Factor oracle: a new structure for pattern
matching

Cyril Allanzen Maxime Crochemore® Mathicu Raffinot

Institut Gaspard-Monge, Université de Marne-la-Vallée,
77454 Marne-la-Vallée Cedex 2, France.
http: //wwr-ign.univ-nlv.fr/LabInfo/
{allauzen,mac,raffinct }fmenge.univ-nlv. fr

Abstract We introduce a new automaton on a word p, sequence of let-
ters taken in an alphabet X, that we call factor oracle. This automaton is
acyclic, recognizes at least the factors of p, has m + 1 states and a linear
number of transitions. We give an on-line construction to build it. We
use this new structure in string matching algorithms that we conjecture
optimal according to the experimental results. These algorithms are as
efficient as the ones that already exist using less memory and being more
easy to implement.

Keywords: indexing, finite automaton, pattern matching, algorithm de-
sign.

1 Introduction

A word p is a finite sequence p = p1pa . - . pm of lotters taken in an alphabet 1
We keep the notation p along this paper to denote the word on which we are
working.

Efficient pattern matching on fixed texts are based on indexes built on top of
the text. Many indesxdng techniques exgst for this purpose. The simplest methods
usc precomputed tables of g-grams while more achicved methods use more clab-
orated data structurcs. These clasgical structurca are: suffix arrays, suffix trecs,
suffix automata or DAWGs!, and factor automata (scc [11]). When regarded
ag automata, they accept the sct of factors (substrings) of the text. All these
structures lead to very time-cfficient pattern matching algorithms but require a
fairly large amount of memory space. It is considered, for example, that the im-
plementation of suffix arrays can be achicved using five bytes per text character
and that other structurcs need about twelve bytes per text character.

Scveral strategics have been developed to reduce the mamnory space required
to implement structures for indexes.

* Work by this author is supperted in part by Programme “Cénomes” of C.N.R.S.
! DAWSs, Directed Acyclic Word Graphs, are just suffix autemata in which all states

are terminal states

Onc of the oldest method is to merge the compression techniques applied
hoth by the suffix tree and the suffix automaton. It lcads to the notion of com-
pact suffix antomaton (or compact DAWG) [5]. The direct construction of this
structure is given in [12, 13].

A sccond method to reduce the size of indexces has been considered in the text
compression method in [10]. It consists in representing the complement langunage
of the factors (substrings) of the text. More precisely, only minimal factors not
occurring in the text need to be considered [9,8]. Which allow to store them in
a tree and to save space.

We present in this paper a third method. We want to build an automaton (a)
that is acyclic (b) that recognizes at least the factors of p (¢) that has the fower
states as possible and (d) that has a lincar number of transitions. We alrcady
notice that such an automaton has necessarily at lcast m + 1 states.

The suffix or factor automaton [4,7] eatifics (a)-(b)-(d) but not (¢) whercas
the sub-scquence automaton [3] satisfies (a)-(b)-(¢) but not (d), which malkes
the problem non trivial.

We propose an intermediate structure that we call the factor orgele @ an
automaton with m + 1 states that satisfics these four requirementa.

We nse this new structure to design new string matching algorithms. These
algorithms have a very good average behaviour that we conjecture as optimal.
The main advantages of these new algorithms are (1) that they arc casy to imple-
ment for an optimal behaviour and (2) the memory saving that the factor oraclke
allows with reapect to the suffix automaton. The atructure has been extended in
[2] to implement the index of a finite sct of texts.

The paper 18 structured as follows: Section 2 discnsses the construction of the
factor oracle, Section 3 describes a string matching based on the factor oracle
and shows cxperimental results, and finally we conclude in Section 4. Proofs of
the results presented in the paper may be found m [1]. We now define notions
and definitions that we need along this paper.

