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Foreword

This is the first book devoted to broad study of the combinatorics of
words, that is to say, of sequences of symbols called lerrers. This subject is in
fact very ancient and has cropped up repeatedly in a wide variety of
contexts. Even in the most elegant parts of abstract pure mathematics, the
proof of a beautiful theorem surprisingly often reduces to some very down
to earth combinatorial lemma concerning linear arrays of symbols, In
applied mathematics, that is in the subjects to which mathematics can be
applied, such problems are even more to be expected. This is true especially
in those areas of contemporary applied mathematics that deal with the
discrete and non-commutative aspects of the world about us, notably the
theory of automata, information theory, and formal linguistics.

The systematic study of words seems to have been initiated by Axel Thue
in three papers [Norske Vid. Selsk. Skr. I Mat. Nat. K1, Christiania, 1906,
1-22; 1912, 1-67; 1914, 1-34.). Even more than for his theorems, we owe
him a great debt for delineating this subject. Both before and after his time,
a multitude of fragmentary results bave accumulated in the most diverse
contexts, and a substantial but not very widely known lore was beginning to
crystallize to the point where a systematic treatment of the subject was
badly needed and long over due,

This need is splendidly fulfilled by the present volume, It provides a clear
and easily accessible introduction to the area, treating in some depth a
representative selection of the most important branches of the subject. In
particular, connections with free Lie algebras and algebras with polynomial
identities are treated in full. The Preface by Dominique Perrin gives a hucid
account of this book, and we need not say more on that matter. However,
we want to amplify his remarks on the origins of this undertaking.

First, Marcel P. Schittzenberger should be acknowledged as the “grand-
father” of the book. It was Marco who initiated the systematic combina-
torial and algebraic study of monoids, the natural habitat of words, and of
the connections and applications of this subject to such classical areas as
group representation theory, infinite groups, Lie algebras, probability the-
ory, as well as to more recent “applied” subjects, notably computer science
and mathematical linguistics. In addition to his own important and seminal
work in these subjects, it was he who founded the most important school
dealing with these and related subjects (now the Laboratoire Informatique
Théorigue et Programmation at Paris). Most of the contributors to this book
afe his former students, or students of theirs, and all are disciples of his
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teachings. Today, when he is not promulgating the virtues of monoids in
hazardous foreign climes, he is walking the corridors of Paris VII stimulat-
ing the workers there and instigating new lines of research.

Second, this book is the result of a friendly collaboration of the group of
authors that have realized it. This collective enterprise was initiated by Jean
Frangois Perrot and led to its conclusion by Dominique Perrin, who played
the role of editor of the volume. He can be considered to be the “biological
father” of this book, and I have been privileged to see him proving
theorems, testing conjectures, as well as phoning long distance to obtain
copy, editing copy, and carrying it to the post office. It is to this team that
we are indebted for both the existence and the high quality of the present
work.

It is a pleasure to witness such an auspicious official inauguration of a
newly recognized mathematical subject, one which carries with it certain
promise of continued increasingly broad development and application.

RoGgEr LyNDON



Preface

Combinatorics on words is a field that has grown separately within
several branches of mathematics, such as group theory or probabilities, and
appears frequently in problems of computer science dealing with automata
and formal languages. It may now be considered as an independent theory
because of both the number of results that it contains and the variety of
possible applications.

This hook is the first attempt to present a unified treatment of the theory
of combinatorics on words. It covers the main results and methods in an
elementary presentation and can be used as a textbook in mathematics or
computer science at undergraduate or graduate level. It will also help
researchers in these fields by putting together a lot of results scattered in the
Literature.

The idea of writing this book arose a few years ago among the group of
people who have collectively realized it. The starting point was a mimeo-
graphed text of lectures given by M. P. Schiitzenberger at the University of
Paris in 1966 and written down by J. F. Perrot. The title of this text was
“Quelques Problémes combinatoires de la théorie des automates.” It was
widely circulated and served many people (including most of the authors of
this book) as an introduction to this field. It was J. F. Perrot’s idea to make
a book out of these notes, whose title varied from The Little Red Book in the
sixties (by the color of its cover, later selected for this series) to The
Apocryphal, a name that could dilute the responsibility for mistakes, if any,
in the text.

