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Abstract

This paper addresses the problem of enumerating all words having a combinatoric property called “rhythmic oddity property”.
This enumeration is motivated by the fact that this property is satisfied by many rhythmic patterns used in traditional Central
African music.
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1. Introduction the “rhythmic oddity property” discovered by Simha
Arom [1]. In Aka Pygmies music one can find the fol-

In 1952, ethnomusicologist Constantin Brailoiu 0Wing rhythmic pattern

wrote a paper on the combinatorics of asymmetric 32222322222
rhythmic patterns entitled “Le rythme aksak” [3].
These patterns are combinations of durations equal to
two or three units, such as the famous Turkish rhythm
2 2 2 3 (see [7]). The asymmetry lies in the fact
that they are based on two different durations. In his
paper, Brailoiu gave a table of 1884 distinct rhythms,
enumerating all the combinations that can be made
with up to nine successive two- or three-unit elements.
This paper is devoted to the enumeration of a par
ticular type of African asymmetric patterns, satisfying

The rhythmic oddity property asserts that when plac-
ing the two- and three-unit elements of the sequence
on a circle (thus expressing the fact that the pattern
is played as a loopjpne cannot break the circle into
two parts of equal length whatever the chosen break-
ing point There is always one unit lacking on one side.
The asymmetry of the pattern is to some extent
intrinsic, in the sense that there exists no breaking
" point giving two parts of equal length. Every division
of the pattern gives two unequal parts, “half minus
one” on the one side, and “half plus one” on the other
mspondmg author. s!de. l\'lote. that the oddity property requires that the
E-mail addressesnarc@info.unicaen.fr (M. Chemillier), circle is divided into an even number of units, so
Charlotte. Truchet@ircam.fr (C. Truchet). that it is possible to find patterns of the “half minus
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Thecyclic shiftsof w are the words of the forsf (w)
for any integek. For instance, the cyclic shifts of 2223
are 2223, 2232, 2322, and 3222.

Theheightof a wordu, denoted by: (u), is the sum
of its symbols, and is a morphism fromd* to N.

A word w satisfies thehythmic oddity propertyf
and only if

(i) h(w) is even, and
(i) no cyclic shift of w can be factorized into words
uv such thati(u) = h(v).

Fig. 1. No breaking point giving two parts of equal length.

one/half plus one” type. Many such patterns appear in
Central African music, and this makes a challenging Example. The conditior:(w) evenis added to this de-
question of cognitive science, but we do not address finition, because if (w) is odd, the second condition is
this question here, since this paper is restricted to Obviously satisfied for any word. In the Aka Pygmies
purely combinatorial aspects. example, one hak(w) = 24, and the factorization of
We describe an algorithm for enumerating all the €yclic shifts gives

patterns satisfying the rhythmic oddity property. The
main idea of the construction is that patterns of this h(32222 =11, h(322223 =13,
type must have an even number of three-unit eIements,h(22223 =11 h(222223=13,
and that these elements must be placed nearly oppositeetc'
around the circle. More precisely, if the units on
the circle are numbered from 0 to — 1, a three- Proposition 1. If w satisfies the rhythmic oddity prop-
unit element beginning at implies that a three-unit  erty, then at least one of the following conditions is
element begins either at+n/2 -1 ori +n/2 + satisfied
1 (modulon). The construction is expressed in the
paradigm of combinatorics on words, and we recall (i) there exists a unique paitu,v) with h(v) =
some basic notions from this domain. h(u) + 2 such thatw = uv, or

(i) there exists a unique paitu,v) with A(v) =

h(u) + 2 such thatw = vu.

