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Abstract

We study the synchronization of musical sequences by means of an operation de.ned on .nite
or in.nite words called superimposition. This operation can formalize basic musical structures
such as melodic canons and serial counterpoint. In the case of circular canons, we introduce
the superimposition of in.nite words, and we present an enumeration algorithm involving Lyn-
don words, which appear to be a useful tool for enumerating periodic musical structures. We
also de.ne the superimposition of .nite words, the superimposition of languages, and the iter-
ated superimposition of a language, which is applied to the study of basic aspects of serial music.
This leads to the study of closure properties of rational languages of .nite words under
superimposition and iterated superimposition. The rationality of the transduction associated with
the superimposition appears to be a powerful argument in the proof of these properties. Since
the superimposition of .nite words is the max operation of a sup-semilattice, the last section
addresses the link between the rationality of a sup-semilattice operation and the rationality of
the order relation associated with it.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Periodic in.nite words; Rational transductions; Literal shu9e; Rational order relations; Music
formalization

1. Introduction

There exist many di:erent ways of representing musical sequences as words over
a .nite alphabet, and such representations have been used extensively since the early
days of computer music. The .rst models dealing with music sequences represented
as words were probably Markov chains and probabilistic automata, used as far back
as the end of the .fties and the beginning of the sixties, in automatic composition
programs developed by Lejaren Hiller, Xenakis and Barbaud (see [14]).
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In the seventies, studies in automatic music generation or analysis focused on formal
grammars, and many types of musical grammars have been proposed (see [26] for
a survey). More recently, the generative power of musical grammars continued to
be investigated, as in Steedman’s 1984 paper on generative grammar for jazz chord
sequences, which is a classical contribution to this .eld [28] (see [14] for further
references on this subject).
There are probably many reasons why automata and grammars are useful models

for music formalization, but one of them may be the fact that repetition is one of
the most important features of music. Nicolas Ruwet, a musicologist inHuenced by
linguistics, proposed in the sixties a method for music analysis based on criteria of
repetition [27]. This idea has grown up in several directions, in computer applications
involving formal models such as the “descriptive complexity” proposed in [6]. Recently
a collection of approximate distributed matching problems arises in applications related
to music indexation on the Internet [17].
In the .eld of automatic music generation, a new paradigm introduced by GLerard

Assayag and Shlomo Dubnov in [3] consists in applying methods derived from the
Lempel-Ziv compression algorithm in order to produce music. The idea is to build
a dictionary of motives occurring in a given musical sequence, and to transform this
dictionary into a successor function which chooses a new musical element following a
current past context. This model makes it possible to generate new musical sequences
that are amazingly close to the style of the original one, and it has been implemented
in various systems such as [24].
In this paper, we extend the representation of musical sequences as words over a

.nite alphabet, by taking into account the fact that events in a musical sequence may
occur simultaneously. As shown in [8,15], this can be achieved by considering an
alphabet not reduced to single letters, but containing letters that associate simultaneous
events. More precisely, we will assume that the alphabet is either the Cartesian product
of k sets of events (in the case of in.nite k-voice polyphonies), or the power set of a
given set of events (in the case of .nite words). Thus words are sequences of letters,
which contain events. Events occurring in the same letter are considered as simultaneous
events, and events occurring in successive letters are considered as successive events.
In this way, it is possible to linearize any multivoice music data, and transform it into
a linear stream of musical objects.
We study the synchronization of musical sequences by means of an operation on

words called superimposition. This operation can easily formalize basic musical struc-
tures such as circular melodic canons or serial sequences. We provide constructions of
these structures based on formal properties of the superimposition. After basic de.ni-
tions (Section 2), the paper is divided into two parts dealing respectively with in.nite
and .nite words.
The .rst part (Sections 3 and 4) de.nes the superimposition of in.nite words,

in order to analyze circular melodic canons. This part of the paper is motivated
by ethnomusicological researches made on the harp music of Nzakara people from
Central African Republic, where one can .nd two-voice melodic canons. Section 4
presents an algorithm based on .nite di:erence calculus, which computes a particu-
lar type of periodic canons found in the Nzakara repertoire. Since two canons being
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cyclic shifts of one another are not distinguished, this algorithm makes use of Lyndon
words.
The second part (Sections 5–7) introduces the superimposition of .nite words, which

is extended to the superimposition of two languages and the iterated superimposition
of a language. The latter one is applied to the formalization of the basic rule of
serial music. Since the rational languages are closed by iterated superimposition (as
established in Section 6), it follows that the basic serial language is rational.
The last two sections are devoted to closure properties of rational languages under

superimposition and iterated superimposition. The superimposition of two rational lan-
guages is rational, and we compare this result to a similar one concerning the literal
shu9e. These results involve the transductions associated with these operations. The
fact that the transduction is rational appears to be a powerful argument in the proof of
closure properties. Another important result asserts that the iterated superimposition of
a rational language is rational, a result which is generalized to an arbitrary max oper-
ation of a semi-lattice de.ning a rational transduction. Section 7 investigates the links
between the rationality of the max operation of a sup-semilattice, and the rationality
of the order relation which is canonically associated with it.

2. Preliminaries

2.1. Finite and in/nite words

Finite words over an alphabet A are de.ned as .nite sequences of symbols from A.
For a .nite word w, we denote by |w| the length of w. The concatenation of .nite
words is an associative operation de.ned on the set of .nite words A∗. A subset
of A∗ is called a language. The empty word denoted by 1 is a neutral element for
concatenation, so that A∗ is a monoid (the free monoid generated by A). In.nite words
over A are de.ned as functions from N to A.
Our interest for in.nite words in this paper is focused on the notion of periodicity.

For an in.nite word u, we de.ne the translated word Tu by

Tu(n) = u(n+ 1)

for any integer n. We say that u is m-periodic if u(n + m)= u(n) for any integer
n, which is equivalent to the relation Tmu= u. If u is m-periodic, then Tu is also
m-periodic. We de.ne the period of u as the least integer m such that u is m-periodic.
For two periodic in.nite words, we say that they are conjugate if one is the pre.x

of the other. This can be written

v = Tku

for an integer k. The pre.x relation is reHexive and transitive. For periodic in.nite
words, it is also symmetric, since v=Tku and Tmu= u implies T (m−1)kv=T (m−1)kT ku
=Tmku= u. Thus the conjugacy relation on in.nite periodic words is an equivalence
relation.
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For .nite words, we say that two words are conjugate if they are cyclic shifts of
one another. It is easy to verify that two in.nite m-periodic words are conjugate if and
only if their .nite pre.xes of length m are conjugate.
A cross-section regarding an equivalence relation for a set X , is a subset SX of

X such that every element of X is equivalent to an element of SX , and SX does not
contain two equivalent elements. Thus cross-sections regarding the conjugacy relation
of in.nite m-periodic words are isomorphic to cross-sections regarding the conjugacy
relation of their .nite pre.xes of length m.
A Lyndon word is a .nite primitive word which is minimal for the lexicographic

order in its conjugacy class. Recall that a word is primitive when it is not a power of
another word (for instance ababab=(ab)3 is not primitive). The minimal element being
unique, Lyndon words provide a tool for computing a cross-section for the conjugacy
relation on .nite words. The notion of Lyndon words appears to be important in music
formalization, since loop structures are a fundamental feature of music. As we shall
see in this paper, the enumeration of cyclic musical structures, such as those one can
.nd in African music, relies deeply on Lyndon words.
Lyndon words can be computed eRciently. Jean-Pierre Duval has given an algorithm

which gives the list in order of all Lyndon words of a given length, and his algorithm
is optimal in the sense that computing each new Lyndon word in the list is done in
linear time and with no auxiliary memory [18].

