
Combinatorics on UMFFs

David E. Daykin
Department of Mathematics
University of Reading, UK

Jacqueline W. Daykin
Department of Computer Science

Royal Holloway & King’s College, University of London, UK
J.Daykin@cs.rhul.ac.uk, jwd@dcs.kcl.ac.uk

W. F. (Bill) Smyth
Algorithms Research Group, Department of Computing & Software

McMaster University, Hamilton ON L8S 4K1, Canada
smyth@mcmaster.ca

Digital Ecosystems and Business Intelligence Institute
Curtin University, GPO Box U1987

Perth WA 6845, Australia

December 18, 2008

Abstract

Suppose a set W of strings contains exactly one rotation (cyclic shift)
of every primitive string on some alphabet Σ. Then W is a circ-UMFF iff
every word in Σ+ has a unique maximal factorization over W. The classic
circ-UMFF is the set of Lyndon words based on lexicographic ordering.
Duval designed a linear sequential Lyndon factorization algorithm; a cor-
responding PRAM parallel algorithm was described by J. Daykin, Iliopou-
los and Smyth. Daykin and Daykin defined new circ-UMFFs based on
various methods for totally ordering sets of strings, and further described
the structure of all circ-UMFFs. Here we prove new combinatorial results
for circ-UMFFs, and in particular for the case of Lyndon words. We in-
troduce Acrobat and Flight Deck circ-UMFFs, and describe some of our
results in terms of dictionaries. Applications of circ-UMFFs pertain to
structured methods for concatenating and factoring strings over ordered
alphabets, and those of Lyndon words are wide ranging and multidisci-
plinary.

Keywords: Acrobat, alphabet, circ-UMFF, concatenate, dictionary, factor,

Flight Deck, lexicographic order, Lyndon, maximal, string, total order, UMFF, word

1

1 Introduction

This paper is concerned with concatenating and factoring strings over specified
alphabets. We are interested in analyzing and constructing sets of strings which
are closed under the reciprocal operations of concatenating and factoring. We
consider cases where, given an instance of a string and a set of strings, the
string either belongs to the set or can be factored uniquely into longest strings
belonging to the set. We therefore call these sets Unique Maximal Factorization
Families (UMFFs). In particular, we consider circ-UMFFs — that is, UMFFs
that contain exactly one rotation of every primitive string on the given alphabet.

We believe that the set of Lyndon words was the first example of a circ-
UMFF [CFL-58, L-83] (although Lyndon factorization was originally introduced
for computing free monoids in Lie algebras). However the subsequent impor-
tance of Lyndon factorization is expressed by the wide range of applications.
Lyndon words arise in string theoretic problems involving lexicographic order-
ing such as sorting and searching for substrings, prefixes and suffixes [Du-83],
and computing the canonical form of a circular string [IS-92]. Further, Lyndon
words have arisen in the analysis of African music [C-04], and even cryptanalysis
[P-05]. Naturally then, efficient methods are required for factoring strings, and
both sequential [Du-83, D-08] and CRCW Parallel RAM algorithms [DIS-94]
have been designed for computing Lyndon factorization.

The notion of order is inherent both in the definition of Lyndon words, which
involves lexicographic ordering, and in the concatenation operation. Daykin and
Daykin found additional factorization families each based on methods for totally
ordering sets of strings [DD-03]. They then established fundamental properties,
independent of techniques for ordering strings, related to concatenating and
factoring words in circ-UMFFs [DD-08]. The existence of distinct circ-UMFFs
means that, for example, substrings can be re-factored allowing for string the-
oretic operations on the substrings.

In this paper we establish new combinatorial properties of factorization fam-
ilies, for instance on the ordering of prefixes and suffixes of factors. We show
that maximal factors in a factorization over any UMFF cannot be overlapping.
This observation has impact on the complexity of factorization algorithms, and
arose in the analysis of the parallel Lyndon algorithm of Daykin, Iliopoulos and
Smyth [DIS-94]. We further introduce two classes of circ-UMFF, namely Flight
Deck and Acrobat, reflecting the type of order present amongst the letters or
substrings in the factors of the defining circ-UMFF.

Lexicographic order is also relevant to this paper. We explore the character-
ization by Daykin and Daykin of circ-UMFFs for the particular case of Lyndon
words, for instance showing that any Lyndon word (which is not a letter) can
be partitioned into two ordered Lyndons. We compare the Lyndon circ-UMFF
to the symmetric co-Lyndon circ-UMFF, which is based on a simple modifica-
tion of lexicographic ordering. As all circ-UMFFs are totally ordered sets of
strings, we compare and contrast them to a classically ordered dictionary. In
these dictionaries the ordering of some factors is forced; however we give new
results for other cases where there is a choice of ordering factors. Finally we

2

generalize lexicographic order, from the usual case of ordering words according
to their individual letters to ordering Lyndon factorizations according to their
individual Lyndons.

Our exposition commences by extending existing theory on UMFFs and circ-
UMFFs with some new results in Section 2, which are illustrated for Lyndon
words in Section 3. We propose some new research problems in Section 4.

