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Abstract

This paper addresses the problem of enumerating all words having a combinatoric property called “rhythmic oddity pr
This enumeration is motivated by the fact that this property is satisfied by many rhythmic patterns used in traditiona
African music.
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In 1952, ethnomusicologist Constantin Brailo
wrote a paper on the combinatorics of asymme
rhythmic patterns entitled “Le rythme aksak” [3
These patterns are combinations of durations equ
two or three units, such as the famous Turkish rhyt
2 2 2 3 (see [7]). The asymmetry lies in the fa
that they are based on two different durations. In
paper, Brailoiu gave a table of 1884 distinct rhythm
enumerating all the combinations that can be m
with up to nine successive two- or three-unit eleme

This paper is devoted to the enumeration of a p
ticular type of African asymmetric patterns, satisfyi
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lowing rhythmic pattern

3 2 2 2 2 3 2 2 2 2 2.

The rhythmic oddity property asserts that when pl
ing the two- and three-unit elements of the seque
on a circle (thus expressing the fact that the pat
is played as a loop),one cannot break the circle int
two parts of equal length whatever the chosen bre
ing point. There is always one unit lacking on one sid

The asymmetry of the pattern is to some ext
intrinsic, in the sense that there exists no break
point giving two parts of equal length. Every divisio
of the pattern gives two unequal parts, “half min
one” on the one side, and “half plus one” on the ot
side. Note that the oddity property requires that
circle is divided into an even number of units,
that it is possible to find patterns of the “half min

hts reserved.
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Thecyclic shiftsof w are the words of the formδk(w)
for any integerk. For instance, the cyclic shifts of 2223
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Fig. 1. No breaking point giving two parts of equal length.

one/half plus one” type. Many such patterns appea
Central African music, and this makes a challeng
question of cognitive science, but we do not addr
this question here, since this paper is restricted
purely combinatorial aspects.

We describe an algorithm for enumerating all t
patterns satisfying the rhythmic oddity property. T
main idea of the construction is that patterns of t
type must have an even number of three-unit eleme
and that these elements must be placed nearly opp
around the circle. More precisely, if the units
the circle are numbered from 0 ton − 1, a three-
unit element beginning ati implies that a three-uni
element begins either ati + n/2 − 1 or i + n/2 +
1 (modulon). The construction is expressed in t
paradigm of combinatorics on words, and we rec
some basic notions from this domain.

2. The rhythmic oddity property

A word is a sequence of symbols from a giv
alphabet. In this paper, we consider words over
alphabetA= {2,3}.

We denote as usual byA∗ the set of words overA,
and byε the empty word. For a wordw, we denote
by |w| the length ofw, and by |w|x the number of
symbols equal tox in w. The concatenation of word
is an associative operation and the empty word
neutral element for concatenation. A wordu is called
aprefix(respectivelysuffix) of a wordw if there exists
a wordy such thatw= uy (respectivelyw = yu).

In order to introduce the cyclic shifts of a word, l
δ be the permutation ofA∗ defined by

δ(ε)= ε, δ(au)= ua, a ∈A, u ∈A∗.
are 2223, 2232, 2322, and 3222.
Theheightof a wordu, denoted byh(u), is the sum

of its symbols, andh is a morphism fromA∗ to N.
A word w satisfies therhythmic oddity propertyif

and only if

(i) h(w) is even, and
(ii) no cyclic shift ofw can be factorized into word

uv such thath(u)= h(v).

Example. The conditionh(w) even is added to this de
finition, because ifh(w) is odd, the second condition
obviously satisfied for any word. In the Aka Pygmi
example, one hash(w) = 24, and the factorization o
cyclic shifts gives

h(32222)= 11, h(322222)= 13,
h(22223)= 11, h(222223)= 13,
etc.

Proposition 1. If w satisfies the rhythmic oddity prop
erty, then at least one of the following conditions
satisfied:

(i) there exists a unique pair(u, v) with h(v) =
h(u)+ 2 such thatw= uv, or

(ii) there exists a unique pair(u, v) with h(v) =
h(u)+ 2 such thatw= vu.