A word 2 € X* 18 a fector of p if and only if p can be written p = vzv with
u,v € X%, We denote Fact(p) the set of all the factors of word p. A factor 2 of p
is a prefie (resp. a suffie) of p if p = 2u (resp. p = uz) with u € X*. The sct of
all the prefixes of p is denoted by Pref(p) and the one of all the suffixes Suff(p).
We say that 2 is a proper factor (resp. proper prefiz, proper suffiz) of pif 2 iz a
factor (resp. prefix, suffix) of p distinet from p and from the empty word c.

We denote pref, (i) the prefix of length ¢ of p for 0 < ¢ < [p].

We denote for u € Fact(p), poccur(u, p) = min{|z| , 2 = wu ot p = wuv},
the ending position of the first occurrence of ¢ in p.

Finally, we define for u € Fact(p) theset endpos, (u} = {¢ | p = wupij1.. .pm}-
If two factors u and v of p arc such that cndpos, (v) = endpos, (v}, we denote
u ~p v. It 18 very casy to verify that ~; is an oquivalence relation; it is in fact
the syntaxic equivalence of the language Suff(p).

2 TFactor oracle

2.1 Construction algorithm

Build Oracle(p = pipz ... pm)
For i from 0 to m
Create a new state 2
For ¢ from 0 to m — 1
Build a new transition from i to i +1 by pi41
For ¢ from Ote m — 1
Let & be a minimal length word in state ¢
Forall o € X,0 # pis1
If ug € Fact(pi-jul+1 - - -pom)
Build a new transition from & to ¢ + poccur(ue, pi_juj+1---2m) by o

e s

Figurel. High-level construction algorithm of the Oracle

Definition 1 The factor oracle of o wosd p= pips . . . pm 85 the automaton busld
by the algorithm Build Oracle (figure 1} on the word p, where all the states are
terminal. It is denoted by Oracle(p).

The factor oracle of the word p = abbbaal 19 given as an example figure 2.
On this example, it can be noticed that the word abe is recognized whereas it 18
not a factor of p.

a
e
b a

Figure2. Factor oracle of abbbaal. The word aba is recognizes whereas it is not a
factor.

Note: all the transitions that reach state { of Oracle(p) are labeled by p;.

Lemmma 1 Let w € X* be ¢ minsmal length word among the words recognized in
state 1 of Oracle(p). Then, u € Fact(p) end i = poccur(u, p).

Corollary 1 Let u € X* be ¢ minimoal length word among the words recognized
in state 1 of Oracle(p), ¢ is unique.

We denote min(z) the minimal length word of state <.

Corollary 2 Let i and j be two states of Oracle(p) such as j < 1. Let u = min(3)
end v = min(f), u can not be ¢ suffiz of v.

Lemma 2 Let ¢ be o state of Oracle(p) and v = men(f). v s ¢ suffic of any
word ¢ € X% which is the label of a poth leading from state 0 to state §.

Lemma 3 Let w € Facl(p). w is recognized by Oracle(p) in a state j < poccur{w, p).

Note: In lemma 3, j is rcally less or oqual than poeeur(w,p), and not always
oqual. The example given figure 3 represents the auntomaton Oracle(abbeabe),
and the state rcached after the reading of the word abe i strictly less than
poccur(abe, abbeabe).

-

Figured. Example of a factor {abc) that is not recognized at the end of his first
occurrence but befere.

Corollary 3 Letw € Fuct(p). Fvery word v € Suff(w) &s recognized by Oracle(p)
in ¢ state j < poccur{w).

Lemma 4 Let ¢ be ¢ state of Oracle(p) and v = min(i). Any peth ending by u
leads to a state § > 1.

Lemma § Let w € E* be ¢ word recognized by Oracle(p) in ¢, then any suffic
of w s recognized in o state § <4

The mumber of states of Oracle(p) with p = p1pz...pm I8 m + 1. We now
congider the number of transitions.

Lemma 6 The numberTo, (p) of trensitions in Oracle(p = p1pz . . .pm) satisfies
m<To-(p) <2m — 1.

