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Abstract

The idea thai algebraic operations are involved in musical combinatorics is generally
accepred. While many interesting computer programs has been developed lately in the
Sfields of compuier aided composition, musical analysis, musical pedagogy. or score
processing there is no general mathematical model able 1o deal with the complex
interaction bervcen the vertical and the horizontal aspects of the musical syntax. In
this paper we are proposing an extension of the traditional theory of formal languages
by using sequénces in which the usual letters are replaced by sets of musical
events. Besides the concatenation, rtwo new operations are introduced: the
superimposition and the interimposition. The resilting mathematical structure is
then studied. All the advances in the domains of finite automata, generative grammars
and other computational models may be applied in a natural and consistent manner and
new solutions to the problems that appear in the previously mentioned fields could be
explored.

Introduction

"Can techniques from linguistics be uscfully applied to the study of music?” is onc of the questions
Curtis Roads poses in his article "Grammars as Representation for Music” [Roads 1979]. One might indeed
explore the parallels between music and the spoken language; then, linguistic theories could be applicd to
music and vice versa, but how to use music theorics 1o explain linguistic phenomena has, to our knowledge,
never been systematically investigated. A possible explanation of this one-way situation, would be that
linguistics is a broader science which covers totally or pzantially music phenomena. We believe that this is not
the casc.

If one wishes to develop new music theories using formal techniques borrowed from other domains,
one could seck assistance from mathematics, specifically from the theory of formal languages which is, in
our opinion, able to embrace among other subjects, both languages, the spoken onc and the musical one.
This theory which took rzpid advances during the last thirty years, has strong foundations and has shown
interesting mathematical properties. Some important aspects of the theory, generative grammars, developed
around the work of linguists such as Chomsky, were introduced by the necessity to effectively explain
linguistic phenomena, and are now cxtensively used in the field of programming languages. While in the
musical ficld, no new theory of equal originality and power has been developed lately, musicians arc
naturally attracted by the powerful linguistic model of generative grammars,

Formal techniques applicd (o music arc not rcally new. Early in the sixtics, Xenakis proposed an
important distinction between two aspects of music: in-time and outside-time [ Xenakis 1971). Pitches and
durations are well suited for outside-time formal manipulations, One of the contributions in this domain is
the well cstablished and widely accepted pitch-class sets theory proposed by Milton Babit, and later
developed by Forte [Forte 1973] and Rahn [Rahn 1980]. On the other hand, in the in-time domain, no
theory of comparable importance has been introduced since Schenker. Several rescarchers attempted the use
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of linguistic theorics in the musical field. We refer the reader to [Roads 1979] for details about the work ¢
Ruwet, Natticz, Laske, Smoliar, Moorer, Winograd, Roads and Lerdahl-JackendefT conceming generative
grammars and music,

We believe that between the spoken and the musical languages there are enough differences to make
the application of linguistic theories to the musical domain difficult and unnatural. On the other hand, the
same abstract theories that were partially used in the study of natural languages, could be extended, adapteqd,
and applied to the musical ficld. Paraphrasing Curtis Roads' question, one might ask: "Can formal
mathematical techniques be usefully applied to the study of music, in a similar way they were applied 1o
linguistics?". We would like to bring a positive answer to this question.

Spoken Language and Musical Language

There are many similarities between speech and music but numerous differences too. We will briefly
mention only a few of them. One could notice that both languages have a sonic and a written form, and for
both. the order in which sonic events follow one another in time is essential. Among the dissimilarities we
may look at the way meanings are linked 1o the elements of the discourse. Most of the time each word of the
vocabulary of a spoken language is linked to a particular concept (although sometimes the meaning may
change in a special coniext). Musical relationships (intervals, chords, etc...) among different elements
(pitches, durations, eic.) are in westem music, more important than the elements themselves. This explains
why so many theorists studied the outside-time organization of the musical material.