Proof. First, the uniqueness of the factorizations
conditions (i) and (ii) is trivial. To prove the existen
of such a factorization, letu be the longest prefix ofw
such thath(u) < h(v), wherev is the correspondin
suffix with w = uv. We denote byx the first symbol
of v = xv′. The two possible values forx are 2 and 3.
One hash(u) < h(v′) + x. Sinceu is maximal, one
hash(u)+x � h(v′), but the rhythmic oddity propert
implies h(u) + x > h(v′), thus |h(u) − h(v′)| < x.
The possible values forx lead to the following three
cases (i), (iia), (iib).

(i) If x = 2, one hasw = u2v′, andh(w) being
even implies that|h(u)− h(v′)| is even, thus equal t
zero, andh(v) = h(u)+ 2 so that condition (i) of the
property is satisfied by the pair(u, v), and condition
(ii) is satisfied by the pair(v′, u2).
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Fig. 2. Factorization of a word satisfying the rhythmic oddity property.

If x = 3, one hasw = u3v′, and the fact thath(w)
′

h(v′′u′)= h(u′′v′) ⇔

is even implies that|h(u)−h(v )| is odd, thus equal to
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one. This gives two remaining cases.
(iia) If h(v′) = h(u) − 1, the equalityh(v) =

h(v′) + 3 implies thath(v) = h(u) + 2 so that con-
dition (i) of the property is satisfied by the pair(u, v).

(iib) If h(v′) = h(u) + 1, the factorizationw =
(u3)v′ is such thath(u3)= h(v′)+2, so that condition
(ii) of the property is satisfied by the pair(v′, u3). ✷

Proposition 1 implies that 2h(u) + 2 = h(w) = n
(with n being even) so thath(u)= n/2−1 andh(v)=
n/2+ 1, thus expressing the “half minus one/half p
one” characterization of these patterns given by Sim
Arom [1].

We introduce the notion of asymmetric pair th
will be the key of our construction. We say that(u, v)
is anasymmetric pairif no pair of prefixes(u′, v′) of
u andv respectively exist such thath(v′)= h(u′)+ 1.
For instance, (3322, 32322) is an asymmetric pair,
(3322, 32232) is not, since the pair of prefixes (
322) satisfiesh(322)= h(33)+ 1.

Proposition 2. A wordw satisfies the rhythmic odd
ity property if and only if there exists an asymmet
pair (u, v) such thatw = uv or w = vu with h(v) =
h(u)+ 2.

Proof. Let w = uv or w = vu with h(v) = h(u)+ 2.
The existence of a pair of prefixes(u′, v′) of u and
v such thatu = u′u′′ and v = v′v′′ with h(v′) =
h(u′) + 1 is equivalent to the existence of a cyc
shift v′′u′u′′v′ of w (whatever being the factorizatio
w = uv or w = vu) such thath(v′′u′) = h(u′′v′).
Indeed, one hash(v′′) − h(u′′) = h(u′) − h(v′) + 2,
which gives the following computation
h(v )− h(u )= h(v )− h(u ) ⇔
h(u′)− h(v′)+ 2 = h(v′)− h(u′) ⇔
h(v′)− h(u′)= 1.

Thus if w satisfies the rhythmic oddity propert
Proposition 1 givesw = uv or w = vu with h(v) =
h(u) + 2. Then (u, v) must be an asymmetric pa
Conversely, ifw = uv orw = vuwhereh(v)= h(u)+
2 and(u, v) being an asymmetric pair, then no cyc
shift of w can be factorized into words with equ
height. ✷

3. Construction of asymmetric pairs

The following construction is inspired by Rauzy
rules, which are used to define standard pairs
the construction of characteristic Sturmian words
Consider two functionsa and b from A∗ × A∗ into
itself defined by

a(u, v)= (3u,3v), b(u, v)= (v,2u).
One has the following proposition.

Proposition 3. The set of asymmetric pairs is equal
the smallest set of pairs of words containingε × A∗
andA∗ × ε and closed undera andb.