2.2 On-line algorithm

This section presents an on-line construction of the automaton Oracle(p), that
means a way of building the automaton by reading the letters of p one by one
from left to right.

We denote repet, (£) the longest suffix of pref, (i) that appcars at lcast twice
in pref,, (3).

We define a function &, defined on the states of the automaton, called supply
function, that maps cach state ¢ > 0 of Oracle(p) to state 7 in which the reading
of repet,(¢) ends. We arbitrarily sct Sp(0) = —1.

Notes:

— Sp (1) ia well defined for every state ¢ of Oracle(p) (Corollary 3).
— For any state ¢ of Oracle(p), £ > S (5) (lemma 3).

We denote kg = m, ki = Sp(ki_1) for ¢ > 1. The scquence of the k; is finite,
strictly decreasing and ends in state 0. We denote

CSPZ {kgzm,kl,...,kgzﬂ}
the suffix path of p in Oracle(p).

Lemma 7 Let & > 0 be e state of Orocle(p) such that s = S,(k) #s strictly
positive. We denote wy = repety(k) and w, = repet;(s). Then w, is a suffiz of
Wi .

Corollary 4 Let CSp = [ko, k..., ke = 0} be the suffiz path of p in Oracle(p)
and let w; = repetp (kica) for 1 <<t and wo =p. Then, for 0 < 1 <t, uy s ¢
suffiz of all the w;, 0 < i <1<t

We now consider for a word p = pipz . . .pm and a lctter 6 € 5 the construe-
tion of Oracle(pe) from Oracle(p).

We denote Oracle(p) + ¢ the antomaton Oracle(p) on which a transition by
¢ from statc m to state m+ 1 is added. We alrcady notice that a transition that
exists in Oracle(p) + ¢ also cxists in Oracle(pe), so that the difference between
the two antomata may only rely on transitions by e to atatc v + 1 that have to
be added to Oracle(p) 4+ ¢ in order to get Oracle(po).

We arc Investigating states from which there may be transitions by o to state
m+ 1.

Lemma 8 Let k be ¢ state of Oracle(p) + ¢ such that there is ¢ transition from
k by o tom + 1 in Oracle(pe). Then k hes to be onc of the stetes on the suffic
path CS, = (ko =m, ke, ... ke =0} in Orecle(p) + 0.

Among the states on the suffix path of p, every state that has no transition
by ¢ in Oracle(p) 4+ ¢ must have one in Oracle(pe). More formally, the following
lemma sete this fact.

Lemma 9 Let k1 < m be a state on the suffiz path CS, = (ko =m, k1, ... ks =
0} of state m in Oracle(p = p1pz ... pm) + . If ki docs not have ¢ transition by
o in Oracle(p), then there is o transition by o from ky to m+ 1 in Oracle(pe).

Lemma 10 Let k; < m be a state on the suffie path CS, = (ko =m, ky,.. . by =
0} in Orecle(p = p1ps . .. Pm) + €. If ki has ¢ trensition by o in Oracle(p) + o,
then all the states ki, 0 <1 < also have ¢ trensition by ¢ in Oracle(p) + 0.

The idea of the on-line construction algorithm is the following. According
to the three lemmas 8, 9, 10, to transform Oracle(p) 4 ¢ in Oracle(pe) we only
have to go down the suffix path €S, = (kg = m, k1, ..., k& = 0} of statc m and
while the current state k; docs not have an exiting transition by ¢, a transition
by ¢ to m 4 1 should be added (lemma 9). If & alrcady has one, the process
onds because, according to lemma 10, all the states k; after & on the suffix path
alrcady have a transition by o.

If we only wanted to add a single letter, the preceding algorithm would be
cnough. But, as we want to be able to build the antomaton by adding the letters
of p the one after the other, we have to be able to update the supply function
Spo of the new antomaton Oracle(pe). As (according to the definition of S},
the supply function of states 0 < ¢ < m does not change from Oracle(p) to
Oracle(pe), the only thing to do is to compute Sy, (m + 1). This is done with
the following lemma.

