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Abstract

A musical rhythm pattern is a sequence of note onsets. We consider repeating rhythm patterns, called
rhythm cycles. Many typical rhythm cycles from Africa are asymmetric, meaning that they cannot be
broken into two parts of equal duration. More precisely: if a rhythm cycle has a period of 2n beats, it
is asymmetric if positions x and x + n do not both contain a note onset. We ask the questions (1) How
many asymmetric rhythm cycles of period 2n are there? (2) Of these, how many have exactly r notes?
We use Burnside’s Lemma to count these rhythms. Our methods can also answer analogous questions
involving division of rhythm cycles of length �n into � equal parts. Asymmetric rhythms may be used to
construct rhythmic tiling canons, in the sense of Andreatta (2003).

1. Rhythm Patterns, Rhythm Cycles, and Asymmetry

Anyone who listens to rock music is familiar with the repeated drumbeat—ONE, two, THREE, four—
based on a 4/4 measure. Fifteen minutes listening to a Top 40 radio station is evidence enough that most rock
music has this basic beat, or its cousin: one, TWO, three, FOUR. But if we turn the radio dial, and if we’re
lucky enough to live near immigrant communities, we may hear popular music with different characteristic
rhythms: Latin, African, Indian—and even Macedonian. Although much of this music still is based on the
4/4 measure, some instruments play repeated patterns that do not synchronize with the “ONE, two, THREE,
four” beat, creating an exciting tension between different components of the rhythm section. This article is
concerned with classifying and counting rhythms that, even when shifted, cannot be synchronized with the
division of a measure into two parts. In addition, we will discuss rhythms that cannot be aligned with other
even divisions of the measure. Our result has a surprising application to rhythmic canons.

1.1. Rhythm patterns and cycles. A rhythm pattern is a sequence of note onsets. We will assume there
is some basic, invariant unit pulse that cannot be divided; that is, every note onset occurs at the beginning of
some pulse. We identify two rhythm patterns if they have the same sequence of onsets. For example,

�� �� � and �� � � �� � � �� � are equivalent.

Here, we consider only periodic rhythm patterns. In this case, it is natural to deem two rhythms equivalent
if one is a shift of the other. For example,

|: �� � � �� � � �� � :| is equivalent to |: � �� � � �� � � �� :|

We call the equivalence classes rhythm cycles. We will sometimes call one period of the cycle a measure.



1.2. Asymmetry. Many rhythm cycles from Africa, Latin America, and Eastern Europe are
asymmetric—that is, they cannot be broken into two parts of equal duration, where each part starts with
a note onset. Asymmetric rhythm cycles are, in a sense, maximally syncopated: although they live in a
world in which measures are naturally divided in half, they cannot be delayed so that note onsets coincide
with both the beginning and midpoint of a measure. Asymmetric rhythms are always a little out of sync with
our expectations.

1.3. Notation. Here are five different notations for the same rhythm cycle.

standard |: �� �� � :| or |: �� � � �� � � �� � :|
drum tablature |: x..x..x. :|

binary . . .10010010. . .

binary
necklace

The first line shows the standard Western musical notation. Since only note onsets, not durations, matter,
we can represent the same pattern using x’s for note onsets and .’s for rests—we’ll call this system drum
tablature. Binary notation replaces the x’s by 1’s and the .’s by 0’s. Repeat signs (“|:” and “:|”) are used
to bracket cycles. An especially suggestive notation is the representation of rhythm cycles as necklaces of
black and white beads, with black beads corresponding to note onsets and white ones to rests. In this case,
the cyclic shift becomes a rotation. There is extensive literature on such binary necklaces, to which our
results contribute.

2. Rhythms as Functions

We will now translate into mathematical terms. A rhythm pattern can be represented as a function
f : Z → {0, 1}, where f(x) = 1 if there is a note onset on pulse x and f(x) = 0 otherwise. The
function f represents a periodic rhythm of period p if f(x) = f(x + p) for all x ∈ Z; thus, f can be
identified with a function with domain Z/pZ or Z p. A rhythm cycle is defined to be an equivalence class of
p-periodic functions modulo the shift (s · f)(x) = f(x − 1).