2 Unique Maximal Factorization Families (UMFFs)

Given an integer n ≥ 1 and a set Σ, x = x[1..n] is a string of length n on Σ
iff for every i ∈ 1..n, x[i] ∈ Σ. We also write n = |x|. Σ is called the alphabet
and Σ+ denotes the set of all strings on Σ. The string of length zero is called
the empty string, denoted ε; we write Σ∗ = Σ+ ∪ {ε}.

A string w is a factor of x[1..n] iff w = x[i..j] for 1 ≤ i ≤ j ≤ n. Note
that a factor is necessarily nonempty. If x = w1w2 · · · wk, 1 ≤ k ≤ n, then
w1w2 · · · wk is said to be a factorization of x; if every factor wj , j ∈ 1..k,
belongs to a set W, then the factorization is denoted FW(x).

Definition 2.1 A subset W ⊆ Σ+ is a factorization family (FF) if and only
if for every nonempty string x on Σ there exists a factorization FW(x).

Observe that every FF must contain Σ; moreover, every subset of Σ+ containing
Σ is an FF.

For some string x and some FF W, suppose x = w1w2 · · ·wk, where wj ∈
W for every j ∈ 1..k. For some k′ ∈ 1..k, write x = uwk′v, where u =
w1w2 · · ·wk′−1 (empty if k′ = 1) and v = wk′+1wk′+2 · · ·wk (empty if k′ =
k). Suppose that there exist no suffix u′ of u and prefix v′′ of v such that
u′wk′v′′ 6= wk′ and u′wk′v′′ ∈ W; then wk′ is said to be a max factor of
x. If every factor wk′ is max, then the factorization FW(x) is itself said to be
max. Observe that a max factorization must be unique: there exists no other
max factorization of x that uses only elements of W.

Definition 2.2 Let W be an FF on an alphabet Σ. Then W is a unique
maximal factorization family (UMFF) if and only if there exists a max
factorization FW(x) for every string x ∈ Σ+.

Observe that Σ is an UMFF, further that the definition of UMFF does not
require that Σ be ordered. The following result is a characterization of UMFFs,
and we introduce a new proof of this lemma here.

Lemma 2.3 (The xyz Lemma [DD-03]) An FF W is an UMFF if and only if
whenever xy, yz ∈ W for some nonempty y, then xyz ∈ W.

Proof. First suppose that W is an UMFF with some xy, yz ∈ W for which
xyz 6∈ W. Consider the factorization of xyz. Since xy ∈ W, there must exist
a factorization xyz = w1w2 · · ·wj , j > 1, where w1 = xyv for some v ∈ Σ∗,
so that |wj | ≤ |z|. Since yz ∈ W, there must also exist a factorization xyz =

3

w′
1w′

2 · · ·w′
k, k > 1, where w′

k = uyz for some u ∈ Σ∗. Since y 6= ε, |wj | ≤
|z| < |yz| ≤ |w′

k|, and so the two factorizations are distinct, contradicting the
uniqueness requirement of Definition 2.2. We conclude that xyz ∈ W.

Next suppose that for some FF W and for all strings x, y 6= ε and z such
that xy,yz ∈ W, it follows that xyz ∈ W. We need to show that the factor-
ization of every string v = v[1..n] is max. Since v[1] ∈ W, there exists some
largest i1 such that w1 = v[1..i1] ∈ W. If i1 = n, the factorization is max.
If not, there exists some largest i2 such that w2 = v[i1+1..i2] ∈ W. Suppose
there exists i < i1 such that x = v[1..i] ∈ W and z = v[i+1..i′2] ∈ W for some
i′2 > i1. Then taking y = v[i+1..i1] and applying the xyz condition, we find
that v[1..i′2] ∈ W, contradicting the maximality of i1. Thus no such i′2 exists,
and w2 is max on the left. If i2 = n, w2 is also max on the right, and so the
factorization is max. If not, we continue left to right across v, at each step
adding factors that are max on the right and using the xyz condition to check
that each factor is also max on the left. After a finite number of steps, this
process yields a max factorization of v, and so W is an UMFF.

It is an immediate consequence of Lemma 2.3 that there can be no over-
lapping factors in a unique maximal factorization of a string. In other words,
if FW(x) = w1w2 · · ·wk, then every element of W is either a factor of some
wi, i ∈ 1..k, or else does not occur at all as a factor of x. We state this more
formally as follows:

Corollary 2.4 Suppose x = u1u2 · · · um and W is an UMFF, where for every
j ∈ 1..m, uj ∈ W. Then FW(x) = w1w2 · · ·wk, where

w1 = uj0+1 · · ·uj1 , w2 = uj1+1 · · ·uj2 , . . . , wk = ujk−1+1 · · ·ujk ,

0 = j0 < j1 < j2 < · · · < jk−1 < jk = m.

Proof. Suppose that for some i ∈ 1..k, wi = ujr+1 · · ·ujr+1
u′

jr+1+1, where
u′

jr+1+1 is a nonempty prefix of ujr+1+1. From Lemma 2.3 it follows that
u′

jr+1+1 = ujr+1+1. Similarly if we suppose wi has a nonempty prefix u′
jr

that is a suffix of ujr .