Proof. LetF denote the smallest set of pairs of wor
containingε×A∗ andA∗ × ε and closed undera and
b, andP the set of asymmetric pairs. We proveF = P
by double inclusion. The first inclusion is obviou
sinceP containsε×A∗ andA∗×ε and is closed unde
a andb. The other inclusion is proved by inductio
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on integer|u| + |v|, where(u, v) is an asymmetric
pair.
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For anyw ∈D, we putf (w)= α, which is possible
sinceα is unique. Indeed, following Proposition 1,
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The first case isv = 2v′. Then for each pair o
prefixes(r, s) of u andv, one hass = 2s′ and(s′, r)
is a pair of prefixes of(v′, u). If h(r) = h(s′) + 1,
then h(s) = h(r) + 1. This proves that if(u, v) is
an asymmetric pair, then so is(v′, u). By induction,
(v′, u) belongs toF , which proves that(u, v) =
b(v′, u) belongs toF .

The other case isv = 3v′. Notice that 2 cannot b
the first symbol ofu, since(u, v) is an asymmetric
pair, which implies that(2,3) cannot be a pair o
prefixes ofu andv. Thusu= 3u′. Then for each pai
of prefixes(r, s) of u and v, one hass = 3s′ and
r = 3r ′ where(r ′, s′) is a pair of prefixes of(u′, v′).
If h(s′)= h(r ′)+ 1, thenh(s)= h(r)+ 1. This proves
that if (u, v) is an asymmetric pair, then so is(u′, v′).
By induction,(u′, v′) belongs toF , which proves tha
(u, v)= a(u′, v′) belongs toF . ✷

Considering the free monoidB∗ on the alphabe
B = {a, b}, we identify the concatenation with th
composition of functions. Thus any wordα of B∗ is
identified with a function fromA∗ ×A∗ into itself. It
is easy to prove by induction the following propertie

Proposition 4. Let (u, v)= α(ε, ε) for a wordα ∈ B∗.
If |α|b is even, thenh(v) = h(u), and if |α|b is odd,
thenh(v)= h(u)+ 2.

Proposition 5. If |α|b is even, thenα(r, s) = α(ε, ε).
(r, s), and if |α|b is odd, thenα(r, s)= α(ε, ε).(s, r).

Corollary 6. A wordw satisfies the rhythmic oddit
property if and only if there exists a wordα ∈ B∗ with
|α|b, being odd, such thatw = uv or w = vu with
(u, v)= α(ε, ε).

LetD be the subset ofA∗ defined by

D = {
w = uv,∃α ∈ B∗, |α|b odd, (u, v)= α(ε, ε)}.

The setD does not include every words satisfyin
the rhythmic oddity property, but only part of them
Indeed, as expressed by Corollary 6, a wordw satisfies
the rhythmic oddity property if and only ifw belongs
toD, orw is a cyclic shift of a word that belongs toD
(w = vu with uv ∈D).
a wordw cannot have more than one factorizati
w = uv with h(v) = h(u) + 2. Moreover, equality
(u, v) = α(ε, ε) = β(ε, ε) for α,β ∈ B∗ implies that
α = β thanks to the fact that

a(A∗ ×A∗)∩ b(A∗ ×A∗)
= (3A∗ × 3A∗)∩ (A∗ × 2A∗)= ∅.

Thus f is a function fromA∗ to B∗ with D as its
domain. Moreover, the imagef (D) is the subset o
words ofB∗ having an odd number of symbols equ
to b, andf is injective, so thatf is a bijection fromD
to f (D).

Example. The computation of the imagef (w) of
w = 332232322 proceeds as follows. First, the fac
ization ofw into uv such thath(v) = h(u)+ 2 gives
u= 3322 andv = 32322. Then, one has

(u, v) = (3322,32322)

= a(322,2322)

= ab(322,322)

= aba(22,22)

= abab(2,22)

= ababb(2,2)

= ababbb(ε,2)

= ababbbb(ε, ε),

which givesf (332232322)= ababbbb.

Proposition 7. For anyw,w′ ∈ D, f (w′) is a cyclic
shift off (w) if and only ifw′ is a cyclic shift ofw.