Finally, we want to consider not all rhythm patterns but only the asymmetric ones. The notion of an
asymmetric rhythm pattern makes sense only if the period is even. We say that a rhythm pattern of period
p = 2n is asymmetric mod 2n if when a note onset occurs at beat x, no onset occurs at beat x + n. That is,
f(x) = 1 only if f(x+n) = 0. In total, there are 3n asymmetric rhythm patterns. Indeed, if we partition the
elements of Z2n into n pairs {{0, n}, {1, n+1}, . . .{n−1, 2n−1}}, then constructing a function f ∈ S 2n

corresponds to choosing, for each pair, one of the following three possibilities:

Choice 1. f = 0 for both members of the pair.
Choice 2. f = 1 for the first element and f = 0 for the second element.
Choice 3. f = 0 for the first element and f = 1 for the second element.

We count the total number of asymmetric rhythm cycles of period 2n by starting with the set S 2n of all
3n asymmetric rhythm patterns of period 2n,

S2n = {f : Z2n → {0, 1} | f(x) = 1 ⇒ f(x + n) = 0},

and counting the number of equivalence classes modulo the shift. Similarly, we count the number of r-note
asymmetric rhythms of period 2n by starting with the subset S r

2n of r-note asymmetric rhythm patterns of
period 2n,

Sr
2n = {f ∈ S2n | the number of x such that f(x) = 1 is r },



and counting equivalence classes modulo cyclic shift.

In both cases, the equivalence classes are orbits induced by a group action. 1 For rhythm cycles, the
group is Z2n, and element m ∈ Z2n acts on a cycle by shifting it through m positions. On the level of
functions: for f ∈ S2n (respectively f ∈ Sr

2n), the function m ·f is given by (m ·f)(x) = f(x−m), where
addition is modulo 2n. Because the equivalence classes are orbits, we can apply Burnside’s Lemma. The
statement of this lemma is as follows; for a proof, see [3].

Burnside’s Lemma 1 Let a finite group G act on a finite set S; for each β ∈ G, define fix(β) to be the
number of elements s ∈ S such that β · s = s. Then the number of orbits that G induces on S is given by

1
|G|

∑
β∈G

fix(β).

3. The Total Number of Asymmetric Rhythm Cycles

Theorem 1 The number of asymmetric rhythm cycles of period 2n is given by

1
2n

[ ∑
d|n

φ(2d) +
∑
d|n

d odd

3n/dφ(d)

]
,

where φ(d) is the number of integers 1 ≤ x ≤ d such that x is relatively prime to d.

Proof. With the group Z2n acting on the set S2n, the number of orbits (i.e. cycles) is
(1/2n)

∑
β∈Z2n

fix(β) by Burnside’s Lemma. We need to determine fix(β). For each divisor d of 2n,
we will find the elements β of order d and determine fix(β), which will depend only on d. Pick a di-
visor d of 2n, and let k = 2n/d. The elements of order d in Z2n are the elements of Z2n that gener-
ate kZ/2nZ � Zd,—that is, the subgroup of multiples of k mod 2n. These are the elements β = kj,
where 1 ≤ j ≤ d and gcd(j, d) = 1, so there are φ(d) of them. Moreover, for each β of order d,
β · f = f if and only if f(x + k) = f(x) for all x; that is, fix(β) is the number of k-periodic functions
in S2n.

Two cases arise: either k divides n (in which case d is even); or k does not divide n (in which case d is
an odd divisor of n and k is even).

Case 1. If k divides n and β · f = f , then for each x in Z2n, f(x) = f(x + k) which implies f(x) =
f(x+n) = 0—that is, f(x) ≡ 0. Thus, in this case, only the function f(x) ≡ 0 is fixed by β, so fix(β) = 1.

Case 2. If k does not divide n, then 0 �≡ n mod k, but 0 ≡ 2n mod k because k divides 2n. This implies
that n ≡ k/2 mod k.