2. Therhythmic oddity property
Proof. First, the uniqueness of the factorizations of

A word is a sequence of symbols from a given conditions (i) and (ii) is trivial. To prove the existence

alphabet. In this paper, we consider words over the of such a factorization, let be the longest prefix ab
alphabetd = {2, 3} such thath(u) < h(v), wherev is the corresponding

suffix with w = uv. We denote by the first symbol
of v = xv’. The two possible values farare 2 and 3.
One hash(u) < h(v') + x. Sinceu is maximal, one

We denote as usual by* the set of words oved,
and bye the empty word. For a word), we denote
by |w| the length ofw, and by|w]|, the number of p : 4
symbols equal ta in w. The concatenation of words @) +x > h(v"), butthe rhythmic oddlty/property
is an associative operation and the empty word is a IMPlies 2(u) + x > h@"), thus [h@u) — h(V)] < x.
neutral element for concatenation. A wards called 1€ possible values for lead to the following three

aprefix(respectivelysuffiy) of a wordw if there exists ~ €as€s (1), (iia), (iib).

a wordy such thatw = uy (respectivelyw = yu). Q) _” * = 2, one hasw :/ ”.21/’ and i(w) being
In order to introduce the cyclic shifts of a word, let €Ven implies thath(u) — h(v))| is even, thus equal to
8 be the permutation od* defined by zero, andh(v) = h(u) + 2 so that condition (i) of the

property is satisfied by the pair, v), and condition
§(e) =&, S(au) =ua, acA, ucA*. (ii) is satisfied by the pai¢v’, u2).
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' '

’ @ (iia) ' (iib)

Fig. 2. Factorization of a word satisfying the rhythmic oddity property.

If x =3, one hasv = u3v’, and the fact thak (w) h'uYy=hw'"v) <
is even implies thafti (u) — h(v’)| is odd, thus equal to Ry — h(u") = h(v)) — h(u') <
one. This gives two remaining cases. , , , ,
(ia) If h(v') = h(u) — 1, the equalityh(v) = h(u) —h@W)+2=h)-hW) <
h(v") + 3 implies thath(v) = h(u) + 2 so that con- h@) —hw) =1
dition (i) of the property is satisfied by the pdir, v). , - . ,
(iib) If (') = h(u) + 1, the factorizationw = Thus |f w satlgfles the rhythmic odd'lty property,
(u3)v' is such that(u3) = h(v')+2, so that condition ~ Proposition 1 givesy = uv or w = vu with 2 (v) =

(") of the property is satisfied by the paw/’ u3). O h(u) + 2. Then (u,v) must be an asymmetric pair.
Conversely, ifw = uv orw = vu whereh(v) = h(u) +

Proposition 1 implies that/&u) + 2 = h(w) = n 2 and(u, v) being an asymmetric pair, then no cyclic
(with 1 being even) so that(u) = n/2 — 1 andh(v) = shift of w can be factorized into words with equal
height. O

n/2+ 1, thus expressing the “half minus one/half plus
one” characterization of these patterns given by Simha
Arom [1]. _ _ _

We introduce the notion of asymmetric pair that 3 Construction of asymmetric pairs
will be the key of our construction. We say that v)
is anasymmetric paiif no pair of prefixes(u’, v') of The following construction is inspired by Rauzy’s
u andv respectively exist such thatv’) = h(u') + 1. rules, which are used to define standard pairs in
For instance, (3322, 32322) is an asymmetric pair, but the construction of characteristic Sturmian words [2].
(3322, 32232) is not, since the pair of prefixes (33, Consider two functions andb from A* x A* into
322) satisfie (322 = h(33) + 1. itself defined by

" L . a(u,v) = (3u, 3v), b(u,v) = (v, 2u).

Proposition 2. A word w satisfies the rhythmic odd-
ity property if and only if there exists an asymmetric One has the following proposition.
pair («,v) such thatw = uv or w = vu with 2 (v) =

h(u) + 2. Proposition 3. The set of asymmetric pairs is equal to
the smallest set of pairs of words containing A*

Proof. Let w = uv or w = vu with h(v) = h(u) + 2. and A* x ¢ and closed undet andb.