Proof. Let w ∈ D and f (w) = α. First, we prove
that α and δ(α) are images of words that are cyc
shifts of one another. There are two casesα = aα′ and
α = bα′ depending on the first symbol ofα. We put
(u′, v′)= α′(ε, ε).

In the first case,aα′(ε, ε) = (3u′,3v′). Proposi-
tion 5 givesα′a(ε, ε) = α′(3,3) = α′(ε, ε).(3,3) =
(u′3, v′3). Thusaα′ = f (3u′3v′) andα′a = f (u′3v′3)
are images of cyclic shifts of one another.

In the second case,bα′(ε, ε)= (v′,2u′). Since|α|b
is odd,|α′|b must be even, so that Proposition 5 giv
α′b(ε, ε) = α′(ε,2) = α′(ε, ε).(ε,2) = (u′, v′2). As
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before,bα′ = f (v′2u′) andα′b = f (u′v′2) are images
of cyclic shifts of one another.

l

(u′, v′).(2,2)= α′(ε, ε).(2,2)= α′(2,2)= α′bb(ε, ε),
thus δ(w) ∈ D (so that in this caser = 1) with
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For the converse part, the difficulty is thatδ(w) ∈D
is not true for allw ∈D. We shall prove that forw ∈D
andr > 0 being the least integer such thatδr (w) ∈D
(which exists since forr = |w|, one hasδr(w) = w),
the images ofw and δr(w) are cyclic shifts of one
another. We putw = uv with (u, v) = α(ε, ε). There
are three cases (ia), (ib), (ii).

We first assume thatw begins with 3, thusw =
3u′v. Since(u, v) is an asymmetric pair,(3,22) cannot
be a pair of prefixes ofu andv. Thusv begins with 3
or 23, which leads to the following two cases.

(ia) If v = 3v′, then w = 3u′3v′, which gives
f (w) = aα′. One hasδ(w) = u′3v′3 with h(v′3) =
h(u′3) + 2. Proposition 5 gives(u′3, v′3) = (u′, v′).
(3,3) = α′(ε, ε).(3,3) = α′(3,3) = α′a(ε, ε), thus
δ(w) ∈D (so that in this caser = 1) with f (δ(w))=
α′a, which proves that the images ofw andδ(w) are
cyclic shifts of one another.

(ib) If v = 23v′, thenw = 3u′23v′. Note that in
this case,δ(w) = u′23v′3 is factorized into words
such thath(v′3) = h(u′23) − 2, so thatδ(w) is not
in D. Let k − 1 (respectivelyl − 1) be the length
of the greatest prefix ofu′ with all symbols equa
to 3 (respectivelyv′). One hasl � k, because if
l < k, then 3l would be a prefix ofu′ whereas
3l−12 is a prefix of v′, thus (33l,233l−12) would
be a pair of prefixes of 3u′ and 23v′, respectively,
which is not possible since(3u′,23v′) is an asym-
metric pair. Thusu′ = 3k−12u′′ andv′ = 3k−1v′′ with
h(v′′) = h(u′′) + 2, and one hasw = 3k2u′′23kv′′.
First, we haveδs(w) /∈D for every 1� s � k. Indeed,
δs(w) = 3k−s2u′′23kv′′3s is factorized into words
such thath(3k−sv′′3s) = h(3k−s2u′′23s) − 2. Then,
one hasδk+1(w) ∈ D. Indeed, one hasδk+1(w) =
u′′23kv′′3k2. The image ofw is f (w) = bakbα′
with α′(ε, ε) = (u′′, v′′). Since|α′|b is odd, Proposi-
tion 5 gives(u′′23k, v′′3k2) = (u′′, v′′).(23k,3k2) =
α′(ε, ε).(23k,3k2) = α′(3k2,23k) = α′bakb(ε, ε). It
follows thatδk+1(w) ∈D, so that we can putr = k +
1, andf (δr (w))= α′bakb is a cyclic shift off (w).

We now assume thatw begins with 2, so thatw =
2u′v. There is only one remaining case.