2.2. Finite automata

As recalled in the introduction, automata are suitable models for music formalization.
An automaton is a graph with two subsets I and T of particular vertices called initial
and .nal states respectively, and transitions between vertices labeled by letters from
the alphabet A. A path in the automaton is a sequence of consecutive transitions. A
.nite word is computed (or recognized) by an automaton if it is the label of a path
beginning at an element of I and ending at an element of T . We denote by q−1T the
set of labels of paths going from q to an element of T .
The de Bruijn graph of order n is a particular automaton used in the computation of

in.nite words. Its set of vertices is the set of .nite words of length n. For any letters
a and b, and any word s of length n − 1, there is a transition from bs to sa labeled
by a. The notion of path is extended to in.nite paths, that is in.nite sequences of
consecutive transitions. The computation of an in.nite word w by the de Bruijn graph
of order n is the in.nite path in the graph having w as its label. Note that this path
contains every factor of w of length n.
We shall prove in this paper closure properties under superimposition for languages

of .nite words computed by an automaton. This requires some general de.nitions
and results borrowed from [5] and [19] concerning the family of rational and rec-
ognizable subsets of an arbitrary monoid M , denoted respectively by Rat(M) and
Rec(M).
The family Rat(M) of rational subsets of M is the least family of subsets of M

containing the empty set and the .nite subsets, and closed under union, product and star
operations. The direct image of a rational subset by a morphism is rational. A rational
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expression is obtained by applying recursively union and star operations (respectively
denoted by + and ∗) to .nite subsets of M .
The family Rec(M) of recognizable subsets of M is the family of subsets X of M

such that there exists only a .nite number of sets m−1X = {z; mz ∈X } for all m in M .
The inverse image of a recognizable subset by a morphism is recognizable. The family
Rec(M) is closed under the Boolean operations union, intersection and complementary.
In the case of the free monoid A∗, Kleene’s theorem asserts that one has

Rat(A∗)=Rec(A∗), and that every language of this family, which is called regular,
can be computed by an automaton.

2.3. Transductions

We shall make use of the notion of transduction, as a technical tool simplifying
the proof of closure properties. A transduction t from monoid M to monoid M ′ is a
subset of M ×M ′. The transduction is said to be rational if t belongs to Rat(M ×M ′).
Rational transductions are characterized by the decomposition theorem due to Nivat
[23], asserting that t belongs to Rat(M ×M ′) if and only if there exist an alphabet Z ,
a regular language K of Z∗, and morphisms ’ and  from Z∗ to M and M ′ such that
t=(’;  )(K).

The two following properties will be used later, the .rst one being a direct conse-
quence of Nivat’s theorem since the image of a language X by a rational transduction
t may be written as t(X )=  (’−1(X )∩K).
(i) For any rational transduction t in Rat(M ×M ′), if X is an element of Rec(M),

then t(X ) is an element of Rat(M ′).
(ii) If X and Y are regular languages of A∗, then X ×Y is an element of Rec(A∗ ×A∗)

(Mezei, [5, p. 54]).

Part I: Synchronizing in�nite words

3. Circular melodic canons

We de.ne the superimposition of in.nite words. Let E0; : : : ; Ek−1 be sets of events,
and B a particular subset of the Cartesian product E0 × · · · ×Ek−1. We shall say that
an in.nite word w over the alphabet B is the superimposition of k in.nite words
v0; v1; : : : ; vk−1 over the alphabets E0; : : : ; Ek−1, which is denoted by

w = ‖
06j6k−1

vj

if and only if

w(n) = (v0(n); v1(n); : : : ; vk−1(n))

for any integer n. In this case, w is called a k-voice polyphony.
This de.nition is applied to the study of circular melodic canons, which are de.ned

as in.nite periodic words, and we compute a solution to the problem of building



40 M. Chemillier / Theoretical Computer Science 310 (2004) 35–60

such canons. This problem consists of satisfying simultaneously two constraints. First
the melody must repeat itself but each repetition must have as long a length m as
possible (the period of the circular canon). Second each note at a given time is the
combination of the leading voice and the remaining voices at distance a multiple of p
and determined unambiguously from the leading voice. As we shall see, the problem
may be posed in terms of paths in a .nite graph, and we will show that in the case of
certain African canons, there is no way to satisfy these two conditions without violating
at least once the rules. First, we begin with the general case of in.nite canons which
are not supposed to be periodic.
Let Ek−1 be the set of events of the leading voice of the canon. For any k-tuple x

we denote by x+ its component in Ek−1. We assume that k mappings t0; : : : ; tk−1 are
given from Ek−1 to the sets of events E0; : : : ; Ek−1 respectively, with tk−1 being the
identity tk−1 = Id. These mappings are extended in a natural way to in.nite words over
the alphabet Ek−1.
A k-voice melodic canon with distance p is an in.nite word u over the alphabet B

such that there exists an in.nite word v over Ek−1 satisfying

u = ‖
06j6k−1

T jptj(v): (3.1)

This means that each voice of the polyphony is deduced from voice v (the leading
voice of the canon) through a musical transposition of its elements by the mapping
tj. Moreover, each voice is synchronized with v with a delay of ((k − 1)− j):p time
units.
Equivalently, one can say that the k-tuple u(n) of the polyphony depends on k events

occurring in its leading voice v, as expressed by the following equality

u(n) = (t0(v(n)); t1(v(n+ p)); : : : ; tk−2(v(n+ (k − 2)p)); v(n+ (k − 1)p));

which holds for any integer n.
For k¿2, a more general de.nition would consist in replacing integers p; : : : ;

(k− 2)p; (k− 1)p by arbitrary integers p1; : : : ; pk−2; pk−1. The de.nition above corre-
sponds to the case of “equidistant” voices. The theory of melodic canons presented in
this section is restricted to this case, which includes most of the musical applications.

Example. This part of the paper is motivated by ethnomusicological researches made
on harp music of Nzakara people from Central African Republic, where one can .nd
such melodic canons, but our theory applies to Western classical music as well. In the
case of Nzakara harp canons, the value of k is 2 (two-voice canons). Fig. 1 shows
one of these two-voice melodic “canons”. The upper voice is reproduced, with just a
few exceptions, in the lower voice, with a retardation as indicated by the two broken
lines. These canon formulas have been studied in detail in [10,13], and one can hear
some of them in [11,12].
The set of events E is equal to the set of the .ve strings of the harp denoted

in ascending order E= {c1; c2; c3; c4; c5}. The alphabet is a subset B of the Carte-
sian product E×E, restricted to the .ve combinations of strings plucked simultane-
ously, actually played by Nzakara musicians, as shown in Fig. 1, denoted as integers
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Fig. 1. A canon formula from African harp music.