The existence of a pair of prefixga’, v') of u and

v such thatu = v’'u” and v = v'v” with hA(v') = Proof. Let F denote the smallest set of pairs of words

h(u') + 1 is equivalent to the existence of a cyclic containings x A* andA* x ¢ and closed under and
shift v"u’'u”v" of w (whatever being the factorization b, andP the set of asymmetric pairs. We proke= P
w = uv or w = vu) such thath(v’u’) = h(u"v). by double inclusion. The first inclusion is obvious,
Indeed, one haB(v"") — h(u”) = h(u') — h(V) + 2, sinceP containg x A* andA* x ¢ and is closed under
which gives the following computation a andb. The other inclusion is proved by induction
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on integer|u| + |v|, where (u, v) is an asymmetric
pair.

The first case iss = 2v’. Then for each pair of
prefixes(r, s) of u andv, one has = 25" and(s’, r)
is a pair of prefixes ofv', u). If A(r) = h(s') + 1,
then h(s) = h(r) + 1. This proves that if(u, v) is
an asymmetric pair, then so {®’, #). By induction,
(v, u) belongs to F, which proves that(u,v) =
b(v', u) belongs toF.

The other case is = 3v’. Notice that 2 cannot be
the first symbol ofu, since (u«, v) is an asymmetric
pair, which implies that(2, 3) cannot be a pair of
prefixes ofu andv. Thusu = 3u’. Then for each pair
of prefixes(r,s) of u and v, one hass = 3s’ and
r = 3r’ where(r’, s") is a pair of prefixes ofu’, v').
If h(s") = h(r’)+ 1, thenk(s) = h(r) + 1. This proves
that if (u, v) is an asymmetric pair, then so(g’, v').
By induction,(x’, v") belongs toF, which proves that
(u,v) =a(u’,v") belongstoF. O

Considering the free monoi#* on the alphabet
B = {a, b}, we identify the concatenation with the
composition of functions. Thus any woosdof B* is
identified with a function fromd* x A* into itself. It

is easy to prove by induction the following properties.

Proposition 4. Let (i, v) = a (e, ¢) foraworda € B*.
If |«|p is even, therh(v) = h(u), and if |a|, is odd,
thenh(v) = h(u) + 2.

Proposition 5. If |«|, is even, them(r, s) = a(e, €).
(r,s), and if |«|p is odd, therx(r, s) = a(e, €).(s, r).

Corollary 6. A word w satisfies the rhythmic oddity
property if and only if there exists a wotde B* with
|a|p, being odd, such thatv = uv or w = vu with
(u,v) =a(e,e).

Let D be the subset od* defined by
D= {w =uv,da € B*, |a|p odd (u, v) =oe(8,£)}.

The setD does not include every words satisfying
the rhythmic oddity property, but only part of them.
Indeed, as expressed by Corollary 6, a wersgatisfies
the rhythmic oddity property if and only i) belongs
to D, or w is a cyclic shift of a word that belongs

(w = vu with uv € D).
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Foranyw € D, we putf (w) = «, which is possible
since« is unique. Indeed, following Proposition 1,
a word w cannot have more than one factorization
w = uv with A(v) = h(u) + 2. Moreover, equality
(u,v) = a(e, &) = B(g,¢) for a, B € B* implies that
o = B thanks to the fact that

a(A* x AY)Nb(A* x AY)
— (3A* x 3A%) N (A* x 24%) = 0.

Thus f is a function fromA* to B* with D as its
domain. Moreover, the imagg(D) is the subset of
words of B* having an odd number of symbols equal
to b, andf is injective, so thayf is a bijection fromD

to f(D).

Example. The computation of the imag¢ (w) of

w = 332232322 proceeds as follows. First, the factor-
ization of w into uv such thati(v) = h(u) + 2 gives

u =3322 antb = 32322. Then, one has

(u, )

(3322 32322
= a(322 2322
= ab(322 322
= aba(22,22)
= abab(2, 22
= ababb(2, 2)
= ababbb(e, 2)
= ababbbb(s,¢),
which givesf(332232322= ababbbb.