(ii) Since (2,3) cannot be a pair of prefixes ofu
andv, it follows thatv begins with 2, andw = 2u′2v′.
Thusf (w) = bbα′ with α′(ε, ε) = (u′, v′). One has
δ(w) = u′2v′2, and Proposition 5 gives(u′2, v′2) =
f (δ(w)) = α′bb, which proves that the images ofw
andδ(w) are cyclic shifts of one another.✷
Example. Note that Proposition 7 is only true fo
words such that|f (w)|b = |f (w′)|b is odd. If |f (w)|b
= |f (w′)|b is even, the proposition is false. Indee
one has

bba(ε, ε)= bb(3,3)= b(3,23)= (23,23),

bab(ε, ε)= ba(ε,2)= b(3,32)= (32,23),

so that bba = f (2323), bab = f (3223), but 2323
and 3223 are not cyclic shifts of one another. On
contrary, one has

bbba(ε, ε)= b(23,23)= (23,223),

bbab(ε, ε)= b(32,23)= (23,232),

so that bbba = f (23223), bbab = f (32232), and
23223 and 32232 are cyclic shifts of one another.

The problem in the computation of words satisfyi
the rhythmic oddity property is that cyclic shifts of on
another are considered as the same solution, since
correspond to rhythmic patterns repeated as a loop

Theconjugacyrelation on words is the equivalenc
between words being cyclic shifts of one anoth
and the classes of conjugate elements are the o
of the permutationδ. Lyndon wordsare defined as
minimal elements in the conjugacy classes regard
the lexicographic order, with the additional conditi
that they are primitive (not power of another word)
follows that Lyndon words are canonic representati
for the conjugacy classes. Lyndon words can
computed efficiently in a recursive way thanks
the fact that Lyndon words not reduced to a sin
letter can be factorized into shorter Lyndon wordslm
such thatl < m for the lexicographic order [8]. Fo
instance, the Lyndon wordaababb can be factorized
into (aab)(abb). Thus Lyndon words of lengthn are
obtained by concatenating Lyndon words of lengthp
andq with n= pq .

A naive algorithm for computing words satisfyin
the rhythmic oddity property up to a cyclic shif
would consists in computing Lyndon words on t
alphabetA = {2,3}, and deleting those which do n
satisfy the property. This algorithm can be improv
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because a cross-section ofD for the conjugacy relation
is a cross-section of the set of words satisfying
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Remark. Lyndon words provide a powerful tool
for enumerating repetitive musical structures. It is
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the rhythmic oddity property. Indeed, as we ha
said before, any word satisfying the rhythmic odd
property is either an element ofD, or a cyclic shift
of an element ofD. The advantage of this remark
that a cross-section ofD can be computed efficientl
using the mappingf thanks to the following simple
set theoretic Proposition 8.

Proposition 8. Let f be a mapping fromE to F ,
∼E and ∼F equivalence relations onE and F ,
respectively, andD a subset ofE. If for anyx, y ∈D,
f (x) ∼F f (y) is equivalent tox ∼E y, there is a
bijection betweenD/∼E andf (D)/∼F .

Proof. We definef ′ from D/∼E to f (D)/∼F by
f ′(cx) = cf (x), wherecx is the equivalence class o
x. It is possible since for anyy ∈ cx ∩ D, one has
cf (y) = cf (x) becausex ∼E y impliesf (x)∼F f (y).
Then f ′(cx) = f ′(cy) meansf (x) ∼F f (y), which
implies by hypothesisx ∼E y, whencecx = cy . Thus
f ′ is injective. ✷

Considering the functionf fromA∗ to B∗, Propo-
sition 8 may be applied to the setD. It proves that there
exists a bijection between a cross-section ofD and a
cross-section off (D) for the conjugacy relation. W
have seen that the imagef (D) is the set of words o
B∗ having an odd number of symbols equal tob. It fol-
lows that the computation of a cross-section off (D)

can easily be made using Lyndon words. In this w
we obtain a cross-section ofD.