Now, if f is k-periodic, then f is determined by its values on the subset {0, 1, . . .k − 1} of Z 2n. If we
partition this subset into k/2 pairs {{0, k/2}, . . . , {k/2−1, k−1}}, then constructing a k-periodic function
f ∈ S2n corresponds to making one of the same three choices listed above for each of these pairs. Thus

1Recall: if group G acts on set S and s ∈ S, the orbit of s is the set {g · s | g ∈ G}.



fix(β) = 3k/2 = 3n/d. Putting together the two cases now yields the result:

1
2n

∑
β∈Z2n

fix(β) =
1
2n

[ ∑
d|2n

d even

φ(d) · 1 +
∑
d|n

d odd

φ(d) · 3n/d
]

=
1
2n

[ ∑
d|n

φ(2d) +
∑
d|n

d odd

3n/dφ(d)
]
.

�

4. The Number of r–beat Asymmetric Rhythm Cycles

The argument here is analogous to that in the previous section; we let Z 2n act on Sr
2n, and we count the

orbits. In the (exceptional) case r = 0, there is obviously one asymmetric cycle; below, we restrict our
attention to r ≥ 1.

Theorem 2 For any 1 ≤ r ≤ n, the number of asymmetric r–beat rhythm cycles is given by

1
2n

∑
d| gcd(n,r)

d odd

φ(d)

(
n/d

r/d

)
2r/d. (†)

Proof. In outline, the proof is similar to that of Theorem 1. As in that proof: choose a divisor d of 2n;
put k = 2n/d; and let β ∈ Z2n be of order d. For any f ∈ Sr

2n, as before, β · f = f if and only if f is
k-periodic. In the present context, though, there are three cases, not two:

Case 1. k divides n;
Case 2. k does not divide n and d does not divide r;
Case 3. k does not divide n and d divides r.

Case 1. If k divides n and β · f = f , then for each x in Z2n, f(x) = f(x + k), which implies f(x) =
f(x+n), so f(x) = 0 for all x. However, since r ≥ 1, the zero function is not in S r

2n. In Case 1, fix(β) = 0.

Case 2. In order for f ∈ Sr
2n to be k-periodic, the number of elements x such that f(x) = 1 would have to

be a multiple of d. But r is not a multiple of d; so in Case 2 also, fix(β) = 0.

Case 3. If k does not divide n and d divides r, then the asymmetry condition again implies that each f ∈ S 2n

fixed by β is constructed by making the same three choices on the pairs {0, k/2} . . .{k/2 − 1, k − 1}, but
in order to ensure that there are exactly r 1’s, one must make Choices 2 or 3 for exactly r/d of the pairs and
Choice 1 for the rest. To construct such a function, then, one must:

1. Choose r/d of the n/d pairs. This can be done in

(
n/d

r/d

)
ways.

2. For each of the selected pairs, make either Choice 2 or Choice 3. This sequence of choices can be
made in 2r/d ways.

3. Make Choice 1 for all the pairs you did not select in step 1.

Thus, in Case 3, fix(β) =

(
n/d

r/d

)
2r/d. Putting the three cases together now yields (†). �



In general, the complement of a rhythm cycle is the cycle formed by exchanging beats and rests. On
the level of functions, the complement of f , f c, equals 1 − f . The maximum number of beats in an
asymmetric rhythm cycle of length 2n is n. Asymmetric cycles of n notes have an additional property:
they are complementary—that is, equivalent to their own complements—since f(x) = 1 if and only if
f(x + n) = 0, which implies (−n) · f(x) = f(x + n) = 1 − f(x). Finally, putting r = n in (†) gives the
number of complementary asymmetric rhythm cycles.

Corollary 3 The number of complementary asymmetric rhythm cycles is given by
1
2n

∑
d|n

d odd

φ(d)2n/d.