0= (c1; c3), 1= (c1; c4), 2= (c2; c4), 3= (c2; c5) and 4= (c3; c5). A mapping t is de-
.ned by t(c5)= c3, t(c4)= c2, t(c3)= c1 from upper strings plucked by one hand to
lower strings plucked by the other. In this case, the value of p is 6, and equality (3.1)
de.ning a melodic canon can thus be written

u = t(v) ‖T 6v:

This is equivalent to

u(n) = (t(v(n)); v(n+ 6)) (3.2)

for any integer n.

The main idea in the construction of melodic canons is to decompose these canons
into independent in.nite subwords computed by an automaton. To express this decom-
position, we de.ne the homothetic operator Hp, which associates to each in.nite word
u the in.nite word Hpu de.ned by

Hpu(n) = u(pn)

for any integer n.
For two in.nite words u and v, it is obvious that u= v if and only if HpT iu=HpT iv

for any i such that 06i¡p, since the set of integers N is equal to the union of the
sets i+pN for 06i¡p. One has the following simple properties. We make an abuse
of notation so as to avoid complicated notations, by using the same notation T and Hp

whatever being the alphabet B, E0; : : : ; or Ek−1.

Proposition 3.1. (i) HpHq =Hpq,
(ii) T and tj commute,
(iii) Hp and tj commute,
(iv) THp =HpTp, which gives T lHp =HpT lp for any l,
(v) T and Hp preserve the superimposition of in/nite words

T

(
‖

06j6k−1
vj

)
= ‖

06j6k−1
T (vj) Hp

(
‖

06j6k−1
vj

)
= ‖

06j6k−1
Hp(vj):

We de.ne an automaton R with labels in B, as a subgraph of the de Bruijn graph
of order k−1. The set of vertices is the same, that is the set of .nite words over B of
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length k − 1, but some transitions are deleted. More precisely, there exists a transition
in R labeled by a from x0 : : : xk−2 to x1 : : : xk−2a if and only if the k-tuple a satis.es

a ∈ {t0(x+0 )} × {t1(x+1 )} · · · × {tk−2(x+k−2)} × Ek−1:

Proposition 3.2. An in/nite word u is a k-voice melodic canon with distance p if
and only if all in/nite words HpT iu for 06i¡p are labels of in/nite paths in the
automaton R.

Proof. The de.nition of a melodic canon (3.1), and equalities (iv) and (v) of
Proposition 3.1, imply that

Hpu = ‖
06j6k−1

HpTjptj(v) = ‖
06j6k−1

T jtj(Hpv)

and more generally

HpT iu = ‖
06j6k−1

T jtj(HpT iv)

which means that the subwords HpT iu are k-voice canons with distance 1. Conversely,
if HpT iu is a k-voice canon with distance 1 for any i such that 06i¡p, then u is a
k-voice canon with distance p.
Consider now an in.nite word u, which is a k-voice canon with distance 1. The

equality

u = ‖
06j6k−1

T jtj(v)

can be expressed in terms of k-tuples of events

u(n) = (t0(v(n)); t1(v(n+ 1)); : : : ; tk−2(v(n+ k − 2)); v(n+ k − 1))

for any integer n. It shows that u is a k-voice canon with distance 1 if and only if u
is the label of an in.nite path in the automaton R.

Up to the end of this section, we consider the particular case of periodic in.nite
words. If m is the period of a k-voice canon, and p its distance, m and p may not be
coprime. Thus we put d= gcd(m;p) with p=p′d, m=m′d, and m′ and p′ coprime.
The subwords HdT iu are called the cyclic components of u for 06i¡d. It is easy to
show that these words are m′-periodic. One has the following property.

Proposition 3.3. An in/nite word u is a k-voice melodic canon with period m and
distance p if and only if its cyclic components HdT iu for 06i¡d are k-voice melodic
canons with period m′ and distance p′.

Proof. Since p=p′d, equality (3.1) may be written as

u = ‖
06j6k−1

T jp′dtj(v)
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thus

T iu = ‖
06j6k−1

T jp′dtj(T iv)

which gives

HdT iu = ‖
06j6k−1

HdT jp′dtj(T iv) = ‖
06j6k−1

T jp′
tj(HdT iv):

The study of melodic canons is thus reduced to the study of their cyclic components.
We can then assume that the period m and the distance p are coprime. Proposition 3.2
may be written in the following way.

Proposition 3.4. Let m and p be coprime, and u an in/nite word with period m. Then
u is a k-voice melodic canon with distance p, if and only if the in/nite subword Hpu
is the label of a cyclic path of length m in the automaton R.

Proof. From Proposition 3.2, one can deduce that Hpu is the label of an in.nite path
in the automaton R. Since R is a subgraph of the de Bruijn graph of order k − 1, the
vertices of this path are factors of length k − 1 of Hpu except the .rst k − 1 vertices.
But Hpu being m-periodic, its m-th factor of length k − 1 is equal to its .rst factor of
the same length. The path is thus a cycle of length m, except its .rst k − 1 vertices.
Furthermore, the fact that Hpu is periodic implies that its pre.x of length k − 2 can
also be read around the cycle. Thus the whole in.nite word Hpu is the label of a cyclic
path of length m in R.
Conversely, if Hpu is the label of a cyclic path in the automaton R, one has to prove

that the same holds for HpT iu for 06i¡p. As we shall see, these words correspond
to the same cycle. In fact, since m and p are coprime, p is a generator of Z=mZ. Thus
there exists an integer q¡m such that i ≡ p:q modulo m. One has

HpT iu(n) = T iu(pn) = u(pn+ i) = u(pn+ pq+ mj);

and since u is m-periodic

HpT iu(n) = u(p(n+ q)) = Hpu(n+ q) = TqHpu(n);

which proves that HpT iu=TqHpu. Then if Hpu is the label of a cyclic path in the
automaton R, the same holds for TqHpu.

In the Nzakara case, some errors regarding the canon structure appear in the sequence
represented in Fig. 1. A few pairs of notes have their lower note outside the lower
broken line (exactly six pairs as one can verify by continuing the broken line). More
formally, there exist some values of n for which the relation (3.2) de.ning the canon
is not veri.ed. Propositions 3.3 and 3.4 lead to a corollary, which proves that it is not
possible to construct a strict two-voice canon in the Nzakara case.
We say that a cyclic component is trivial if it is a constant sequence, taking as

value a unique element of B. We extend the de.nition of a melodic canon, in order
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to include the case where there exist some values of n, called errors, such that the
relation (3.2) above, u(n)= (t(u(n)+); u(n+ 6)+), is not satis.ed.