Clearly this result has implication for the complexity analysis of factorization
algorithms (see for example [DIS-94]).

If x = uv, then vu is said to be a rotation (cyclic shift) of x, specifically
the |u|th rotation R|u|(x) of x, where |u| ∈ 0..|x|. Note that R0(x) = R|x|(x).
A string x is said to be a repetition iff it has a factorization x = uk for some
integer k > 1; otherwise, x is said to be primitive. Observe that every rotation
of a repetition is also a repetition.

4

Definition 2.5 An UMFF W over Σ+ is a circ-UMFF 1 if and only if it
contains exactly one rotation of every primitive string x ∈ Σ+.

If Σ is a totally ordered alphabet then lexicographic ordering (lexorder)
u < v with u, v ∈ Σ+ is defined if and only if either u is a proper prefix of v,
or u = ras, v = rbt for some a, b ∈ Σ such that a < b and for some rst ∈ Σ∗.
We can therefore say that the set of all Lyndon words is a circ-UMFF, where
the rotation chosen from the set of rotations of each primitive string is the
one that is least in the lexorder derived from an ordering of the letters of the
alphabet Σ. (Note that the choices of rotations for the words of length two
for a circ-UMFF in fact induce a total order on a given unordered alphabet,
see [DD-08].) Consider the following selection of Lyndons based on different
orderings of letters in the alphabet.

Example 2.6 Let L denote the Lyndon circ-UMFF, and x = aabac on Σ =
{a, b, c}.
(i) If a is the least letter, then R0(x) = aabac ∈ L.
(ii) If b is the least letter, then R2(x) = bacaa ∈ L.
(iii) If c is the least letter, then R4(x) = caaba ∈ L.

Indeed, we could make use of other consistent rules to select the rotation of
a string to be assigned to a circ-UMFF:

Example 2.7 Suppose that for each primitive x we consider the reversed string

x = x[n]x[n−1] · · ·x[1],

and observe that for every j ∈ 0..n−1, Rj(x) = Rn−j(x). Then choose the
rotation of each x to be y, where y is the least rotation of x.

Referring to Example 2.6, in the case that b is the least letter, the rule in
Example 2.7, with the order for ‘least’ being lexorder, leads to the choice of
R3(x) = acaab for a new circ-UMFF co-Lyndon (co-L). We call the ordering
based on lexorder of reversed strings co-lexorder 2. So for example, over the
Roman alphabet the word google, although not a Lyndon is a co-Lyndon, as it
is least amongst its rotations in co-lexorder.

We now define an order that is specific to each circ-UMFF and determined
only by its particular properties, not necessarily by any ordering of the strings
of Σ+.

Definition 2.8 If a circ-UMFF W contains strings u, v and uv, we say that
u <W v (W-order).

In essence the W-order u <W v ‘means’ that you can concatenate u and
v with respect to W, whereas ≥W ‘means’ that concatenation is not possible
and hence implies factoring. For the Lyndon circ-UMFF, its specific order is
lexorder, as we see by

1circ-UMFFs were originally defined with respect to circulant matrices in [DD-08]; here we
adopt the equivalent terminology of rotations.

2Other definitions exist in the literature.

5

Lemma 2.9 (Duval [Du-83]) Let L be the set of Lyndon words, and suppose
u, v ∈ L. Then uv ∈ L if and only if u comes before v in lexorder.

Interestingly, the analogue of Lemma 2.9 does not hold for every circ-UMFF.
That is, if the elements of Σ∗ are somehow totally ordered under <, it may hap-
pen that for every pair of distinct strings u and v, u < v while v <W u. We
illustrate this phenomenon for the co-Lyndon circ-UMFF co-L. The primitive
words u = cba and v = cbba are clearly co-Lyndons over the Roman alphabet.
Analysis of all the rotations of uv shows that it is co-Lyndon, and by Defini-
tion 2.8 we have u <co-L v. However, v <co-lex u! In other words, W-order
can be defined quite independently of the ordering of the elements of Σ∗.

The following characterization reveals structural properties of circ-UMFFs
that prescribe ordered concatenating and factoring of words. The theorem also
shows that not every rotation of a primitive string can necessarily be chosen to
belong to a circ-UMFF. Recall that a border of a string x is a nonempty prefix
of x that is also a suffix of x.

Theorem 2.10 (DD-08) Let W be a circ-UMFF, and for every positive inte-
ger d let W(d) = {x ∈ W , |x| ≤ d}.
(1) If u ∈ W(d) then u is border-free.
(2) If u, v ∈ W(d) and u 6= v then uv is primitive.
(3) If u, v ∈ W(d) and u 6= v then uv ∈ W or vu ∈ W (but not both).
(4) If u, v ∈ W(d) and uv ∈ W (so u <W v), then <W is a total order of
W(d).
(5) If w ∈ W(d + 1), |w| ≥ 2, then there exist u, v ∈ W(d) with w = uv.