The two aspects that differentiate music and spoken languages we would like to emphasize in this
anicle are simultancousness and parallelism. Elementary objects of the spoken language follow one afier
another in time, successor and predecessor being the basic relationships betweén words. Unlike them,
musical sounds may be simultaneous or overlap, musical scquences may be superimposed or evolve
independendy. Especially in our western tradition, where the harmonic and polyphonic sides of music are
essential, a theory based mostly or exclusively on relationships of the successor/predecessor type, is
inadequate. Unfortunately, linguistics does not cover any simultancous or parallel phenomena.

Resecarchers applying gencrative grammars to music, took more or less simultancousness and
parallelism into account. Holtzman in his description of the Trio from Schoenberg's Suite fiir Klgvier op, 25
[Holtzman 19817, produces each of the two voices of the canon separately using two different grammars,
one for the sequence of pitches, and one for the sequence of durations.

Lerdahl and JackendofT belicve that "although it is possible in principle to extend the theory 1o
simultancous multiple descriptions, the formal complications would be so enommous that they would obscure
the presentation of other, perhaps more fundamental aspects of musical structure” [Lerdahl 1983, page 116
First, we would like to argue that simultancousness and parallelism are two of the most fundamental aspect:
of westem music; and sccond, we believe that the role of a formal theory is to simplify our understanding o!
the studied phenomenon and not to complicate it.

Juxtaposition and Superimposition
In an arnticle concerned mostly with stochastic processes, Kevin Jones introduces what he calls spac:
grammars [Jones 1981]. The usual production rules are used to divide the time-space. But multi-dimensiona!
spaces may be divided using special production rules for cach dimension, using the symbol /,,, indicating a
splitin the ath dimension. The [ollowing example is given for a two-dimensional space grammar:
A>ANA (1) A>AhLA ) A>a (3
A possible derivation is presented:

a

While extending grammars to the vertical domain is an original and very valuable idca, we do not
agree completely with Kevin Jones' gecometrical interpretation of the space-grammars in which time-space
and pitch-space are treated as il they were equivalent, The first four steps of the previoys example would
give:

A A
A > AA () -> [ ]AA (2, (1) -> ]] a A A (D,3),3)0) -> e
A . A
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where the horizontal axis represents time-space and the vertical axis pitch-space. While time may be
considered as a continuous space which can be divided into what we usually call durations, pitches belong 10
a discrete space where sets theory type manipulations are more appropriate.

It seems to us that an extension of the theory of formal languages to include simultancous and paralle]
henomena, could significantly advance our insights into the in-time functioning of the musical language.
e consider it important that the horizontal and the vertical aspects of music be seen as related, although
each of them obey to different laws. Traditionally the theory of formal languages manipulates sequences of
symbols that can be juxtaposed using the concatenation operation. What is needed to include the verical
aspect, is a ncw operation that will allow us to superimpose musical events, or any other complex musical
structures.

Formal Events

Any simple or complex musical phenomenon may be considered as an event. Notes are the most usual
example, but parts of a note (like the attack, the decay, or the beginning of a vibrate), cherds, melodic
fragments, or modulations may also be treated as musical events. When the only way 1o distinguish two
events is through the time when they occur, we will use the same symbol for both events (they are identical
without regard to time). Let a and b be two distinguished events, a occurring before b may be expressed by
concatenating (juxtaposing) the two symbols, leading to the sequence ab. It is ebvious that the scquence ba
has a different meaning (b occurs before a). 1t is also obvious that @ occurring before b and both occurring
before ¢, is cquivalent 1o b occurring before ¢ and a occurring before both of them. We say that the
concatenation is associative but it is nol commutative.

On the other hand, a occurning at the same time as b is equivalent to b occurring at the same time as a.
Morcover, a occurring at the same lime as b and both occurring at the same time as ¢ is cquivalent o b
occurring at the same time as ¢ and both occurring at the same time as a, while two or more a events
occurring at the same time are indistinguishable by definition. We will call the operation by which we make
two or more events occur simullancously superimposition. One may say that the superimposition is
commutative, associative, and has the idempotent property like the union operation in the sets theory. It is
thus convenient o represent events that occur simultancously as a set. Superimposing two scis of cvenis is
cquivalent to making the union of the two sets, while juxtaposing sets of events may be done by
concatenating scts of events instead ol elementary symbols. We form then, sequences of sets of cvents,

Moreover we are able 1o concatenate sequences of scts of events o form other sequences. But how do
we superimpose two sequences? Under the assumption that the sequence of times where cach event ol a
sequence occurs, 15 the same (or both of the sequences of seis of events, we may simply superimpose one
by one the sets from one sequence with the corresponding sets of the second one, and concatenalte the
resulting sets. Then the new sequence may be again concatenated with, and superimposed on other
sequences resulting in more and more complex structures, all represented in the same simple manner, that is,
by a sequence of scis of cvents.