Corollary 3.5. In the Nzakara case, any melodic canon with period m and distance
p, which has no trivial cyclic component, has at least d= gcd(m;p) errors.

Proof. In the Nzakara case, one has k =2. The automaton R has edges from x to y
labeled by y (labels on the edges are omitted) if and only if the .rst component of y
is t(x+).

As one can see, there is no cyclic path in the graph of R except paths with a single
edge. It follows that if u has no trivial cyclic component, each component HdT iu for
06i¡d contains at least one error. Thus u must contain at least d errors.

Example. The word corresponding to the harp sequence represented in Fig. 1 has the
following six cyclic components, with m=30, p=6 and d=6,

u = 0 2 3 0 1 0 1 3 4 1 2 1 2 4 0 2 3 2 3 0 1 3 4 3 4 1 2 4 0 4;

H6u = 0 1 2 3 4;

H6Tu = 2 3 4 0 1;

H6T 2u = 3 4 0 1 2;

H6T 3u = 0 1 2 3 4;

H6T 4u = 1 2 3 4 0;

H6T 5u = 0 1 2 3 4:

As one can see, these cyclic components are cyclic shifts of the same sequence 0 1 2
3 4. They could be considered as labels of cyclic paths in the automaton R represented
in the proof of Corollary 3.5, provided an additional edge is traced from 4 to 0. Thus
each cyclic component contains exactly one error, corresponding to this missing edge,
and the harp formula contains six errors. This is a general property of Nzakara harp
canons, which always contain the minimal number of errors indicated by Corollary 3.5.
They have an additional property, since their cyclic components are labels of the same
cyclic path of R. Thus one can exchange rows and columns in the de.nition of these
components, and this transformation gives the following .ve words v0; v1; v2; v3, and
v4 each of them being obtained from the previous one by adding the same value to its
elements (1 added to 0 2 3 0 1 0 gives 1 3 4 1 2 1, and so on), until we reach the
initial word again

v0 = 0 2 3 0 1 0;

v1 = 1 3 4 1 2 1 = v0 + 1;
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v2 = 2 4 0 2 3 2 = v1 + 1;

v3 = 3 0 1 3 4 3 = v2 + 1;

v4 = 4 1 2 4 0 4 = v3 + 1:

This appears to be a general construction in the Nzakara harp repertoire. The fact that
all cyclic components have the same cyclic path in the automaton R is a particular
case of the construction expressed by Proposition 3.4 for building melodic canons.
Next section is devoted to the study of this case.

4. Redundancy and �nite di&erence calculus

In this section, we study a particular case of periodic melodic canons appearing in
the Nzakara repertoire. The cyclic components of these particular melodic canons are
cyclic shifts of one another. As we have seen in the previous example, the construction
of such canons relies on the translation of a given sequence by adding the same value
to its elements until the initial sequence is reached again.
This section deals with the following enumeration problem: we want to compute all

the canons that can be made in this way, depending on the given sequence and the
given translation value. The problem is that an in.nite periodic word pre.x of another
one is considered as the same musical sequence (recall that harp formula are repeated
as a loop). Thus we want to restrict ourselves to solutions not pre.x of another. This
means that we want to compute a cross-section of the set of translated in.nite words
with regard to the conjugacy relation. This can be done by introducing Lyndon words
and the .nite di:erence calculus studied by Vuza [2].
Up to the end of this section, we assume that the alphabet B is a .nite Abelian

group G. In the Nzakara case, B is the set of the .ve pairs of strings denoted by 0,
1, 2, 3, 4, so one can identify B with Z=5Z. We de.ne the di:erence word Du of an
in.nite word u by

Du(n) = u(n+ 1)− u(n)

for any integer n. The set of in.nite words over G is an Abelian group. The operator
D is a morphism, and the kernel of D is the subgroup Ker(D) of constant in.nite
words, that is to say 1-periodic words taking only one single value in G. Notice that
the product of T and D is commutative, where T is the translation operator

DT = TD:

One has the following basic property.

Proposition 4.1. (i) If Du=Dv, then u− v is a constant in/nite word.
(ii) If u is m-periodic, then Du is m-periodic. Conversely, if Du is m-periodic, then

u is km-periodic for some k¿1 (where k is the order of an element of G).

Proof. (ii) Assume TmDu=Du. One has DTmu=Du, thus Tmu= u+ z with z in G.
Let k be the order of z in the group G. Then Tkmu= u+ kz= u.
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We shall restrict ourselves to periodic in.nite words, and we denote by Gm the .nite
group of in.nite m-periodic words, which means words having a period which is less
than m and which divides it. The kernels and images of Dk for k¿0 make a pair of
sequences of included sets, an increasing one for the kernels, and a decreasing one
for the images. It can be shown that these two sequences become stationary for the
same value of k, for which the intersection of Ker(Dk) and Im(Dk) is reduced to {0}.
Since there exists a bijection between Gm=Ker(Dk) and Im(Dk), a cardinality argument
concerning the direct sum of Ker(Dk) and Im(Dk) leads to the following equality

Gm = Ker(Dk)⊕ Im(Dk): (4.1)

One can improve slightly this result, since the restriction of Dk to Im(Dk) is a bijection,
and the group of bijections of Im(Dk) is .nite, so that there exists an integer l such
that the restriction of (Dk)l to Im(Dk) is the identity. Replacing k by kl in the direct
sum (4.1) above proves that every in.nite m-periodic word u can be decomposed in
a unique way u=f + g, where f is a reducible part satisfying Dkf=0, and g a
reproducible part satisfying Dkg= g [2].
We say that a periodic in.nite word over G is redundant if the period of Du is

strictly less than the period of u. Note that in this case, if r and m are the periods of
Du and u respectively, then r must divide m, so that there exists an integer q called the
rate of redundancy such that m= rq. An in.nite periodic word, which is redundant,
cannot be reproducible, and this implies that its reducible part cannot be equal to zero.

Example. The harp sequence shown in Fig. 1

u = 0 2 3 0 1 0 1 3 4 1 2 1 2 4 0 2 3 2 3 0 1 3 4 3 4 1 2 4 0 4

is a redundant word since u has period m=30, and Du has period r=6

Du = 2 1 2 1 4 1:

As expected, the reducible part of u is not equal to zero, since the decomposition
u=f + g into reducible and reproducible parts gives

f = 1 2 3 4 0;

g = 4 0 0 1 1 4:

One can easily verify that f is reducible since D2f=0, and g is reproducible since
D8T 2g= g, which implies that (D8T 2)3g= g, thus D24T 6g= g, and since the period of
g is equal to 6, one has D24g= g.

Proposition 4.2. If u is a redundant word, r the period of Du, and q the rate of
redundancy, then T ru= u + z where z is an element of order q in G. Conversely, if
u and u+ z are conjugate for some non-zero element z in G, then u is redundant.