From this theorem we conclude that for arbitrary strings u, v ∈ W, exactly
one of the following is true: u = v, u <W v, v <W u. Also, in Example
2.6, part (1) of this theorem tells us that R1(x) = abaca, with border a, can
never belong to a circ-UMFF, no matter what rule for selection is employed. In
fact we can exclude certain classes of strings from circ-UMFFs (see [DD-08] for
further limiting examples):

Lemma 2.11 Suppose that w is an element of a circ-UMFF W and u is a
nonempty prefix (respectively, suffix) of w. Then for every rotation uj = Rj(u),
j ∈ 0..|u|−1, wuj (respectively, ujw) 6∈ W.

Proof. For prefix u, let w = uv and m = |u|, then observe that

u[1..m]vu[j+1..m]u[1..j]

is always bordered, contradicting Theorem 2.10(1). The proof for suffix u is
analogous.

6

For the remainder of this section we demonstrate various applications of
Theorem 2.10 giving new combinatorial insights into circ-UMFFs.

Lemma 2.12 Given a circ-UMFF W and a string w, |w| ≥ 2, w ∈ W if and
only if w = uv, where u,v ∈ W and u <W v.

Proof. Sufficiency is a consequence of Theorem 2.10(3) and Definition 2.8; ne-
cessity is Theorem 2.10(5).

Then the following result, modified from [DD-08], is easily established, which
generalizes the Lyndon factorization theorem [CFL-58] to circ-UMFFs. Com-
pare Corollary 2.4.

Lemma 2.13 Suppose x = u1u2 · · · um and W is a circ-UMFF, where for
every j ∈ 1..m, uj ∈ W. Then FW(x) = u1u2 · · ·um if and only if u1 ≥W
u2 ≥W ... ≥W um.

Using Lyndon factorization as an example, we give a sense of the variation in
ordering that may occur in circ-UMFFs, even though some ordering is prescribed
by Lemma 2.3 and Theorem 2.10.

Lemma 2.14 Let W be a circ-UMFF with xy, yz ∈ W for nonempty x,y, z
(hence x 6= z). Then xyz ∈ W, xyyz ∈ W, and
(1) xy <W xyz <W yz;
(2) xy <W xyyz <W yz;
(3) either xyyzxyz ∈ W or xyzxyyz ∈ W (but not both).

Proof. An application of Lemma 2.3 and Theorem 2.10(1),(2), and (3).

We show next that the case xyyz <W xyz of Lemma 2.14(3) occurs for the
Lyndon circ-UMFF based on lexicographic ordering.

Lemma 2.15 Let L be the Lyndon circ-UMFF with xy,yz ∈ L for nonempty
x,y, z. Then xy <L xyyz <L xyz <L yz.

Proof. In view of Lemma 2.14, we need only verify that xyyz <L xyz. Since
in this case the order <L is lexorder, we may ignore the common prefix xy and
consider only whether yz <L z. But this follows from the fact that yz ∈ L and
so must be less in lexorder than its every proper suffix [Du-83, Proposition 1.2],
in particular z.

7

An analogous argument to the above shows that in the co-Lyndon circ-
UMFF co-L, we have xy <co-L xyz <co-L xyyz <co-L yz.

The next result shows that a “Lyndon-like” property, uv <W v, holds when-
ever both uv,v ∈ W:

Lemma 2.16 Suppose that w is an element of a circ-UMFF W. For every
proper prefix u of w such that u ∈ W and every proper suffix v of w such that
v ∈ W, u <W w <W v.

Proof. Since by Theorem 2.10(1),(3) neither of the bordered strings wu and
vw can be an element of W, it follows from Definition 2.8 and Theorem 2.10(4)
that u <W w <W v.

In particular, this result tells us that if w = w[1..n] ∈ W, n ≥ 2, then
w[1] <W w <W w[n]. Conversely, if w[n] <W w[1] or w[n] = w[1], w 6∈ W.
The following is an immediate consequence of Lemma 2.16:

Lemma 2.17 [DD-08] Suppose that w is an element of a circ-UMFF W. If
u1, u2, . . . , uk1 are all the proper prefixes of w in increasing order of length that
belong to W, and if v1, v2, . . . , vk2 are all the proper suffixes of w in decreasing
order of length that belong to W, then

u1 <W u2 <W · · · <W uk1 <W w <W v1 <W v2 <W · · · <W vk2 .

Recall that for the Lyndon circ-UMFF L, this lemma holds more generally
for every prefix or suffix of w ∈ L, whether themselves in L or not [Du-83]. The
next lemma shows that if u <W v, then u is less in W-order than any right
extension of v that is also in W:

Lemma 2.18 Suppose u ∈ W and v ∈ W, where W is a circ-UMFF. If u <W
v, then for every string w such that vw ∈ W, u <W vw.

Proof. Observe first that if u = vw, then by Lemma 2.16 v <W v, a contradic-
tion. Thus u 6= vw, so that by Lemma 2.10(3) either uvw or vwu is in W. If
vwu ∈ W, Lemma 2.16 implies v <W u, a contradiction. Thus u <W vw, as
required.