Furthermore, every conjugacy classes of words
isfying the rhythmic oddity property contains at lea
one element ofD, as already mentioned. Finally, th
computation of words satisfying the rhythmic od
ity property is reduced to the computation of Lynd
words ofB∗ having an odd number of symbols equ
to b.

Table 1
1 3 5 7 9
sometimes convenient to replaceA∗ by another se
f (A∗) with anad hocmappingf . In our situation, the
computation of Lyndon words is faster on the alpha
B = {a, b} than on the alphabetA = {2,3}, because
the length of words off (D) is strictly less than the
length of the corresponding words ofD. For instance
considering

w = 332232322, f (w)= ababbbb,
one has|w| = 9, whereas|f (w)| = 7. It seems tha
the method involving anad hocmappingf satisfying
Proposition 8 is a general technique, which applie
different musical situations. We have encountere
similar example in [6], where we computed circu
melodic canons.

4. Counting the solutions

Let n2 and n3 be the number of two- and thre
unit elements of a solution. One has Table 1, withn2
on the horizontal axis, andn3 on the vertical one. We
obtained these values experimentally by a constra
based program [4], and then they were confirmed
an ILOG solver program designed by Louis-Mar
Rousseau from the University of Montreal.

LetX(p) be the number of wordsw satisfying the
rhythmic oddity property up to a cyclic shift, wherep
is the length off (w). Sincen3 is even, we putn3 = 2j
andp = n2 + j , wherej is the number of letters equ
to a in f (w).

Proposition 9. If n3 = 2j is a power of2, one has

X(p)= 1

p
C
j
p.
11 13 15 17
2 1 1 1 1 1 1 1 1 1
4 1 2 3 4 5 6 7 8 9
6 1 4 7 12 19 26 35 47 57
8 1 5 14 30 55 91 140 204 285

10 1 7 26 66 143 273 476 776 1197
12 1 10 42 132 335 728 1428 2586 4389
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Table 2

n n Lyndon words Rhythmic patterns Ethnic group
3 2

2 1 ab 332 Zande

3 abbb 32322 Aka, Gbaya, Nzakara

5 abbbbb 3223222 Gbaya, Ngbaka

7 abbbbbbb 322232222

9 abbbbbbbbb 32222322222 Aka

4 1 aab 33332

3 aabbb 3323322
ababb 3323232

5 aabbbbb 332233222
ababbbb 332232322
abbabbb 323232322

6 1 aaab 3333332

3 aaabbb 333233322
aababb 333233232 Aka (mokongo)
aabbab 333232332
ababab 332332332 not primitive

Proof. The computation of a solution consists in 5. Results

placing j symbols equal toa in a word of length

s

ce
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ally
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iv.
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ss,
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gic
ag,
Mu-
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et.

94)

ad-
p over the alphabet{a, b}, and removing solution
that are cyclic shifts of one another. Ifn3 is a power
of 2, thenf (w) has exactly|f (w)| = p cyclic shifts.
Indeed, assume it has not, thenf (w) is a power
of a shorter word, and sincen3 is a power of 2,
|f (w)|b is even, thus one can writef (w) = γ γ .
Then by Proposition 5, one hasγ γ (ε, ε)= γ (u, v) =
(u, v).(u, v) = (uu, vv). It follows that w = uuvv

does not satisfy the rhythmic oddity property, sin
h(uv) = h(vu). This implies thatf (w) has exactly
|f (w)| = p different cyclic shifts. ✷
Corollary 10. If n3 = 8, the number of solutions is th
sum of the first squares.

Proof. One hasj = 4, thus

X(p)= (p− 3)(p− 2)(p− 1)

4! .

Since n2 is odd, one can writen2 = 2k − 1. Then
p = n2 + j = 2k− 1+ 4= 2k + 3. It follows

X(p)= k(k + 1)2k+ 1

6

which proves thatX(p) is the sum of thek first
squares. ✷
The computation gives Table 2. Patterns actu
used in Central African repertoires are indicated in
last column. There are reasons why those corresp
ing to the casen3 = 2, n2 = 7, and to the casen3 = 4
are not used (see [5] for more details).
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