Proof. We have T rDu=Du (this is the hypothesis on the period of Du). Since D and
T commute, we have DTru=Du. Then we may conclude by Proposition 4.1. (i) that
T ru= u+ z with z in G. Since u has period rq, then u=T rqu= u+ qz. Thus qz=0.
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Conversely, assume T ru= u+ z. Then T rDu=DTru=D(u+ z)=Du, so that Du is
r-periodic. But since z is not equal to zero, u is not r-periodic. Thus u is redundant.

Corollary 4.3. If the set of redundant words with a rate of redundancy equal to q is
not empty, then q divides the order of the group G.

Let us denote by R(r; z) the set of all redundant in.nite words u such that r is the
period of Du, and z the element of G such that u(n + r)= u(n) + z. The following
property has a converse part, which holds only in a very special case. The interesting
fact is that Nzakara harp formulas precisely fall into this case.

Proposition 4.4. If u and v are conjugate, then Du and Dv are conjugate. Conversely,
if Du and Dv are conjugate, and v is a redundant word of R(r; z) with the order of
z being equal to card(G), then u and v are conjugate.

Proof. For the converse part, let n= card(G), and T rv= v + z where z has order n.
Assume Du and Dv are conjugate. Then Dv=TkDu=DTku, so that v=Tku+y with y
in G. One has T irv= v+ iz, so that Tk+iru+y= v+ iz. Since z has order n, there exists
i such that iz=y. This gives Tk+iru= v, which proves that u and v are conjugate.

In the Nzakara case, the rate of redundancy always has value q=5, which is the
order of the group Z=5Z. Thus Proposition 4.4 gives an eRcient algorithm to compute
a cross-section of the set R(r; z) for the conjugacy relation, given the values of r and
z. Indeed, one has the following simple set theoretic proposition.

Proposition 4.5. Let f be a mapping from E to F , ∼E and ∼F equivalence relations
on E and F respectively, and W a subset of E. If for any x; y∈W , f(x)∼F f(y) is
equivalent to x∼E y, then there is a bijection between W=∼E and f(W )=∼F .

Proof. We may de.ne f′ from W=∼E to f(W )=∼F by f′(cx)= cf(x) where cx is the
equivalence class of x. It is possible since for any y∈ cx ∩W , one has cf(y) = cf(x) be-
cause x∼E y implies f(x)∼F f(y). Then f′(cx)=f′(cy) means f(x)∼F f(y), which
implies by hypothesis x∼E y, whence cx = cy. Thus f′ is injective.

Algorithm. Considering the mapping D from Gm to Gm and applying Proposition 4.5
to the converse part of Proposition 4.4, with W=R(r; z), one gets a bijection between a
cross-section of D(R(r; z)) and a cross-section of R(r; z) for the conjugacy relation. The
advantage is that words in D(R(r; z)) have a much shorter period than those in R(r; z).
For instance, in the example above, one has r=6, so that words in D(R(6; z)) have
period 6, whereas words in R(6; z) have period 30. As we have recalled in Section 2,
the computation of a cross-section for the conjugacy relation relies on Lyndon words.
Thus we have to compute Lyndon words of length r instead of length m= rq, which
gives a much faster computation. This method based on Proposition 4.5 seems to be a
general technique for the enumeration of musical circular structures (see [16]).
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Example. The following musical word, appearing in the Nzakara harp repertoire, has
a remarkable property of uniqueness

w = 0 1 3 4 1 2 4 0 2 3:

It is obtained from the initial sequence of two elements 0 1 (one has r=2), with
the translating value z=3. In this case, the problem of enumerating all the sequences
obtained by translating an initial sequence of length 2 may be resolved easily by hand,
since one can .x the .rst element of the initial sequence to 0, and there are only .ve
possible values for its second element, as shown in the list below

w0 = 0 0 3 3 1 1 4 4 2 2;

w1 = 0 1 3 4 1 2 4 0 2 3 = w;

w2 = 0 2 3 0 1 3 4 1 2 4 = T 8w;

w3 = 0 3 3 1 1 4 4 2 2 0;

w4 = 0 4 3 2 1 0 4 3 2 1:

Among the resulting sequences, w0 and w3 are not acceptable as Nzakara harp formu-
las, since they have repeated elements. The sequence w4 is a kind of “degenerated”
sequence, since it is split into two equal shorter sequences. And the remarkable fact
is that the two remaining sequences w1 and w2 are both cyclic shifts of one another,
so that in this case, the Nzakara harp sequence w is the only solution to the problem.
More generally, the problem of enumerating Nzakara harp canons has few solutions
with the minimal number of errors.

Remark. The notion of “redundant in.nite word” introduced in this section has another
interesting musical application, in the characterization of Olivier Messiaen’s modes of
limited transposition. In this case, the alphabet is the group Z=12Z corresponding to
the twelve chromatic notes. The following mode C D Eb E F# G Ab Bb B (which is
Messiaen’s third mode) may be written as

u = 0 2 3 4 6 7 8 10 11:

The modes of limited transposition are de.ned by the property that an element z
of Z=12Z exists such that u and u + z are conjugate (in fact, one has in this case
u+ 4=T 3u). As a consequence of Proposition 4.3, u is redundant, as it can easily be
veri.ed since its period is 9, whereas the di:erence word Du associated with u has
period 3:

Du = 2 1 1:

The computation of all modes of limited transposition is done by various authors (for
instance [25,30]).
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Part II: Synchronizing �nite words

5. Superimposition, iterated superimposition and serial music

We now introduce the superimposition of .nite words. Let E be a set of events, and
A the power set of E, denoted by A=P(E). We shall consider A as an alphabet, and
for .nite words u and v in the free monoid A∗, we de.ne the superimposition u ‖ v
recursively by

au ‖ bv = (a ∪ b)(u ‖ v); a; b ∈ A;

u ‖ 1 = 1 ‖ u = u;

where a∪ b denotes the union of the sets of events a and b.
The set A∗ equipped with the superimposition is a sup-semilattice. One can de.ne

an order relation associated with the superimposition by stating u6v if and only if
u ‖ v= v. The empty word 1 is the minimal element of A∗ [8,15].
The superimposition is similar to another operation de.ned in the free monoid, called

literal shu<e [4]

au��1bv = (ab)(u��1v); a; b ∈ A;

u��11 = 1��1u = u;

the only di:erence being that one makes the concatenation of letters a and b instead
of making their union.

Remark. As noticed in [9], the superimposition is also very close to the sum of poly-
nomials, since polynomials can be viewed as sequences of coeRcients, the sum being
the sequence of values a+ b obtained by adding coeRcients a and b of the same de-
gree. It is amazing that this link is the key argument of a recent discovery concerning
the construction of augmented rhythmic canons introduced by composer Tom John-
son [22]. Mathematician Andranik Tangian has showed how to formalize this problem
with polynomials [29] by representing a rhythmic pattern such as 1 1 0 0 1 (where 0
represents a rest and 1 an attack) as a polynomial over Z=2Z

J (x) = 1 + x + x4:

Then polynomial x2J (x) correspond to a pattern delayed by two beats 0 0 1 1 0 0
1, and polynomial J (x2) corresponds to the binary augmentation 1 0 1 0 0 0 0 0 1
0 (called “time stretching”). The construction of rhythmic augmented canons covering
the time line, such as

1 1 0 0 1
1 1 0 0 1

1 0 1 0 0 0 0 0 1 0
1 1 0 0 1

1 1 0 0 1;
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is then equivalent to .nding polynomials P1 and P2 such that

J (x)P1(x) + J (x2)P2(x) = I15(x);

where In is the polynomial of degree n with all coeRcients being equal to 1. This
elegant formalization has been used by Emmanuel Amiot to prove Tom Johnson’s
conjecture: every rhythmic augmented canons based on pattern 1 1 0 0 1 and covering
the time line has a length that is a multiple of 15 [1,20].