We can generate certain types of new factors in a circ-UMFF from repetitions
of given factors:

Lemma 2.19 (DD-08) Let W be a circ-UMFF. If u1, u2, ..., um ∈ W with
u1 <W u2 <W ... <W um and m ≥ 2, and if k1, k2, ..., km > 0 are integers,
then u1

k1u2
k2 ...um

km ∈ W.

8

Further, we can generate subsequences from given circ-UMFF factors (we
include a simple inductive proof for the case of letters):

Lemma 2.20 Suppose a circ-UMFF W contains strings ui, i = 1, 2, . . . ,m,
satisfying

u1 <W u2 <W · · · <W um

in W-order. Then for r ∈ 1..m such that 1 ≤ i1 < i2 < · · · < ir ≤ m,

wr = ui1ui2 · · ·uir
∈ W.

Proof. Assume all ui are letters. For r = 1, the result is trivial. For r = 2,
it follows from Definition 2.8 of W-order. For some r ∈ 3..m, consider wr =
λi1λi2 · · ·λir

and let y = λi2λi3 · · ·λir−1 . If we suppose the lemma holds for r−1,
it follows that both λi1y and yλir are elements of W. But then by Lemma 2.3,
wr ∈ W. Thus for r ∈ 3..m, the result follows by induction.

Applying Lemma 2.19 and Definition 2.8 to a new subsequence then yields circ-
UMFF factors of the form uk1

i1
uk2

i2
· · ·ukr

ir
, and so on.

Taken together with Definition 2.8 and Lemma 2.16, Lemma 2.20 enables us
to order some collections of strings: for r ∈ 1..|Σ| such that 1 ≤ i1 < i2 < · · · <
ir ≤ |Σ|,

λi1 <W λi1λi2 <W · · · <W λi1λi2 · · ·λir .

Note however that the usual lexicographic or positional property of order —
that i1 < i2 < i3 ⇒ i1i2 < i1i3 — does not necessarily hold for circ-UMFFs.
For example, on the binary alphabet {0, 1}, 0 <W 1, even though it follows from
the above lemmas that for every circ-UMFF, 0 <W 011 <W 1, it may also be
true that 010011 ∈ W — in other words, that 01 <W 0011.

We go on to explore “dictionary” type properties of circ-UMFFs, showing
that some orders of concatenations are predetermined.

Lemma 2.21 Suppose W is a circ-UMFF defined on Σ = {λ1, λ2,}, with
u ∈ Σ+.
(1) If u ∈ W and λi <W u then λi <W λiu.
(2) If u ∈ W and u <W λi then uλi <W λi.
(3) If u ∈ W and λi <W λj, and λj <W u then λi <W λju.
(4) If λiu ∈ W then λi <W λiu.
(5) If λi <W λj and λju ∈ W then λi <W λju.

Proof. (1),(2),(3) are derived from Definition 2.8 and Theorem 2.10, (4) is a
special case of Lemma 2.17, (5) a special case of Lemma 2.18.

9

By contrast, choice for concatenation arises in certain contexts. For instance,
even if λi <W λj as above, then for some non-empty u, it is possible that either
λiu <W λj or λj <W λiu in W; if we choose the former we get:

Lemma 2.22 Suppose W is a circ-UMFF over Σ = {λ1, λ2,}, with λi <W
λj. Suppose u, v ∈ Σ∗ and λiu, λjv ∈ W. If λiu <W λj, then λiu <W λjv.

Proof. From λi <W λj we have that λiu and λjv are distinct. Then applying
Theorem 2.10(3) to λiu and λjv, suppose that λjvλiu ∈ W. Applying Lemma
2.3 to λjvλiu and λiuλj yields the bordered string λjvλiuλj ∈ W, a contra-
diction. Thus λiuλjv ∈ W, and the result follows.

However, had we instead chosen λj <W λiu, we could have gone on to pos-
sibly choose either λjv <W λiu or λiu <W λjv in W, and so on.

We now classify circ-UMFFs into type Flight Deck or type Acrobat according
to certain W-order properties as follows:

Definition 2.23 A circ-UMFFW is said to be Type Flight Deck iff w[1...n] ∈
W with length at least two implies that for every i ∈ 2..n, w[1] ≤W w[i].

Definition 2.24 A circ-UMFF W is said to be Type Acrobat iff it contains
elements uv1, w and uv2, nonempty u not a prefix of w, such that

uv1 <W w <W uv2.

Suppose Σ = {a <W b <W c <W d} for some W-order. Then an example of
an element chosen for a Flight Deck circ-UMFF over Σ is given by λiu = ac and
λjv = bd, so that λiuλjv = acbd. Whereas with λjvλiu = bdac, although the
first letter is (always) less than the last, here the internal letter a is less than
the first letter b. Instances of circ-UMFFs satisfying the Flight Deck condition
include: all binary circ-UMFFs (if any word starts with 0, then they all start 0
and end 1 and there are no other letters to consider in the alphabet), and the
Lyndon circ-UMFF (no rotation, hence letter can be lexicographically less than
the first letter). To show that the co-Lyndon circ-UMFF cannot be type Flight
Deck, consider the alphabet of integers {1 < 2 < 3 < ...}, then the W-order
(co-lexorder co-L) is {1 >co-L 2 >co-L 3 >co-L ...} and while 321 and 231 are
both co-Lyndons, the latter word 231 does not satisfy the Flight Deck condition
since the second letter is less than the first in W-order.