Proposition 7. For any w, w’ € D, f(w') is a cyclic
shift of f(w) if and only ifw’ is a cyclic shift ofw.

Proof. Let w € D and f(w) = «. First, we prove
thata and§(«x) are images of words that are cyclic
shifts of one another. There are two cases ao’ and

a = ba’ depending on the first symbol af. We put
W', v)=d(e, ).

In the first casegad’(¢, ) = (3u’, 3v’). Proposi-
tion 5 givesa’a(s, ) = a'(3,3) = a'(s,€).(3,3) =
(u'3,0v'3). Thusaa’ = f(3u’3v") anda’a = f(u'3v'3)
are images of cyclic shifts of one another.

In the second caseég’ (e, €) = (v, 2u’). Since|a|,
is odd,|o’|, must be even, so that Proposition 5 gives
a'b(e,e) =ad'(6,2) =d'(e,8).(6,2) = W', v'2). As
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beforepa’ = f(v'2u") anda’b = f(u'v'2) are images
of cyclic shifts of one another.

For the converse part, the difficulty is thgiv) € D
is nottrue for alw € D. We shall prove that fow € D
andr > 0 being the least integer such ti84tw) € D
(which exists since for = |w|, one has’" (w) = w),
the images ofw and " (w) are cyclic shifts of one
another. We putv = uv with (u,v) = a(e, ¢). There
are three cases (ia), (ib), (ii).

We first assume thab begins with 3, thusw =
3u’v. Since(u, v) is an asymmetric pait3, 22) cannot
be a pair of prefixes af andv. Thusv begins with 3
or 23, which leads to the following two cases.

(ia) If v = 3v/, then w = 3u’3v’, which gives
f(w) = ad’. One hass(w) = u’3v'3 with 2(v'3) =
h(u'3) + 2. Proposition 5 givesu’3,v'3) = (u/, V).
(3,3) = d/(¢,6).(3,3) = &/(3,3) = da(s, ¢), thus
8(w) € D (so that in this case = 1) with f(§(w)) =
a’a, which proves that the images of ands(w) are
cyclic shifts of one another.

(ib) If v =23V, thenw = 3u’23v". Note that in
this case,8(w) = 1’23’3 is factorized into words
such thath(v'3) = h(u'23) — 2, so thats(w) is not
in D. Let k — 1 (respectivelyl — 1) be the length
of the greatest prefix of with all symbols equal
to 3 (respectivelyv’). One hasl > k, because if
I < k, then 3 would be a prefix ofu’ whereas
3-12 is a prefix ofv/, thus (33, 233-12) would
be a pair of prefixes of B and 23/, respectively,
which is not possible sinc€3u’, 23v") is an asym-
metric pair. Thus:’ = 3124 andv’ = 3*~1v” with
h(v") = h@'") + 2, and one hasw = 3*2u”23v".
First, we haves® (w) ¢ D for every 1< s < k. Indeed,
85 (w) = 3*524"23"3* is factorized into words
such thath(3¥—5v”3%) = h(3*—524"23) — 2. Then,
one hass**t1(w) € D. Indeed, one hagktl(w) =
u"23"3k2. The image ofw is f(w) = ba*ba’
with o' (e, &) = (u”,v”). Since|d’|p is odd, Proposi-
tion 5 gives (1”23, v”3%2) = (u”,v").(23, 3¢2) =
o' (g,8).(23,32) = o/ (32, 23%) = &’ba¥b(e, ©). It
follows thats**1(w) € D, so that we can put= k +
1, andf (8" (w)) = o’ba*b is a cyclic shift of f (w).

We now assume that begins with 2, so thab =
2u’v. There is only one remaining case.