For languages X and Y of A∗, we de.ne the superimposition of X and Y as

X ‖Y = {u ‖ v; u ∈ X; v ∈ Y}:

Then we denote X (0) = {1}, and X (n+1) =X (n) ‖X for any integer n. The iterated
superimposition of X is de.ned by

X ◦ =
⋃
n¿0

X (n) = | ∪ X ∪ (X ‖X ) ∪ (X ‖X ‖X ) : : :

This section shows how to formalize the basic rule of serial music by means of the
iterated superimposition.

Example. The example shown in Fig. 2 is called a “serial” sequence, because it can be
analyzed as two occurrences of the same series of twelve notes, indicated by numbers
from 1 to 12 added to the score.
More formally, let us denote this passage as a sequence of simultaneous events

z = 1 2 3 4 5 6 7 8 9 10 11 {1; 2} {3; 4} 12 {5; 6} 7 8 9 10 11 12:

The two occurrences of the series can be represented as two sequences v1 and v2 with

v1 = 1 2 3 4 5 6 7 8 9 10 11 ∅ ∅ 12;

v2 = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {1; 2} {3; 4} ∅ {5; 6} 7 8 9 10 11 12:

The fact that z is serial can be expressed by the existence of a decomposition of z into
z= v1 ‖ v2.
Let E be the set of the twelve chromatic notes, and A the power set of E. For any

word w in A∗ or E∗, we denote by eve(w) the set of notes occurring in w. A series is
a word u of E∗ such that each note of E appears in u exactly once. For a given series
u, we de.ne F0(u) as the set of words v in A∗ such that v= eve(u0)eve(u1) : : : eve(uk)
where u= u0u1 : : : uk is a factorization of the series. Thus letters of v are sets of con-
secutive notes of the series.
We denote by 3 the projection from A∗ to (A\{∅})∗ de.ned by 3(∅)= 1, and

3(a)= a for every non-empty letter, and we introduce the set F(u) of serial forms
of u

F(u) = 3−1(F0(u)):
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Fig. 2. Schoenberg’s Valse for piano op. 23 (meas. 29 to 33).

A musical word z of A∗ is said to be serial according to the series u if there exist
serial forms v1; v2; : : : ; vn in F(u) such that

z = v1 ‖ v2 : : : ‖ vn: (5.1)

The language of serial words of A∗ according to the series u, denoted by L, may thus
be written as the iterated superimposition of F(u)

L = F(u)◦:

Our de.nition of serial sequences leads to a simple characterization of sequences
that are serial according to a given series.

Proposition 5.1. A word w is serial according to a series u if and only if every note
x occurring in w is preceded (respectively followed) by the notes preceding x in u
(respectively following x).

Proof. The condition states that for every a in A such that w= ras, and every note x
in a such that u= u′xu′′, one has eve(ra) ⊃ eve(u′) and eve(as) ⊃ eve(u′′).
The condition is obviously necessary, since it is veri.ed for every serial form.
To prove it is suRcient, consider the twelve-note series u= x1x2 : : : x12. Let a be an

element of A occurring in w, with w= ras, and let y be a note in a. Denoting by xi
the note in u equal to y, and k the length of ra, we de.ne v(xi)= ∅k−1xi. One has
v(xi)6ra regarding the order relation associated with the superimposition. Furthermore,
since xi−1 precedes xi in u, the condition asserts that xi−1 occurres in ra. Thus we de.ne
v(xi−2) in ∅∗xi−2 such that |v(xi−2)|6|v(xi−1)|. Iterating the process for every xj down
to x1, and applying the same argument for notes xj following xi in u, with j¿i, we
de.ne

v(y) = ‖
16j612

v(xj)

which is by construction an element of F(u). Furthermore, it satis.es v(y)6w regard-
ing the order relation associated with the superimposition. Denoting by w=w1w2 : : : wn
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the letters in w, one can write

w = ‖
j6n;y∈wj

v(y)

which proves that w is an element of F(u)◦.

The serial language L associated with a given series u appears to be regular. This is
a consequence of a result proved in the next section (Theorem 6.4), asserting that the
iterated superimposition of a regular language is also regular. Since F(u) is the inverse
image of a .nite subset by a morphism, it follows that it is a regular language, thus
L=F(u)◦ is regular.
Unfortunately, the proof of Theorem 6.4 does not provide an explicit construction of

the automaton recognizing L. Proposition 5.1 may be written in a negative way, which
leads to a regular expression of the complement of L. Indeed, a word w is not serial
if and only if there exists a pair of notes (x; y) such that x precedes y in the series,
and that one of the following conditions is satis.ed
(i) x appears in w, and y does not appear after x, or
(ii) y appears in w, and x does not appear before y.
Let us denote by Ax the subset of the elements of A containing the note x. The two
previous conditions lead to the following corollary, which gives a regular expression
for the complement of L.

Corollary 5.2. The complement of L is the union of sets of the form

A∗(Ax ∩ VAy) VAy
∗ + VAx

∗(Ay ∩ VAx)A∗

for all pairs of notes (x; y) such that x precedes y in the series.

Remark. Corollary 5.2 can be used to implement a simple algorithm verifying that a
passage of a musical sequence satis.es the decomposition (5.1) according to a given
series (as it is shown in [14], which gives an implementation of the algorithm in
Lisp). Notice that this problem is much easier than the problem of computing the
unknown series associated with a piece considered as serial. But the resolution of this
second problem would require a more precise de.nition of what is a serial piece than
the decomposition into serial forms given above (5.1). This decomposition is only a
necessary condition for a piece to be serial, but it is far from being suRcient, so that
the actual serial language is just a small proper subset of L. To illustrate this, consider
the fact that Proposition 5.1 implies that a sequence is serial as soon as an element of
F0(u) is read at the beginning of the sequence, and another one at the end, whatever
happens in the middle, so that F0(u)A∗F0(u) is included in L.

6. Closure properties for rational languages

In this section, we study closure properties of rational languages under both the
superimposition and the iterated superimposition. But it will be convenient to consider
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a more general binary operation on A∗, denoted by ⊥. We associate to this operation
a transduction t from A∗ ×A∗ to A∗ de.ned by

t = {(x; y; x⊥y); x; y ∈ A∗}:
The simple but fundamental result below is taken from [19, p. 243].