The supenmposition will be denoted Il and the concatenation . If we superimpose a set of (wo events
{a, b) with another sct of two events {a, ¢} we will obtain the set {a, b, ¢]:

(a.b) Il {a, ¢} = {a, b, c)
Concatcnating the two sets will result in:
(a, b)  {a ci=[a b){a, c)
the supenmposition of two sequences ol sets of events:

la.b){a. c}{b} Il {a.cHa) (¢} = ({a, b) I {a. c}) - ({a. c} I {ahy - (1B} I [c]) = (a, b, cH{a, ¢} (b, c]
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Properties of operations dealing with the horizontal and vertical aspects of music, similar to the
superimposition and the concatenation described here, were already mentioned by other rescarchers. Xenakis
[Xenakis 1971] remarked the idempotence property, the commutativity, and the associativity of what he calls
Juxtaposition in the outside-time domain. He also noticed that juxtaposition in the in-time domain is not
commutative.

Mira Balaban [Balaban 1984], talks about musica! concatenation (denoted lly where q is a time unit),
Two particular cases are called the vertical concatenation (denoted 1) which is equivalent to what we call
superimposition, and the horizontal concatenation (denoted —) which is similar and has identical properties
with what we call concatenation (juxtaposition). Unlike her, we only deal with time simultaneity and
succession without considering the duration of the events (which however, may be expressed, as we will
see in a further section). This enables us to build a system which is more coherent according to a
mathematical peint of view, and leads 10 a consistent algebraic structure in which every application of the
superimposition or of the concatenation operations, always produces the same kind of object, that is, a
sequence of scts of events.

Formal Musical Languages

The theory of formal languages manipulates symbols called letrers, out of a set called alphaber. Let A be an
alphabet; a sequence of letters from A is called a word over A. Twa words may be juxtaposed to form a new word; this
operation is called concatenation, The number of letters in a word u, denoted lul, is called its length. A special word of
length 0 and denoted ¢, is called the empty word, The sct of all words over A, including €, is denoted A®. Thus, if A =

{a, b], then A® = (£, a, b, aa, ab, ba, bb, aaa, ...). The length of the concatenation of two words u and v, is: luvl = lul
+ Ivl. The concatenation is associative (1) and & is neutral to the operation of concatenation (2)
(uv)w = ufvw) (1) Eu=uE= U (2)

We may remark that it is not commutative (uv # vu).

The concatenation UV of two sets of words U and V, of A®, is the set of all words obtained by conca ng a
word from U with a word from V. Thus, if U = {aa, bb} and V = |ab, ba}, then UV = {(aaab, aaba, bbab, bbba), The
same set U/, concatenated with itself n times, is denoted U”, where U? = [g). The closure of a set U, denoted U*, is the

union of the sets U®, U', U2, U2... Thus. A* may be defined also as follows: A* = A" U A' UAZU A3 G ... A subset of
words from A®, denoted L, is called a language over A*. We say that (A*, ), that is, the set A* together with the
operation of concatenation, form a mathematical structure called free monoid.