Lemma 2.25 Suppose W is a Flight Deck circ-UMFF over Σ and the letter
µ ∈ Σ. Suppose w ∈ W with length at least 2, and w includes the letter λ at
least once.
(1) If w[1] = λ, then λw ∈ W; otherwise, wλ ∈ W.
(2) If w[1] ≥W µ, then µw ∈ W; otherwise, wµ ∈ W.

10

Proof. In either case, since λ, µ ∈ W and λ, µ 6= w we can apply Theorem
2.10(3). (1) is then a consequence of Theorem 2.10(1) and the definition of
Flight Deck; (2) follows similarly.

With reference again to Duval’s observation that Lemma 2.17 holds for any
prefix or suffix of Lyndons, we now compare W-order of suffixes for the two
types of circ-UMFFs, namely Flight Deck and Acrobat.

Lemma 2.26 Suppose that w = uv is an element of a circ-UMFF W, u and
v nonempty. Then either wv ∈ W or else there exist v2 ∈ W and nonempty
v1 such that v = v1v2 and v2wv1 ∈ W; in the latter case W is Type Acrobat.

Proof. If v ∈ W, then since v and w are distinct, applying Theorem 2.10(3)
either wv or vw is an element of W; since vw is bordered, it follows from
Theorem 2.10(1) that vw 6∈ W, thus that wv ∈ W. Furthermore, if w satisfies
the Flight Deck condition, then clearly so does wv. Hence we suppose that
neither v nor wv is an element of W.

Since wv 6∈ W, then by Definition 2.5, if wv is primitive then some rotation
of wv must be in W. So first we establish that wv is primitive and then we
choose a rotation for W.

Suppose that wv is periodic of period p < |wv|. Therefore wv = trt∗ where
|t| = p, r ≥ 1, t∗ is a proper prefix of t (t∗ = ε implies r > 1).
(i) Suppose p ≤ |v|. Then r ≥ 2 and w is periodic of period p, a contradiction.
(ii) Suppose p > |v|. If r = 1, then wv = uv2 has a border of length p

′
> 0. If

p
′ ≤ |v|, then w = uv also has a border of length p

′
, a contradiction. If p

′
> |v|,

then w = uv has a border of length p
′−|v|, also a contradiction. Suppose r > 1.

Then p < |w|, so that w has period p, hence a border, a contradiction.
We conclude that wv is primitive, and proceed to choose a rotation for W.

First suppose that the rotation w = u2v2u1 ∈ W for nonempty u1, u2

such that u = u1u2. But then applying Lemma 2.3 to xy = w and yz =
u1u2v implies that the bordered word u2v2u1u2v ∈ W, contradicting The-
orem 2.10(1). Suppose then that the rotation w = v2vuv1 ∈ W. Similarly
applying Lemma 2.3 to xy = uv1v2 and yz = w implies that the bordered
word uv1v2vuv1 ∈ W, again a contradiction. Likewise, the rotations w = vvu
and w = vuv cannot belong to W.

Thus we need only consider whether rotations of the form v2uvv1 ∈ W.
Suppose so. Then by Theorem 2.10(5) we can split v2uvv1 into a pair of
ordered factors, both of them in W:

∗ Suppose v2u1 ∈ W, u2vv1 ∈ W for some nonempty u1. But then apply-
ing Lemma 2.3 to uv = u1u2v1v2 and v2u1, we find that the bordered
word u1u2v1v2u1 ∈ W, a contradiction.

∗ Suppose v2uv′ ∈ W, v′′v1 ∈ W for some nonempty v′ such that v =
v′v′′. (Assume v′′ is nonempty for otherwise v2uv′ is bordered.) But

11

then applying Lemma 2.3 to v2uv′ and uv = uv′v′′, we find that the
bordered word v2uv ∈ W, again a contradiction.

Thus the factorization of v2uvv1 may take the form v2 ∈ W, uvv1 ∈ W, where
v2 <W uvv1. In which case we have distinct uv and v2 both belonging to W,
and so applying Theorem 2.10(3),(1) we know v2uv 6∈ W. Hence, also applying
Theorem 2.10(4) we deduce that

uv <W v2 <W uvv1,

so thatW is Type Acrobat. Furthermore, since we have assumed that v2uvv1 ∈
W, similarly applying Theorem 2.10 to all these distinct factors we see that

uv <W v2 <W v2uvv1 <W uvv1,

so
uvv2 <W v2uvv1 <W uvv1

again demonstrating that W is Type Acrobat.
(Note that with the remaining cases of splitting v2uvv1 through v2 or v1 sim-
ilarly yields a further Acrobat instance for the v2 case.)

3 The Lyndon Dictionary

Here we illustrate parts (1)–(5) of Theorem 2.10 for the case that W is the
Lyndon circ-UMFF L, so that UMFF L-order is lexicographic: thus for brevity
we write < instead of <L. Assume u, v, w ∈ L are distinct non-empty Lyndon
words:

(1) It is well known [Du-83] that Lyndon words are border-free.