Lemma 11 If there is ¢ state kg which is the greatest clement of CS, = (ko =
m, kq,. ..,k =0} in Orecle(p) such that there is ¢ transition by ¢ from kg to ¢
state s in Orecle(p), then Spo(m+ 1) = s in Oracle(pe). Else Spo = 0.

From these lemmas we can now deduce an algorithm add letter to transform
Oracle(p) in Oracle(pe). It is given figure 4.

Lemma 12 The algorithm add-letter reelly builds Oracle(p = pipz .. . pm0)
from Oracle(p = p1pz .. .pm) ¢nd update the supply function of the new staic
m+ 1 of Orecle(pr).

The complete on-line algorithm to build Oracle(p = p1pz . . . pm) just consits
in adding the letters p; once by onc from left to right. It is given figure 5.

Theorem 1 The algorithm Qracle-on-line{p = p1ps ... pm) builds Orecle(p).

Theorem 2 The complezity of Oracle-online(p = pipz . . .pm} 18 O(m) in time
and th space.

Nole The constants involved in the asymptotic bound of the complexity of the
on-line construction algorithm depend on the implementation and may involve
the size of the alphabet Y. If we implement the transitions in a way that they
are accessible in O(1) (use of tables), then the complexity is O(m) in time
and O(|X|.m) in space. If we implement the transitions in a way that they are
accessible in O(log|X|) (use of scarch trecs), then the complexity is O (fog] X].m)
in time and O(m) in space.

Fonction add letter(Oracle(p = pips-. . p.), o)

Create a new state m + 1

Create a new transition from m to m + 1 labeled by «

k« 5,(m)

While & > —1 and there is no transition from & by ¢ Do
Create a new transition from ktoe m +1 by #
k « Su.(k)

End While

If{(k =—1) Then s + 0

. Else s + where leads the transition from k by .

10. Spc,(m + 1) — 8

11. Return Oracle(p = pips...p..0)

D00 NG ok o

Figure4. Add a letter ¢ to Oracle(p = pip2 ... pn) to get Oracle(ps)

Oracle-on-line(p= pipa ... pwm)

1
2
3
4.
5
6

Create Oracle{c) with:
one single state 0
S(0) + —1
Fori+—1am Do
Oracle(p = p1p2 ... p:) « add_letter(Oracle(p = p1pz ... pi—1).p:)
End For

Figureb. On-line construction algorithm of Oracle(p = pipa. .. p.w)-

o G LT THITP

(a) {b) {c) Add & (d) Add &
Add a
Z)albvzbvsb® Qa(gb?béb()a}
(e) Add b (f) Add a
(D (DL D520
{g) Add a

(-0
() Add b

Figure6. On-line construction of QOracle{abbaba). The dot-lined arrows represent the
supply function.

Ezemple The on-line construction of Oracle(abdbaab) is given figure 6.

3 String matching

The factor oracle of p can be used in the same way as the suffix automaton m
string matching in order to find the occurrences of a word p = p1ps.. .pm In a
text T' = #4315 .. .1, both on an alphabet X

The suffix automaton is used in [14,11] to get an optimal algorithm in the
average called BDM (for Beckward Dawg matching). Its average complexity is in
O(n log) g (m)/m) under a Bernouilli model of probability where all the letters
arc cquiprobable.

The BDM algorithm move a window of size m on the text. For cach new
position of this window, the suffix automaton of p” (the mirror image of p) is
used to scarch for a factor of p from the right to the left of the window.

The basic idea of the BDM 1a that if this backward scarch failed on a letter
o after the reading of a word u then ou is not a factor of p and moving the
beginning of the window just after ¢ 1s sccure. This idea is then refined in the
BDM using some propertics of the suffix antomaton.

Window

(T T T T T I T IT] HEEERERRREN

Search in Oracle

u
[] o]

Search fails in &
New search

(T T T T T I T I T lef TTTT T I T T T] [T[]

Window shift

Window

Figure?7. Shift of the search window after the fail of the search by Oracle(p}. The word
o i3 not a factor of p.