In the theory of formal musical languages that we are trying to define here, instead of concatenating
letters, we concatenate sets of events. Thus, if we have a set of two elementary events A = {a, b}, let P(A) be

the sct of all events that will possibly occur at the same time, that is, all the subsets of A. P(A) = [, (a],

(&), {a, b)) where ¢ is the emply set {], that is, the set with no clements. For convenience we will
sometimes use a different symbol for each element of P(A). The set of all compound events in our case is E =

P(A) = [ ¢. &), &5, e5} where ey = {a], e = (b), and e5 = {a, b}. The set £ may be considered an alphabet
and then, £% = [ & @, ey, €3, €3, ¢, fe|, dey, des, €19, €€y, €1€3... ). One should notice that the empty word

€, and the empty set ¢, are not equivalent The first has length 0 and is neutral for the concatenation, the
second has 0 elements, but length 1, and is neutral for the union operation in £. We will denote words of E*,
the same way as words of A*, thatis u, v, w, ..., but call them musical sequences. Musical sequences may

be concatenated to form other musical sequences, and it is obvious that (E*, -) is a free monoid.
We define the superimposition denoted I, of two musical sequences, u and v, as follows:

1. ulle=ellu=u (the empty word is neutral for the superimposition)
2. if u=eu and v= ejv' (e.¢ € E) then wullv=eu'll ey =(eUe) @Iy
For example:

egerezll egerey = (eg U ey) - (Pegesll egep) =e3-(9uey) - (eze3l €))
=ey-e;-(eaUVey) - (e3l1 8) = e3e169¢5
that is: {a}(}(b}a. b} U (b) (a}{b) = (a. b} (a) (b) (a. b)
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A symmetrical operation, denoted L, which we will call interimposition. may be obtained by replacing
the union with the intersection in 2.

l..ule=glu=¢ (the empty word is absorbing for the interimposition)
2. if u=eu and v=ejv‘ (e ¢ € E) then ulv=eu L e;r' =(g N ej) S L)
For example:

eafesey Lejejey = (e3mey) - (Peges Lejey) =ep-(dmeg) (epes Lev
=ep-¢-(eamey) (ea l e =e ey

thatis: {a,b}{}{b){a. b} L {a}{a] (b} = {a}{} (b}

One could notice that I(z Il v)i = max( lul, vl ) and (e L v)l = min( lul, ¥ ).

Let My and M3 be two subsets of E*, called musical languages. As with any two sets, we may apply
the union and the intersection operation on My and M5, obtaining a new musical language. Like any
language M) and M may be concalenated:

MMy={wlw=uv,ue My, ve My )

We define the superimposition of two musical languages as follows:
M IMy=(wlw=ullvyue M,ve Mz )

The interimposition of two musical languages is:
ML My=(wlw=ulvue M),ve My }

The mathematical structure of solfege

We should mention that (E*, I, L), is a distributive lattice. It is easy to verify the following propentics:

1. Iland L are commutative:
ullv=vilu ulv=vlu
2. lland L are associative:

vy llhw=ull(vilw) (ulv)ylw=ul{viw)
3. lland L have the idempotent property:
ullu=u ulu=u
4.l and 1 have the absorption propeny:
ull(ulvy=u ulullvyi=u
5. 1hand L are distributive:
ull (v Llw)=(ullv) L(ulw wl(vilw)=(ulv)l(u’lw)
Furthermore:

6. concatenation 1s left-distributive to It and L:
w-(v wy=q@ vl -w u ovlwy=(@@  v) Lz -w)
As alrcady shown:
7. g1s ncutral for Il
ulle=ellu=u
And according to the free monoid properties:
8. - is associalive 9. gis neutral for -
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Let S be any set on which we define three operations: -, ||, and L. Then, from the definition proposed
in [Chemillier 1987], (S, - (I, L) is a solfege if it verifies the following properties:
1. (S, ') is a monoid with a neutral element &
2.(S, I, L) is a distributive lattice
3. - is left-distributive over Il and L
4. gis neutral forll
(E*. ., |l, L) has then, the mathematical structure of a solfege.