(2) If uv ∈ L is not primitive, then at least one of u,v is bordered, hence not
in L.

(3) For u < v Duval [Du-83] shows that uv ∈ L. Since uv is a lexicographi-
cally least rotation, therefore vu 6∈ L.

(4) Assume u < v and v < w. Then uv and vw are both Lyndon. If
the order is not total, so that w < u, then wu ∈ L. If now we apply
Lemma 2.3 to uv and vw, we find that uvw ∈ L, and similarly applying
Lemma 2.3 to vw and wu, implies that vwu ∈ L. Since uvw is Lyndon,
the rotation vwu cannot be. Thus u < w and u < v < w.

(5) Suppose w = w[1..n] ∈ L, n ≥ 2. We want to show that we can always
partition w = uv such that u,v ∈ L. Applying Lemma 2.16 we can write
w = λhyµk, where w[1] = λ < µ = w[n], the positive integers h and
k are both maximal (w[h+1] 6= λ and w[k−1] 6= µ), and y is possibly

12

empty. Let r be the position of the rightmost occurrence of λ in w. If
r = 1, choose u = w[1..n − 1],v = w[n]. If r > 1, look for the rightmost
position s < r such that w[s] > w[r] = λ. If there is no such s, choose
u = w[1], v = w[2..n]; otherwise, choose u = w[1..s], v = w[s+1..n] =
λr−sw[r+1..n].

Since by (4) the infinite set of all Lyndon words over an arbitrary alphabet
is totally ordered in lexorder, it may be considered to be a “dictionary”. Recall
that the Lyndon circ-UMFF is of type Flight Deck (see Section 2). Then we
compare a Lyndon dictionary, over the ordered Roman alphabet, to the usual
English dictionary with the following example.

Example 3.1 The words fowl, growl, howl, owl, scowl and trowel all occur in
the English dictionary in alphabetical, or lexicographic order, whereas they do
not all occur in the Lyndon dictionary:
(i) fowl, growl, howl are Lyndon,
(ii) owl is co-Lyndon,
(iii) scowl, trowel are neither Lyndon nor co-Lyndon.

Let Σ∗L denote the lexicographic ordering of Σ∗, then the Lyndon total order
is a sub-order of Σ∗L.

We now consider the partition of the Lyndon circ-UMFF into those words
which are the unique concatenation of exactly two smaller non-overlapping
Lyndon words, and those words which do contain overlapping Lyndons as in
Lemma 2.3. For example, over the ordered Roman alphabet, the Lyndon word
abac contains the unique pair of Lyndons ab and ac. Similarly ababababc and
abbbbbbbbbbbb both comprise unique concatenations, whereas the Lyndon word
abcdefg contains many overlapping Lyndons such as abcde and bcdefg.

Lemma 3.2 Suppose that u = u[1..m], v[1..n], and w = uv are Lyndon words.
Suppose further that for every w = u′v′, u′ 6= u and u′, v′ both nonempty,
at least one of u′, v′ is non-Lyndon. Then w must take one of the following
forms:

(1) If n = 1, then w = µu[2..m]λ, where the letters µ and λ satisfy µ < λ ≤
u[i], for every i ∈ 2..m.

(2) if n > 1, then w = uku1λ, where k is a positive integer, u1 a possibly
empty proper prefix of u, and the letter λ > u[|u1|+1];

Proof. Suppose n = 1 and let µ = u[1], λ = v. Since uv ∈ L, applying Lemma
2.16 we have µ < λ, and so if m = 1, (1) is proved. For m > 1, since µ ∈ L we
have u[2..m]λ /∈ L. For m = 2, λ ≤ u[2], thus establishing (1). For m > 2, since
µ < λ ≤ u[2], it follows that u[1..2] ∈ L, hence that u[3..m]λ /∈ L. Similarly,
for m = 3, λ ≤ u[3], again establishing (1). Continuing this analysis yields (1)
for all finite m.

13

Suppose n > 1, and let λ = v[n]. Since uv ∈ L, by Lemma 2.16 we have
λ > u[1]. Further, since λ ∈ L then uv[1..n−1] /∈ L. From these we deduce
that u = v[i] for i ∈ 1..n− 1, and (2) holds when m = 1. Suppose m ≥ 1, then
using λ ∈ L, uv[1..n−1] /∈ L and u ∈ L we deduce that v[1] ≤ u[1]. However,
uv ∈ L implies u[1] ≤ v[1], and so v[1] = u[1]. Since λ > u[1] this establishes
(2) for m = 1 and n = 2; since v[1] = u[1] then applying Theorem 2.10(1) to
uv we have λ > u[2] which establishes (2) for m > 1 and n = 2.
For m > 1 and n > 2, it is required that uu[1]v[2..n−1] /∈ L. Thus v[2] ≤ u[2],
while uv ∈ L implies v[2] ≥ u[2], so that v[2] = u[2]. Applying Theorem
2.10(1) to uv we have λ > u[3] establishing (2) for n = 3. (Note that if m = 1
and n > 2, then w = um+n−1λ.)
Proceeding with this analysis yields (2) for all finite m and n > 1.