Howcever this idea is enough in order to get an cfficient string matching algo-
rithm. The most amazing is that the strict recognition of the factors (that the
factor and suffix antomata allow) is not necessary. For the algorithm to work,
it 1s cnough to kmow that ue is not a factor of p. The oracle can be used to
1eplace the suffix antomaton as it is illustrated by fignre 7. We call this new
algorithm BOM for Backwerd Oracle Metching. The pscudo-code of BOM is

given figure 3. Its proof is given lemma 13. We make the conjecture (according
to the cxperimental results) that BOM is still optimal in the average.

BOM(P =P - P T= t1t2 ...tﬂ)

1. Pre-processing

2. Construction of the oracle of p”

3. Search

4. pos O

5. While (pos <=n—m) do

6. state + initial state of Oracle(p”)

7. i+ m

8. ‘While state exists do

9. state + image state by T[pos + j] in Oracle(p")
10. jei—1

11. EndWhile

12. I =0do

13. mark an occurrence at pos +1
14. jel

15. EndIf

16. pos < pos +3

17. EndWhile

Figure8. Pseudo-code of BOM algorithm.

Lemma 13 The BOM dlgorithm merks all the occurrences of p in T and only
them.

The worst-case complexity of BOM is O(nm). However, in the average, we
malke the following conjecture based on experimental results (sce 3.2) :

Conjecture 1 Under a model of independance and cquiprobability of letters, the
BOM dlgorithm has en everage complezity of O(nlog g (m)/m).

3.1 A linear algorithm in the worst case

Even if the proceding algorithms arc very officdent in practice, they have a worst-
case complexity in O(mn). There arc several tochniques to make the BDM al-
gorithm (using suffix automaton}) lincar in the worst case, and onc of them can
also be nsed to malke our algorithms lincar in the worst case. It uses the Knuth-
Morris-Pratt (KMP) algorithm to make a forward rcading of some characters in
the text.

To explain the combined use of KMP and (factor or suffix) oracle, we consider
the current position before the scarch with the oracle : a prefix v of the pattern

has alrcady be read with KMP at the beginning of the scarch window and we
start the backward scarch using the oracle from the right end of that current
window. The end position of v in the current window is called eritical position
and is denoted by Critpes. The current position is schematized at figure 9.

Window

Prefix of the pattern Search with oracle

Critical position
Critpos

Figuref. Current position in the linear algorithm using both KMP and (factor or
suffix) oracle.

We usc the scarch with the oracle from right to left from the right end of the
window. We consider two casca whether the eritical position is reached or not.

1. The critical position is not reached. The failure of the recognition of a factor
occurs on character ¢ ag in the gencral approach (figure 7). We shift the
window to the left until its beginning goes past character ¢, We restart a
K MP scarch on this new window rercading the characters already read by the
oracle. This scarch stops in a new current position (with a new corresponding
critical position) when the recognized prefix is small enough (less than am
with 0 < e < 1). The value of « is discussed with the experimental results
(soc soction 3.2), typically e = 1/2. This situation is schematized figure 10.

2. The critical position is reached. We resume the KMP scarch from the critical
position, from the state we were before stopping, rercading at least the char-
acters read by the oracle. We then go on reading the text until the longest
recognized prefix is small cnough (less than «). This situation is schematized
figure 11.

This algorithm can be nsed with a backward scarch domc with the factor
oracle. We call this new algorithm Turbeo-BOM. Concerning the complexity in
the worst casc, we have the following result.

Theorem 3 The algorithm Turbo-BOM is

(i) lincar considering the number of inspections of characters in the teaxt. The
number of these inspections is less than 2n.

{ii} lincar considering the number of comparisons of characters. The number
of these comparisons is less than 2n when the transitions of the oracle are
avaslable in O(1) end less than 2n+-nlog X when the transitions arc available
in log 3.