Homomorphisms

Let Tbe an application from E* 10 E*. We may say that Tis an homomorphism of solfege if:
Tev) = Tu) - (v), vy = ) Il 7(v). T(u L v)= 7w Lv)

Some of the usual transformations that musicians apply to musical sequences like transposition,
rhyvthmical augmentation, etc. are homomorphisms. For instance, the inversion on A = {a, b}, could be

defined as follows: 1(a) = b and 1(b) = a. Then 7may be extended to be a homomorphism from £* to E*, in
the following way (recall that ¢y = {a}, &5 = {b), and e3 = {a. b}):

qP=0 because we need ey Nep) = e NTe =esNe =@
we)=ey |, Wex)=¢), and
T{i"_ﬂ =€

because we need ey Uep) =) L tley) =ep U ey = ey
Tis then a homomorphism for (=, -, |I, 1). For example:

neyey - Pe3) = Teqe)) - Ades) = €,€29¢3
wegey Nl ges) = werer) Il Wge) = ey
eze; L ¢es3) = Wepey) L 1(ges) = ey

Let 8 be the retrograde function which could be defined in the following manner;
1. 8(e)=¢
2. il u=en then S(u)y= 6(ue;
For instance:
&eyerey) = Kepeyde) = 8eydere = Ee)eaere) = e366;
&is not an homomorphism:
&eyey - e3) # &eyey) - He) (&eyer) - Ke3) = exe1e3)
&eyey l ey) # &eep) Il Kea) (&eyey Il e3) = egeq and &eyey) 1l &es) = eaey)
Jeyey Lesy) # &eyey) L &ey) (Xeeq Les)= e and &eyey) L &Key) =ep)
Not every mapping defined on A with values in £* can be extended to a homomorphism from £* 10
E¥. We need some additional conditions:
THEOREM: For every mapping A from A to E*, when card A 2 2, there is an unique homomorphism
from E* 10 E* which is an extension of A, if and only if:

() VYabeA Xa)l=IAp)l=n
(i) 3ue E", YabheA,

azb=AMa) LAb)=u.
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Let A be the following mapping defined on A = (a, b, ¢}

May=bb, Mb)=cb, AMc)=ab (ab stands for (a) (b))

We nced:

Al{a. b)) = Aa) Il Ab) = (b, c]b, Al{a. c))= Aa) | Ale) = (a. b)b,

A({b, €}) = Ab) 11 Ac) = (a, c]b, M{a.b.c)) = Aa) Il &) I Xc) = {a, b, c}b
We have:

u=Aa) LAb)=Aa) LAc)=Ab) LAc) = ¢

and we will pose:

Mo)=u=0ob

For instance we have:

(a, b) b = acbilbgh = (a, b, c)bbLa, b)ch
and we can verify that:

Afa, b)ob)= Alagh) I| A(bgb) = Al{a, b, c)bb) L A{{a, b)cb) = (b, c)bbcd

Time mapping of formal events

The beauty of any formal approach is that the same theory may be applied to different domains or in
different manners 1o the same field. The more different wavs 1o practically use a formal theory, the more
powerful the theory is. Detached from any meaning, symbols may be manipulated much more easily, and
interesting propenics and relationships may appear. We would like 10 suggest that abstract manipuiations of
symbols, before any attempt to link them to real musical parameters, are more likely to guarantee the
development of a consistent theory. These are the reasons why we chose to start with a pure formal
approach, and only later to try to apply it to music.

When a formal theory is applicd to phenomena from the real world, many ambiguitics may occur. All
we have now, is a set of scquences, that we call musical sequences, and several operations that may be
applied o them. But how can a formal musical sequence, be related to a musical work or fragment? First we
nced to associale to cach element of the sequence a time, when all the events in the set occur. Sccond, we
need to define the exact meaning of cach event.

Let u4 be a sequence of scts of events §15253...5,, and ¢ be a scquence of ime-increasing moments
ty8213. .. In, (f; < ti41). The application, associating cach set 53, 10 a moment 1, is called time-mapping. 1t should
be mentioned that « and r are discrete sequences and by consequence the mapping has not the same meaning
as the one described in [Jaffe 1985). However the eiemenis of 1 come from a continuous domain that can be
assimilated either with what David Jaffe is calling the basic rime (the time of the score) or the clock time (the
time of a real performance). In the first case, a second mapping from the basic time to the clock time is
possible.