We conclude by generalizing the lexicographic order < of strings (defined
in Section 2) to the lexicographic order ¿ of Lyndon factorizations of strings.
Suppose two strings u and v happen to be equal, then obviously so are their
Lyndon factorizations, that is u = v ⇐⇒ FL(u) = FL(v). If u < v, then recall
that in lexorder there are two cases: u could be a proper prefix of v (u <pref v),
or u is not a prefix of v and there is a first difference occuring between letters
in u and v (u <diff v). We now define lexorder ¿ of factorizations.

Definition 3.3 Let u, v ∈ Σ+ with respective Lyndon factorizations FL(u) =
u1u2...ur and FL(v) = v1v2...vs. Then
(i) FL(u) ¿pref FL(v) means that ui = vi for 0 ≤ i < r
and (ui+1ui+2...ur) <pref vi+1.
(ii) FL(u) ¿diff FL(v) means that there is a t in 1 ≤ t ≤ r, s and ui = vi for
0 ≤ i < t and ut <diff vt.

We can then relate the lexorder < of distinct strings to the lexorder ¿ of
their factorizations.

Lemma 3.4 Let u, v ∈ Σ+ where u < v in lexorder, with respective Lyndon
factorizations FL(u), FL(v). Then
(i) u <pref v if and only if FL(u) ¿pref FL(v),
(ii) u <diff v if and only if FL(u) ¿diff FL(v).

Proof.
In both cases necessity is by definition of the lexorder ¿ of factorizations, and
sufficiency is by definition of the lexorder < of strings.

14

4 Problems

Consider the well known sequence of Fibonacci strings (see [IMS-98]), where
words with greater than unit length are the concatenation of the previous two:
b, a, ab, aba, abaab, abaababa, A simple application (although not unique)
of Lemma 2.3 to the pair of words aba, abaab falsely implies that the word
ababaab is Fibonacci. Thus Fibonacci words do not yield unique factorization,
and in fact there are many ways to factorize the word ababaab into Fibonacci
words: (ab)(aba)(ab), and (ab)(abaab), also (ab)(ab)(a)(a)(b), etcetera.

In the quest for more examples and properties of factorization families, we
propose the following lines of enquiry:

1) Commencing with the study of border-free UMFFs, characterize all UMFFs.
2) Apply the inherent construction of Theorem 2.10 to design algorithms both
for constructing all circ-UMFFs, and all binary circ-UMFFs.
3) Design generic algorithms for factoring strings over general, Flight Deck and
Acrobat circ-UMFFs.
4) Establish whether or not all circ-UMFFs are isomorphic.
5) Given a string u, determine the circ-UMFF(s) which factors u into the max-
imal or minimal number of factors. So for example, if λ ∈ Σ then the rep-
etition λk has k factors over any circ-UMFF. However, the string dcba over
{a < b < c < d} can be factored into one co-Lyndon or four Lyndon words.

References

[C-04] M. Chemillier, Periodic musical sequences and Lyndon words,
Journal Soft Computing - A Fusion of Foundations, Methodolo-
gies and Applications, Springer, ISSN 1432-7643 (Print) 1433-
7479 (Online), Issue Volume 8, Number 9 / September, 2004.

[CFL-58] K.T. Chen, R.H. Fox and R.C. Lyndon, Free differential calculus,
IV, Ann. Math. 68 (1958) 81-95.

[D-08] D.E. Daykin, A 2n algorithm factors an n-string into Lyndon
words, to appear in J. of Discrete Algorithms.

[DD-03] D. E. Daykin and J. W. Daykin, Lyndon-like and V-order factor-
izations of strings, J. of Discrete Algorithms 1 (2003) 357-365.

[DD-08] D. E. Daykin and J. W. Daykin, Properties and construction of
unique maximal factorization families for strings, International
Journal of the Foundations of Computer Science Vol. 19, No. 4
(2008) 1073-1084.

[DIS-94] J.W. Daykin, C.S. Iliopoulos and W.F. Smyth, Parallel RAM al-
gorithms for factorizing words, Theoret. Comp. Sci. 127 (1994)
53-67.

15

[Du-83] J.P. Duval, Factorizing words over an ordered alphabet, J. Algo-
rithms 4 (1983) 363-381.

[IMS-98] C. S. Iliopoulos, D. Moore and W. F. Smyth, The covers of a circu-
lar Fibonacci string, J. Combinatorial Math. and Combinatorial
Computing 26 (1998) 227-236.

[IS-92] C.S. Iliopoulos and W.F. Smyth, Optimal algorithms for comput-
ing the canonical form of a circular string, Theoretic. Comput.
92(1)(1992)87-105.

[L-83] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading,
MA, 1983; 2nd Edition, Cambridge University Press, Cambridge,
1997.

[P-05] L. Perret, A Chosen Ciphertext Attack on a Public Key Cryp-
tosystem Based on Lyndon Words, Proceedings of International
Workshop on Coding and Cryptography (WCC 2005), (January
2005) 235-244.

[S-03] Bill Smyth, Computing patterns in strings, Pearson (2003).

16