Window

2

L] | [[o]

Critpos Railure of the search of factors in o.

Window shift Search by KMP algorithm

Window
LTIl]] HEEEEEEEE
¢ : i
End of the search by KMP v Critpos
Back to the current position Window

Figurell. First case : the eritical position is not reached.

Window

il

Critpos

The eritical position is reached

Re-reading by KMP

Window

End of the search with KMP
Back to the current position

v Critpos’

Window

Figurell. Second case : the critical position is reached

3.2 Experimental results

In this section, we present the experimental resmlta obtained. More preciscly, we
compare the following algorithma.

— Sunday: the Sunday algorithm [15] iz often considered as the fastest in

practice,

BM: the Boyer-Moore algorithm [6],

— BDM: the classical Backward Dawg Matching with a suffix automaton [11],

Suff: the Backward Dawg Matching with a suffix automaton but without

testing terminal states, this is cquivalent to the basic approach with the

factor automaton?,

— BOM: the Backward Oracle Matching with the factor oracle,

— BSOM: the Backward Oracle Matching with the suffix oracle. This later
structure is not described in this version of the paper, but can be found in
[1].

— Turbo-BOM: the lincar algorithm using BOM and KMP with o = 1/2.

Our string matching experiments are donc on random texts of size 10 Mb with
an accuracy of + /- 2% with a confidence of 95% (which may require thousands of
iterations) for alphabets of size 2, 4, 16 and 32. The machine used is a PC with a
Pentium IT processor at 350MHz running Linux 2.0.32 operating system. For all
the algorithins, the transitions of the automata are implemented ag tables which
allow O(1) branchs. But it is not realistic (capecially for the euffix automaton)
when the alphabet becomes rather big (for instance for 16 bits character coding).
Morcover, the Sunday algorithm becomes unusable ag it is when the alphabet is
big becanse it mainly uses character table.

Experimental results in string matching are always surprising because codes
arc small and the time taken by a comparison is not much greater than the time
taken by an indice incrementation. It is for instance the recason why Sunday
algorithm (when it is usable) is the fastest algorithm for emall patterns. The
window shift are very small but very fow operations arc neccssary to get this
shift. It is also the reason why BDM is slower than Suff whercas the window
shifts in BSOM and BDM are greater.

The 4 subfigurcs of figure 12 shows that BOM is as fast as Suff (except on
a binary alphabet) which is much more complicated and requires much more
memory.

It is obviously uscless (in the casc of scarchs in texts of characters) to mark
and test terminal states in both suffix antomaton and factor oracle.

2 The suffix automaton without taking in account the terminal states (i.e. considering
every state as terminal} and the factor automaton recognize the same language. The
difference is that the factor autematon is minimal, so its size is smaller or equal
than the size of the suffix automaton. But the difference of size is not significant
in practice, anyway not enough significant to justify the implementation of a factor
automaton which will complicate and slow the preprocessing phase of the string
matching algorithm.

10~ —

T T T S I T T S [S S T S SO BT R

0 S R S R
0 50 100 0 50 100
351 . | ,
N i 1
25 B i
2L]
sk]
1l]
L L L L L L L L L L L] L L L L L L L L L L L 1
0 50 100 0 50 100
BM ©~ Sunday T BDM ----- BSOM
===== BOM e Turbo-BOM ————- Suff

Figurel2. Experimental results in time of the string matching algorithms on random
texts of size 10 Mb on alphabets of size 2, 4, 16 and 32. The X-axis represents the
length of the pattern and the Y-axis the search time in 1/100th seconds per Mbytes

Turbo-BOM algorithm is the slowest but it is the only one that can be used
in rcal time and in that casc ite behavior is rather good. It has to be noticed
that we arbitrarily set the value of o to 1/2. However, according to the testa we
have proceeded for different values of «, it turns out that e« = 1/2 is the more
often the best value and that the variations of scarch times with other values of
o (as far as they stay between (2logp m)/m and (m — 2logp m)/m) arc not
very significant and anyway do not deserve by themsclves an accurate study.