(i) Since (2,3) cannot be a pair of prefixes af
andv, it follows thatv begins with 2, andv = 2u'2v’.
Thus f(w) = bba’ with o’ (¢, &) = (4, V). One has
8(w) = u'2v'2, and Proposition 5 giveg:'2,v'2) =

W, v).2,2)=d'(e,8).2,2) =a'(2,2) = a'bb(s, ¢),
thus §(w) € D (so that in this case = 1) with
f(8(w)) = a’bb, which proves that the images of
ands(w) are cyclic shifts of one another.

Example. Note that Proposition 7 is only true for
words such thattf (w)|, = | f(w)|p is odd. If| f(w)]p

= |f(w")|, is even, the proposition is false. Indeed,
one has

bba(e,e) =bb(3,3) =b(3,23) = (23, 23),
bab(e,e) =ba(e,2) =b(3,32) = (32,23,

so thatbba = f(2323, bab = f(3223, but 2323
and 3223 are not cyclic shifts of one another. On the
contrary, one has

bbba(e, ¢) = b(23,23) = (23, 223,
bbab(e, e) = b(32,23) = (23,232,

so thatbbba = f(23223, bbab = f(32232, and
23223 and 32232 are cyclic shifts of one another.

The problem in the computation of words satisfying
the rhythmic oddity property is that cyclic shifts of one
another are considered as the same solution, since they
correspond to rhythmic patterns repeated as a loop.

Theconjugacyrelation on words is the equivalence
between words being cyclic shifts of one another,
and the classes of conjugate elements are the orbits
of the permutations. Lyndon wordsare defined as
minimal elements in the conjugacy classes regarding
the lexicographic order, with the additional condition
that they are primitive (not power of another word). It
follows that Lyndon words are canonic representatives
for the conjugacy classes. Lyndon words can be
computed efficiently in a recursive way thanks to
the fact that Lyndon words not reduced to a single
letter can be factorized into shorter Lyndon wotds
such thatl < m for the lexicographic order [8]. For
instance, the Lyndon wordababb can be factorized
into (aab)(abb). Thus Lyndon words of length are
obtained by concatenating Lyndon words of length
andqg with n = pq.

A naive algorithm for computing words satisfying
the rhythmic oddity property up to a cyclic shift,
would consists in computing Lyndon words on the
alphabetA = {2, 3}, and deleting those which do not
satisfy the property. This algorithm can be improved
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because a cross-section@for the conjugacy relation

is a cross-section of the set of words satisfying
the rhythmic oddity property. Indeed, as we have
said before, any word satisfying the rhythmic oddity
property is either an element @, or a cyclic shift

of an element ofD. The advantage of this remark is
that a cross-section dp can be computed efficiently
using the mapping’ thanks to the following simple
set theoretic Proposition 8.

Proposition 8. Let f be a mapping fromE to F,
~g and ~r equivalence relations orf and F,
respectively, and a subset oF. If for anyx, y € D,
f(x) ~r f(y) is equivalent tox ~g y, there is a
bijection betweeD /~g and f (D)/~F.

Proof. We define f’ from D/~g to f(D)/~F by
f(cx) = crx), Wherec, is the equivalence class of
x. It is possible since for any € ¢; N D, one has
Cr(y) =Cf(x) because ~g y implies f(x) ~r f(y).
Then f’(cx) = f'(cy) meansf(x) ~r f(y), which
implies by hypothesis ~ y, whencec, = ¢y. Thus
f/isinjective. O

Considering the functiorf from A* to B*, Propo-
sition 8 may be applied to the sbt It proves that there
exists a bijection between a cross-sectiomoénd a
cross-section off (D) for the conjugacy relation. We
have seen that the imag& D) is the set of words of
B* having an odd number of symbols equabtat fol-
lows that the computation of a cross-sectionf@D)
can easily be made using Lyndon words. In this way,
we obtain a cross-section &f.