5. Generalization to �-Asymmetry

Rhythmic asymmetry may be generalized: we say that a periodic rhythm of period �n is �-asymmetric if
when position x contains a note onset, then all other positions y, where y ≡ x mod n, do not contain note
onsets. Our previous definition of asymmetry corresponds to �-asymmetry when � = 2. For example, the
12-periodic rhythm 100000100101 is 3-asymmetric (n = 4).

Let R�(n, r) denote the number of r-note, �-asymmetric rhythms. Using Burnside’s Lemma, we prove

R�(n, r) =
1
�n

∑
d| gcd(n,r)
gcd(d,�)=1

φ(d)

(
n/d
r/d

)
�r/d. (∗)

If we remove the restriction that the rhythms have r note onsets, then the number of �-asymmetric rhythms
of length �n is

n∑
r=0

R�(n, r) =
1
�n

⎡
⎢⎢⎢⎣

∑
d|n

gcd(d,�)=1

φ(d)(� + 1)n/d +
∑
d|�n

gcd(d,�)>1

φ(d)

⎤
⎥⎥⎥⎦ .

6. Applications

6.1. Rhythmic tiling canons. A canon, or round, is a musical figure produced when two or more voices
play the same melody, with each voice offset by a fixed time interval from the others. Popular rounds include
“Frère Jacques” and “Row, row, row your boat.” A rhythmic canon is a canon in which each voice plays the
same rhythm pattern offset by a number of beats. A rhythmic tiling canon is a canon of rhythm cycles with
the restriction that when all voices are played, the resultant rhythm has exactly one note onset per unit. 2

Suppose one wishes to construct a cycle that forms a 12-periodic rhythmic tiling canon when played by
three voices, offset from each other by four beats. Here is an example of a possible tiling canon, generated
by the cycle |: x.....x..x.x :| (that is, 100000100101):

x.....x..x.x |: x.....x..x.x :|
x.....x. |: .x.xx.....x. :|

x... |: ..x..x.xx... :|

2This term is due to Andreatta [1]. It is equivalent to Vuza’s regular complementary canon [6]



Observe that the positions x, x + 4, and x + 8 must contain exactly one drumhit, where addition is done
mod 12. In other words, this is a four-note 3-asymmetric rhythm cycles of length 12. Using our formula for
the number of r-beat rhythm cycles, where � = 3, n = 4, and r = n = 4, we see that there must be eight
such cycles, as shown.

1. |: xxxx........ :|

2. |: xxx....x.... :|

3. |: xx....xx.... :|

4. |: xx.x......x. :|

5. |: xx.x..x..... :|

6. |: x.....x..x.x :|

7. |: x.x..x.x.... :|

8. |: x..x..x..x.. :|

Audio recordings of all these rhythms are available at www.sju.edu/∼rhall/bridges.html. Notice that Pat-
terns 3 and 8 are not primitive, meaning that they can be realized using a smaller period (Pattern 3 has
primitive period 6, and Pattern 8 has primitive period 3). Patterns 5 and 6 are inversions of each other (that
is, Pattern 5 is Pattern 6 played backwards); all other patterns are symmetric with respect to inversion. It is
interesting to listen to how the degree of asymmetry affects the sound of the resulting canon; Patterns 5 and
6 sound the “most asymmetric.”

In general, any �n-periodic rhythm with n note onsets which is �-asymmetric forms a tiling canon of
� voices, offset by multiples of n notes. The number of such rhythmic tiling canons may be found by
substituting r = n in (∗).

6.2. Rhythmic oddity. Simha Arom [2] pointed out that certain asymmetric rhythms played by peoples
of the Central African Republic possess what he denotes the rhythmic oddity property. The rhythms Arom
studied have the additional restriction that all note onsets are spaced by 2 or 3 units, and that the period is
4n, thus ensuring that the rhythm splits into two patterns of length 2n − 1 and 2n + 1. Chemillier [4] and
Chemillier and Truchet [5] has developed an algorithm to generate all rhythms formed from 2- or 3-unit
notes having the rhythmic oddity property. The question of a formula for the number of rhythms with the
oddity property is still open.
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