Thus, if u= (f#, d5}(d}[c5) (b, g).t = (0, 1, 1.5, 2) (in scconds), we consider the cvents being
0.25 scconds long, and the duration of a quarnier note is one second, we have the following fragment:

A h A N

% J 4 Y

7

Now, of course, events do not have only very short durations and sometimes they overlap. One event
may have a begin time. an cnding time, and a duration. Any of these three parameters may be deduced from
the other two. The begin time - duration combination is used in many computer-music programs derived
from MUSIC V. While theoretically valid, the end time - duration approach is unnatural and though never or
very rarely used. The MIDI specification with its Note On / Note Off messages, belongs o the begin time -
end time calegory. To implement this last approach, we need to add to our set of events, a new event a', for
each event a (@' meaning end of the event a). Let A’ be the new set with twice the number of elements of A
and £* the sct of all sequences on P(A'). If now we have u = (f#, dS) (f#, d) (dS', c5) {5, d. b, )b,
g)andz =(0, 1, 1.5, 2, 3), the previous example becomes:
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It is sometimes convenient to consider ¢ as a sequence of equally spaced moments called ticks. Now,
we can sec the usefulness of the empiy sat ¢, with the meaning: no event occurs at the current tick. If the tick
is equivalent  a sixteenth nete, then for our example, we will have: u = [f=. d5)odo{f#, d}¢(d5,
cSto(cs. d. b, glgpeld. 2.

The hegin time - duration approach could be implemenied by attaching to the symbol a', the meaning:
the event a continues. Our example will be then: w = {f#, d5) (4, 45"} (/=47 (%, d5'}{d. d5'} |4,
d¥yd, eSHd, c3' b, gl b, g) (6. g} b, g'). This solution is not so unrnztural and useless as it
seems 10 be. A way of thinking about how we perceive music at the fifth tick, could be thai, we hear the new
d+ in the same time neticing that the d5 continues and the f# from the previous ek 1s no longer present. We

may write the example as follows:
NODDNNANANAA
=1/ Yy NS

N

A T
L o
N

Let 8 = (NotelsOn, NotelsOg7). A mapping from A to 8 is called the siate of a rick. A [uncton taking
as arguments the state of the previous tick and the set of events at the current tick and retuming the state of

the current tick is called a semaniics. Let A= {a, b, ¢}, A'= a, b, ¢, @, b, c'}. ébe the semantics of the
begin time - end time type, and ybe the one of the begin time - duration 1ype. We may have then:
&[(a, NotelsOn). (b, NotelsOr). (c. NotelsOM), {a', ¢1) = [{a, NotelsOff), (b. NezelsOn), (¢, NotelsOn))
that is, @’ ums a to Gff. b does not change, and ¢ is tumed to On
H(a, NotelsOn), (b, NotelsOnr). (¢, NowelsOff)}, {a', ¢)) = [(a. NotelsOn), (b. Ne:elsOff), (c, NotelsOn))
that 1, a' continucs a (stays On). 18 not present (tums Off), and ¢ 15 tumed o On

e

Applications of the theory of formal musical languages

Chomsky's hicrarchy of languages is applicable to formal musical languages 100. One may spcak then
of conrext-sensitive, context-free, and regular musical languages. We have already proven some interesting
properties of the regulzr musical languages that are partially exposed in [Chemillier 1987] and will be

eveloped in future arucles. The basic result concemning the regular musical languages is:

THEOREM: The superimposition of two regular musical languages is a regular musical language.
The same holds for the interimposition of two regular musical languages.

We have developed an algorithm allowing the construction of a finite automalon, recognizing a regular
musical language, resuliing from the superimposition {interimposition) of the behaviors of two other finite
automata. Simple musical rules in the metrical, thythmical, melodic, or harmonic domains may be described
by using regular expressiens and finite automata. Complex systems for generating, recognizing, or
transforming musical structures may be implemented by superimposing, intenmposing, concatenating, or
using the union, the intersection or the inversion of regular musical languages. Some of the concerned fields
are: sophisticated sequencers, event list editors, automated musical analysis, or computer assisted
composition,

The next step is to systematically explore the superimposition and interimpesition of context-free and
contexi-sensitive musical languages. We think that by including the vertical aspect, a new hierarchy of
languages may appear. Further developments will include algorithms for complex pattemn recognition,
rewriting rules, combinatorics on words, and codes theory.
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