Proposition 6.1. Let ⊥ be a binary operation de/ned on A∗, and t the associated
transduction in A∗ ×A∗ ×A∗. If t is rational, then for every regular languages X and
Y of A∗, X ⊥Y is also regular.

Proof. One has X ⊥Y = t(X ×Y ). As recalled in Section 2, the Cartesian product
X ×Y of two regular languages is a recognizable subset of A∗ ×A∗ (Mezei’s theorem).
But t being rational, t(X ×Y ) is a rational subset of A∗, hence a regular language.

We now assume that the binary operation ⊥ on A∗ has the empty word 1 as its
identity. Moreover, we assume that it satis.es a property, called the double distributivity
property, which asserts that for every words u; v; w and z, the following equality

uv⊥wz = (u⊥w)(v⊥z)

holds provided |u|= |w|.
The main consequence of this property lies in the following result.

Proposition 6.2. If a binary operation ⊥ on A∗ has the empty word 1 as its iden-
tity, and satis/es the double distributivity property, then the associated transduction
t= {(x; y; x⊥y); x; y∈A∗} is rational.

Proof. Let u= a1 : : : ap et v= b1 : : : bq. Assume that q¿p. One has

u⊥v= (a1⊥b1)(a2 : : : ap⊥b2 : : : bq)

= (a1⊥b1) : : : (ap⊥bp)(1⊥bp+1 : : : bq)

= (a1⊥b1) : : : (ap⊥bp)bp+1 : : : bq:

One has a similar relation if q¡p. We de.ne three .nite subsets

H = {(a; b; a⊥b); a; b ∈ A};
D = {(a; 1; a); a ∈ A};
G = {(1; a; a); a ∈ A}:

The transduction t may be written as the rational expression

t = H∗(D∗ + G∗)

which proves it is rational.

Both the superimposition and the literal shu9e are binary operations on A∗ satisfying
the double distributivity property, thus being associated with a rational transduction of
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A∗ ×A∗ ×A∗. Proposition 6.1 proves that these two operations preserve the rational-
ity of languages. One can thus .nd a classical result asserting that the literal shu9e
of two regular languages is also regular [4]. A corresponding result concerning the
superimposition may be stated as follows.

Theorem 6.3. If X and Y are regular languages, then the superimposition X ‖Y is
also regular.

Considering the iterated operation, as de.ned in Section 5, one can observe di:er-
ences between the superimposition and the literal shu9e. The iterated literal shu9e
of a regular language is not necessarily regular. Indeed, the iterated literal shu9e of
a2(ab)∗b2, denoted by L, is not regular. The argument relies on the iteration lemma.
The numbers of a and b are equal for words in L. But it is possible to construct a
sequence of words of L with an arbitrary long suRx containing only b. If L is regular,
then one could iterate a factor containing only b, contradicting the fact that the number
of a is equal to the number of b [4].
By contrast, the iterated superimposition satis.es a closure property stated below as

Theorem 6.4. A .rst proof of this result was given by Michel Latteux, and we give in
this section a di:erent proof establishing a more general result stated as Theorem 6.6. It
relies greatly on the fact that the superimposition satis.es associativity, commutativity,
and idempotence properties. None of these properties is satis.ed by the literal shu9e,
and this explains the di:erences between iterated superimposition and iterated literal
shu9e.

Theorem 6.4. If X is a regular language, then its iterated superimposition X ◦ is also
regular.

We assume that the binary operation ⊥ on A∗ satis.es the following properties:
(i) the empty words 1 is the identity,
(ii) double distributivity,
(iii) commutativity, associativity, idempotence.
We de.ne the iterated operation of ⊥ as in Section 5, and the language obtained by

applying the resulting operation to X is denoted by X ◦, such that

X ◦ = 1 ∪ X ∪ (X⊥X ) ∪ (X⊥X⊥X ) : : :

Lemma 6.5. (i) If u and v are words with equal length, then u⊥ v has the same
length.

(ii) If the length of r is less than the length of t, then r⊥ ty=(r⊥ t)y.
(iii) If w1y1; : : : and wnyn are words such that all wi have the same length, then

(
⊥
i6n

wiyi

)
=
(
⊥
i6n

wi

)(
⊥
i6n

yi

)
:
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(iv) If W is a set of words with equal length, then(
⊥

wy∈WY
wy
)

=
(

⊥
w∈W

w
)(

⊥
y∈Y

y
)

:

Proof. (i) This results from the fact that a⊥ b∈A if a; b∈A. Indeed, assume a⊥ b=
cw, then one has cw= a⊥ cw=(a⊥ c)w, thus a⊥ c= c. In the same way b⊥ c= c.
Both give (a⊥ b)⊥ c= c, then cw⊥ c= c, which gives (c⊥ c)w= c, thus w=1. Con-
versely, assume a⊥ b=1, it follows a=(a⊥ b)⊥ a= a⊥ b=1, which is not true.

(ii) Let t= t′t′′ with |t′|= |r|. One has r⊥ ty=(r⊥ t′)t′′y=(r⊥ t)y.
(iii) The associativity and (i) show that one can apply n − 1 times the double

distributivity property.
(iv) Let p= card(W ), q= card(Y ), and n=pq. The elements of WY are indexed

by i from 1 to n, and denoted by wiyi, and then we apply (iii). Furthermore, the
idempotence, commutativity and associativity of ⊥ give(

⊥
i6n

wi

)
=
(

⊥
w∈W

w
)

and the same holds for Y .

This leads to the following result [9].

Theorem 6.6. Let ⊥ be a binary operation on A∗ with 1 as its identity, associative,
commutative, idempotent, and verifying the double distributivity. For any regular
language X , the language X ◦ is also regular.

Proof. We show that there exists only a .nite number of sets u−1X ◦. Let Q be the
set of states of an automaton recognizing X , i its initial state, T the set of .nal states.
If u is a pre.x of length k of an element in X ◦, it is a pre.x in the operation ⊥ of
shorter elements which can be grouped in a single element r and of larger elements
w’s. We shall consider the states of the automaton which are reached when reading
the words w’s. More precisely, if u is a word of A∗ with length k, we denote by 6(u)
the family of subsets S of Q such that there exists a set W of words of length k, and
a word r in X ◦ with length less than k satisfying the following conditions

iW = S;

u = r⊥
(

⊥
w∈W

w
)

:

The fact that z belongs to u−1X ◦ is equivalent to the fact that uz belongs to X ◦. This
means that if u is the empty word (which is the case where u−1X ◦ =X ◦), there exist
v1; : : : ; vn in X such that uz= v1 ⊥ : : : ⊥ vn. Let V1 be the set of vi with length less
than k, and V2 the set of vi with length greater than k.
We decompose the words v of V2 as v=wy, with |w|= k and we denote by W and

Y the two sets of words de.ned by this decomposition, such that V2 is included in
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WY . We denote by

wu =
(

⊥
w∈W

w
)

; yu =
(

⊥
y∈Y

y
)

:

All the words in W having the same length k, one has |wu|= k thanks to Lemma
6.5(i). Then Lemma 6.5(iv) gives(

⊥
wy∈V2

wy
)
=
(

⊥
w∈W

w
)(

⊥
y∈Y

y
)

=wuyu:

The commutativity and associativity of ⊥ allow to group the elements of the de-
composition of uz. Depending on the emptiness of V1 and V2, we have one of the
following situations:
(i) there exists ru in X ◦ with length 6k, and wuyu in X ◦ with |wu|= k such that

uz= ru ⊥wuyu. Thanks to Lemma 6.5(ii), one has uz=(ru ⊥wu)yu. In this case, both
V1 and V2 are not empty, and since |u|= |ru ⊥wu|, one can write

u = ru⊥wu;

z = yu:

(ii) there exists ru with the same properties as in (i), such that uz= ru, which means
that

u = ru;

z = 1:

(iii) there exists wuyu with the same properties as in (i), such that uz=wuyu, which
means that

u = wu;

z = yu:

Conditions (i), (ii), (iii) show that if z belong to u−1X ◦, then there exists S in 6(u)
such that z belongs to

⊥
q∈S

(q−1T )◦\{1}:

Conversely, we show that if z satis.es this condition, then z belongs to u−1X ◦. Let
q1; : : : ; qm be elements of S, and for j from 1 to m, let Yj be the subset of q−1

j T such
that

z =
(

⊥
y∈Y1

y
)
⊥ : : :⊥

(
⊥

y∈Ym

y
)

:
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Since S belongs to 6(u), let W such that i. W= S, and r in X ◦ with length less than
k. We denote by Wj the subset of W such that i:Wj = qj. It follows u= r⊥ u′ with

u′ =
(

⊥
w∈W1

w
)
⊥ : : :⊥

(
⊥

w∈Wm

w
)

:

Lemma 6.1(iii) gives

u′z =
(

⊥
w∈W1

w
)(

⊥
y∈Y1

y
)
⊥ : : :⊥

(
⊥

w∈Wm

w
)(

⊥
y∈Ym

y
)

;

then Lemma 6.1(iv) gives, according to the idempotence of ⊥

u′z =
(

⊥
W1Y1

wy
)
⊥ : : :⊥

(
⊥

WkYk

wy
)

:

Since each WjYj is included in X , this proves that uz=(r⊥ u′)z= r⊥ u′z belong
to X ◦.
There is only a .nite number of 6(u), which proves that there is a .nite number of

u−1X ◦.

7. Remarks on rational order relations

A binary operation ⊥ on A∗ which is associative, commutative, and idempotent
de.nes a structure of sup-semilattice associated with an order relation. We denote by
8 this order relation on A∗ de.ned by 8(u; v) if and only if u⊥ v= v. The operation
⊥ is the max associated with 8, so that for every u and v in A∗, max(u; v) exists with
value u⊥ v.
We say that an order relation on A∗ is rational if it de.nes a rational transduction in

A∗ ×A∗. Denoting by 9 the set {(u; u); u∈A∗}, the strict order relation associated with
8 is de.ned by 80 = 8\9. Notice that 9 is rational, so that the rationality of 80 implies
the rationality of 8= 80 ∪9, but the converse is not true. Notice also that an order
relation on A∗ is never recognizable, since 8∩ 8−1 =9, and 9 is not recognizable.

Proposition 7.1. The order relation associated with the superimposition is a rational
transduction of A∗ ×A∗.

Proof. Recall that the alphabet A is the set of subsets of E, where E is a given set of
musical events. Thus one can say that a letter a is “included” in a letter b. We de.ne

H = {(a; b); a; b ∈ A; b ⊃ a}:
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The order relation 8 associated with the superimposition has the following rational
expression

8 = H∗(1× A∗)

which proves that it is rational.

This section addresses the question whether a connection exists between the rational-
ity of a semi-lattice operation, and the rationality of its associated order relation. The
.rst property obviously implies the second one, and the converse is true in a particular
case. But the equivalence of these two properties is an open problem in the general
case.

Proposition 7.2. If the semi-lattice operation t is a rational transduction of A∗ ×A∗ ×
A∗, then the associated order relation 8 is a rational transduction of A∗ ×A∗.

Proof. 8(x; z) is equivalent to the existence of y such that max(x; y)= z. Consid-
ering the projection 3 from A∗ ×A∗ ×A∗ to A∗ ×A∗ which associates (x; y; z) with
(x; z), one can write 8= 3(t), where 8 and t are considered as subsets of A∗ ×A∗ and
A∗ ×A∗ ×A∗ respectively. This proves that 8 is rational.

Proposition 7.3. If 8 is a total order and a rational transduction of A∗ ×A∗, then the
associated max operation t is a rational transduction of A∗ ×A∗ ×A∗.

Proof. The mapping q1 from A∗ ×A∗ to A∗ ×A∗ ×A∗ which maps (x; y) to (x; y; y)
is a morphism, thus t1 = q1(8) is rational. In the same way, the mapping q2, which
maps (x; y) to (y; x; y) proves that t2 = q2(8) is rational. The transduction t associated
with the max is thus rational, since t= t1 ∪ t2.

Proposition 7.4. If an order relation 8 is a rational transduction of A∗ ×A∗, then the
transduction : which associates (x; y) to all z such that z¿x and z¿y is a rational
transduction of A∗ ×A∗ ×A∗.

Proof. One can write := {(x; y; z); (x; z)∈ 8; (y; z)∈ 8}. Let 8=(’;  )(K) be the de-
composition of 8 given by Nivat’s theorem, as recalled in Section 2. We de.ne F the
morphism from Z∗ ×Z∗ to A∗ ×A∗ ×A∗ which maps (u; v) to (’(u); ’(v);  (u)), and
P the intersection of K ×K with the canonical equivalence of  . It is easy to show
that P is a rational transduction of Z∗ ×Z∗. Thus :=F(P) is rational.

Establishing the rationality of the max operation associated with 8 is equivalent
to selecting among the triples (x; y; z) of : having the same values for x and y, a
triple with the minimal value for z, in such a way that the set of selected triples is
rational. Thus the max operation appears to be a cross-section of the rational subset :
of A∗ ×A∗ ×A∗ according to the canonical equivalence relation of the projection that
maps (x; y; z) to (x; y) (recall that the canonical equivalence relation of f is the set
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of (u; v) such that f(u)=f(v)). The rationality of the max operation means that one
can .nd a rational cross-section of :.

Remark. Equivalence relations, which are similar to order relations, also lead to a prob-
lem concerning the existence of rational cross-sections. Johnson has conjectured that
every rational equivalence relation has a regular cross-section. He proved in [21] that
KerRatF=RatEq∩C1, where C1 denotes the set of equivalence relations satisfying
this conjecture, RatEq the set of rational equivalence relations of A∗ ×A∗, and KerRatF
the set of canonical equivalence relations for rational functions. Thus he established
that his conjecture is equivalent to a second one asserting that RatEq=KerRatF.
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