rhythmic oddity property

Many musical traditions all over the world have asym-
metric rhythmic patterns based on two different durations
of two and three units (these patterns are sometimes called
“aksak rhythm”, such as the Turkish pattern 2223). In
central Africa, there is a particular type of asymmetric
patterns, satisfying a property called “rhythmic oddity
property” discovered by Simha Arom [1].

Let us consider the Aka pygmies pattern represented as a
circle on Fig. 3. The property asserts that one cannot break
the circle into two parts of equal length whatever the chosen
breaking point. There is always one unit lacking on one side.

The asymmetry of the pattern is to some extent
intrinsic, in the sense that there exists no breaking point
giving two parts of equal length. Note that the oddity
property requires that the circle is divided into an even
number of units. We have described in [6] an algorithm
for enumerating all the patterns satisfying the rhythmic
oddity property.

In this section, the alphabet is A = {2, 3}. For any finite
word u in A*, we define the height of u, denoted by h(u), as
the sum of its symbols.

Fig. 3. Aka pygmies pattern 32222322222 with no breaking point
giving two parts of equal length

Definition 7. A finite word w of A* satisfies the rhythmic
oddity property if and only if

1  h(w) is even,
2 no cyclic shift of w can be factorized into words uv
such that h(u) = h(v).

The notion of rhythmic oddity has received different
mathematical treatments. Rachel Hall has proposed a
generalization to periodic rhythms formed from notes with
arbitrary durations (not restricted to 2- or 3-unit notes)
[11]. Godfried Toussaint has studied new methods for
rhythm classification based on measures of rhythmic
oddity and off-beatness [14].

Our construction for the computation of words satis-
fying the rhythmic oddity property (see [6]) relies on two
functions a and b from A* X A* into itself defined by

a(u,v) = (3u,3v), b(u,v) = (v,2u).

Considering the set B* of finite words over the alphabet
B = {a, b}, we identify the concatenation of words with the
composition of functions. Thus any word « of B* is
identified with a function from A* x A* into itself. We
proved the following characterization.

Proposition 5. A word w satisfies the rhythmic oddity
property if and only if there exists a unique word o, € B
with |o|, being odd, such that w = uv or w = vu with
(u, v) = a(e, €).

Let S, " be subsets of A* defined by

S = {uv, 3o unique € B", |«|, odd, (u,v) = a(e, ¢)},
S'" = {vu, 3o unique € B*, |a|, odd, (u,v) = a(e,¢)}.

Proposition 5 implies that the set R of words of A* satis-
fying the rhythmic oddity property is equal to

R=SUS.

Note that words of S’ are cyclic shifts of words of S.

We define a mapping f from S to B* associating to each
word w = uv the corresponding word o = f(w) of B*. This is
possible since o is unique by definition of S. It can be
established that for any w, w' € S, fiw’) is a cyclic shift of f{w)
ifand only if w’ is a cyclic shift of w. Furthermore, fis length
decreasing because the number of 3s in w is equal to twice
the number of a in o, and the number of 2s is equal to the
number of b. Then one has the following result.

Proposition 6. The mapping f from the subset S of A* to
B*, associating to each word w = uv of S the corresponding
word o such that (u, v) = a(e, &), is a length decreasing
mapping compatible with the conjugacy relation.

Thus, we want to compute a cross-section of the set
R = S U § of words of A* satisfying the rhythmic oddity
property. One can notice that a(e, &) = f(e, ¢) implies,
o =  which means that as soon as « exists satisfying
Proposition 5, then « is unique. This implies that f is
surjective from S onto the subset of all words of B* with
an odd number of b. Furthermore, if f{w) = fiw’), then
(u, v) = (u’, v') where w = uv and w’ = u’v/, thus w = w'.
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Table 2. Additional values for the number of odd rhythms
(ny 2 17, ny > 12)

17 19 21
12 4389 7084 10966
14 14421 25300 42288
16 43263 82225 148005

This means that f is injective, so that f is a bijection from
S to the set of words of B* with an odd number of b.

Proposition 6 shows that for each Lyndon word o of B*
with an odd number of b, we can take the word
f~H(o) = uv such that (4, v) = a(e, ) to get a cross-sec-
tion of S for the conjugacy relation. But since every word
of §’ is a cyclic shift of a word of S, it follows that the
resulting subset is also a cross-section of R for the con-
jugacy relation.

As in the previous musical example, f is length
decreasing. It follows that we obtain an efficient algorithm
to compute a cross-section of R. In fact, words in f(S) have
a shorter length than those in S. For instance, considering

w = 3333332, f(w) = aaab,

one has |w| = 7, whereas [f(w)| = 4.

In [6], we published a table giving the numbers of
patterns satisfying the rhythmic oddity property,
depending on the numbers n,, n; of durations of two and
three units respectively. We used a model of the problem
as a constraint satisfaction problem designed by Charlotte
Truchet. Louis-Martin Rousseau has implemented this
model in an ILOG solver. The maximal value that we ob-
tained was 4389, corresponding to n, = 17, n3 = 12. Using
Duval’s algorithm implemented in Common Lisp, the
computation of a bigger table up to n, = 21, n; = 16 took
only about 15 minutes, and it gave the new values shown
in Table 2.

7

Conclusion

We have seen in this paper that Lyndon words provide a
natural tool for enumerating periodic structures. When a
musical structure is periodic, there is generally no criteria
for distinguishing two different cyclic shifts, that is to say
two elements belonging to the same conjugacy class. Thus
one needs a tool for associating a unique representative to
each conjugacy class. This tool is provided by Lyndon
words, which can be computed efficiently thanks to
Duval’s algorithm.

Furthermore, when a musical structure is not only
periodic, but also satisfies some additional specific prop-
erty, it follows that one has to make a selection among the
Lyndon words (rejecting those which do not represent
conjugacy classes satisfying the additional property). It

appears that in some cases discussed in this paper, an
efficient way to do so is to introduce a function associated
with an auxiliary alphabet, which is compatible with the
conjugacy relation, and which is also length decreasing.
Therefore, the enumeration of the representatives of the
conjugacy classes can be done on the auxiliary alphabet.
Since the function is also length decreasing, it is much
faster because of the smaller length of the Lyndon words
on this auxiliary alphabet. This increases the efficiency of
the enumeration process. It is probably a general frame-
work that applies to many different musical situations, and
which could be illustrated by examples taken from the
formalization of other kind of periodic musical structures.
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