Furthermore, every conjugacy classes of words sat-
isfying the rhythmic oddity property contains at least
one element oD, as already mentioned. Finally, the
computation of words satisfying the rhythmic odd-
ity property is reduced to the computation of Lyndon
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Remark. Lyndon words provide a powerful tool
for enumerating repetitive musical structures. It is
sometimes convenient to replage’ by another set
f(A®) with anad hocmappingf. In our situation, the
computation of Lyndon words is faster on the alphabet
B = {a, b} than on the alphabet = {2, 3}, because
the length of words off (D) is strictly less than the
length of the corresponding words Bf. For instance,
considering

w =332232322 f(w) =ababbbb,

one hasiw| = 9, wheread f (w)| = 7. It seems that
the method involving aad hocmappingf satisfying
Proposition 8 is a general technique, which applies to
different musical situations. We have encountered a
similar example in [6], where we computed circular
melodic canons.

4. Counting the solutions

Let no and nz be the number of two- and three-
unit elements of a solution. One has Table 1, with
on the horizontal axis, areg on the vertical one. We
obtained these values experimentally by a constraint-
based program [4], and then they were confirmed by
an ILOG solver program designed by Louis-Martin
Rousseau from the University of Montreal.

Let X (p) be the number of words satisfying the
rhythmic oddity property up to a cyclic shift, whepe
is the length off (w). Sincens is even, we putz = 2
andp =n2+ j, wherej is the number of letters equal
toain f(w).

Proposition 9. If n3 = 2j is a power of2, one has

words of B* having an odd number of symbols equal X(p) = EC,’;.
tob. p
Table 1
1 3 5 7 9 11 13 15 17
2 1 1 1 1 1 1 1 1 1
4 1 2 3 4 5 6 7 8 9
6 1 4 7 12 19 26 35 47 57
8 1 5 14 30 55 91 140 204 285
10 1 7 26 66 143 273 476 776 1197
12 1 10 42 132 335 728 1428 2586 4389
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Table 2
n3 ny Lyndon words Rhythmic patterns Ethnic group
2 1 ab 332 Zande
3 abbb 32322 Aka, Gbaya, Nzakara
5 abbbbb 3223222 Gbaya, Ngbaka
7 abbbbbbb 322232222
9 abbbbbbbbb 32222322222 Aka
4 1 aab 33332
3 aabbb 3323322
ababb 3323232
5 aabbbbb 332233222
ababbbb 332232322
abbabbb 323232322
6 1 aaab 3333332
aaabbb 333233322
aababb 333233232 Akarfiokongd
aabbab 333232332
ababab 332332332 not primitive

Proof. The computation of a solution consists in
placing j symbols equal ta: in a word of length
p over the alphabefa, b}, and removing solutions
that are cyclic shifts of one another.Ad is a power
of 2, then f (w) has exacthyj f (w)| = p cyclic shifts.
Indeed, assume it has not, thei{w) is a power
of a shorter word, and sincesz is a power of 2,

| f(w)]p is even, thus one can writ¢(w) = yy.
Then by Proposition 5, one has/ (¢, &) =y (u, v) =
(u,v).(u,v) = (uu,vv). It follows that w = uuvv
does not satisfy the rhythmic oddity property, since
h(uv) = h(vu). This implies thatf(w) has exactly

| f (w)| = p different cyclic shifts. O

Coroallary 10. If n3 = 8, the number of solutions is the
sum of the first squares.

Proof. One hasj = 4, thus
(r=3)yp-2(p-1
4 '
Sinceny is odd, one can writeio = 2k — 1. Then
p=n2+j=2k—1+4=2k+ 3. Itfollows
k(k+1)2k+1
6

which proves thatX (p) is the sum of thek first
squares. O

X(p) =

X(p)=

5. Results

The computation gives Table 2. Patterns actually
used in Central African repertoires are indicated in the
last column. There are reasons why those correspond-
ing to the caseiz = 2,n2 =7, and to the cases =4
are not used (see [5] for more details).
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