4 Conclusions

The new structure we presented, the fector orecle, allow new string matching
algorithms. These algorithmas are very cfficient in practice, as cfficient as the
onceg which alrcady oxista, but arc far more gimple to implemaent and require
less memory. According to the experimental results, we conjecture that they
arc optimal on the average (under a model of oquiprobability of letters) but it
rcmains to be shown.

About the structure of factor oracle itsclf, many questions stay open. Among
others, it would be intercsting to have a characterization of the langnage recog-
nized by the oracle.

It would also be interesting to have a study of the average number of external
transitions in the oracle. It would give an idca of the awerage memory space
required by the string matching algorithms.

a
..
a a a /N a /g\ a b
122 B3} (4 526)27)2 8) 20
a

b

{(a) Factor oracle

{b} Reduced automaton

Figureld. The factor oracle is not minimal considering the number of transitions
among the automata of m -+ 1 states which recognize at least the factors.

Finally, we notice that the factor oracle is not minimal considering the num-
ber of transitions among the automata of m + 1 states which recognize at least

the factors. An example is given figure 13. This reduced antomaton may also
be nsed in string matching provided that its construction can be done in lincar
time. This conatruction remaina an open problam.

References

1

10.

11.

12.

13.

14.

15.

C. Allauzen, M. Crochemore, and M. Raffinot. Factor cracle, Suffix oracle. Tech-
nical Report 99-08, Institut Caspard-Monge, Université de Marne-la-Valléde, 1999,
http:/ fwww-igm.univ-mlv.fr/ “raffinot /ftp /I GM99-08-english .ps.gz.

C. Allauzen and M. Raffinot. Oracle des facteurs d'un ensemble de mots. Rapport
technique 99-11, Institut Caspard Monge, Université de Marne-la-Vallée, 1999.
http:/ fwww-igm_ univ-mlv.fr/ “raffinot /ftp /[GM99-11.ps.gz.

R. A. Baeza-Yates. Searching subsequences. Theor. Comput. Sei., 78(2):363-376,
1991.

. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas.

The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci.,
40(1):31-55, 1985.

A Blumer, A. Ehrenfeucht, and D). Haussler. Average size of suffix trees and
DAWGCS. Digeret. Appl. Math., 24:37-45, 1989,

R. 5. Boyer and J. 8. Moore. A fast string searching algorithm. Commaun. ACM,
20(10):762-772, 1977.

M. Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63-86,
1886,

M. Crochemore, F. Mignoesi, and A. Restive. Automata and forbidden words.
Information Procesging Letters, 67(3):111-117, 1998.

. M. Crochemore, F. Mignosi, and A. Restivoe. Minimal forbidden words and factor

automata. In L. Brim, J. Gruska, and J. Zlatuka, editors, Mathematical Founda-
tions of Computer Science 1998, number 1450 in LNCS, pages 665-673. Springer-
Verlag, 1998. extended abstract of [8].

M. Crochemore, F. Mignosi, A. Restive, and 8. Salemi. Text compression using
antidictonaries. Rapport [.G .M. 98-10, Université de Marne-la-Vallde, 1998.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
M. Crochemore and R. Vérin. Direct construction of compact directed acyclic word
graphs. In A Apostolico and J. Hein, editors, Combinatorial Pattern Matching,
number 1264 in LNCS, pages 116-129. Springer-Verlag, 1997.

M. Crochemore and R. Vérin. On compact directed acyclic word graphs. In J. My-
cielski, G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer
Science, number 1261 in LNCS, pages 192-211. Springer-Verlag, 1997.
A_Czumaj, M. Crochemore, L. Gasieniec, 8. Jarominek, T'. Lecrog, W. Plandowski,
and W. Rytter. Speeding up two string-matching algorithms. Algorithmica,12:247—
267, 1964,

D. Sunday. A very fast substring search algerithm. CACM, 33(8):132-142, August
1950,