Let us put aside for now the domestic history of this book and turn to its
subject. The objects considered by people who study combinatorics on
words are words, that is to say, sequences of elements taken from a set.
Typical phenomena that can be observed in a word are certain kinds of
repetitions, decompositions into words of a spectal sort, and the results of
rearrangement of the letters. The type of results obtained is perhaps
reminiscent of the beginnings of number theory.

The first signtficant works on the subject go back to thd start of this
century, appearing in A. Thue’s papers on square-free words and Mac-
Mahon's treatise on combinatory analysis. Apart from pure combinatorics
this kind of problem has also been studied by scholars dedicated to
probabilities, especially to fluctuations of random variables. In pure algebra,
problems on words appear in a number of situations, including free alge-
bras, free groups, and free semigroups. More recently, the theory of au-
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tomata and fornal languages was developed, taking inspiration from prob-
lems of computer science. For these problems, words are the natural object,
because any computation gives rise to a sequence of elementary operations
and also because a sequential machine can process an object only if it has a
linear structure, which again is a word. The same observations obviously
apply to natural languages. In fact, the beginnings of automata theory and
of modern linguistics are interconnected.

The main originality of this book is that it gathers for the first time the
pieces of the jigsaw puzzle just described. 1t is dedicated neither to group or
semigroup theory nor to automata theory but only to words (although the
origin or the consequences of the methods and results presented are
explicitly mentioned ail along). The subtlest difference between the subject
of this book and any of the aforementioned theories is perhaps with
automata theory. It can be roughly said that automata theory (and formal
language theory) deals with sets of words whereas combinatorics on words
considers properties of one word. This distinction is sometimes rather
artificial, however, and the situation is the same as for determining what the
work “combinatorial” exactly means. We have put aside another subject
that is rather wide and also closely related to this one, the theory of codes,
which will be the subject of another book. Let me now biiefly present the
contents of this book.

Chapter | contains the main definitions, together with some elementary
properties of words freguently used in the sequel. The following three
chapters deal with uravoidable regularities, which are properties of words
that become true when their length tends to infinity. It is therefore a study
of asymptotic properties of words.

Chapters 5-7 may be considered another block. They deal with properties
of words related with classical noncommutative algebra. The first, Chapter
3, treats Lic algebras, the second is linked with nilpotent groups, and the
third algebras with polynomial identities. The rest of the book, Chapters
8-11, deals with specific aspects of words, each worthy of a complete
volume.

This book is written at a completely elementary level s0 as to be
accessible to anyone with a standard mathematical background. The author-
ship of each chapter is different, but the notation is uniform throughout and
the architecture of the book (including use of results from one chapter in
another) is the result of the joint conception of the coauthors.

Each chapter ends with a series of problems. Either they comment upon
particular cases of the results of the chapter, or, more often, they mention
some additional results, Difficult ones are indicated with an asterisk or
double asterisk.

It is a pleasure to express the thanks of the authors of this book for the
collaboration that we received during its preparation. Dorothée Reutenauver
translated the paper of Shirshov on which Chapter 7 relies. Howard
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straubing read several chapters and formulated useful comments. Volker
grehl carefully read Chapter 10 and helped with suggestions. We are also
indebted to Georges Hansel, Gérard Lallement, André Lentin, Roger
Lyndon, and Maurice Nivat and, of course, to Jean-Frangois Perrot whosc
work was the starting point for this enterprise. The help of Claudine
Beaujean, Maryse Brochot, Martine Chaumard, Monique Claverie, Arlette
pupont and Sylvie Lutzing, in particular for typing, is gratefully acknowl-
edged.

%‘o close this preface, 1 should like to mention the belief my coauthors
and 1 share that this book will serve as an incendve for further develop-
ments of this beautiful theory. It might be the case that a good part of it will
be superseded within a few years, and this is exactly what we hope.

DOoMINIQUE PERRIN



Preface to this edition

The new printing of Combinatorics on words does not bring many changes.
Except for the correction of some misprints and errors, the text has not been
modified. ] would like to thank those readers who have sent corrections and, in
particular, Aldo De Luca, Pavel Goralcik and Bruno Petazzoni.

More than ten years have passed since the first publication of this book. A
lot of water has flowed under the bridges of Lotharingia since then.

There is bad news, first. Roger Lyndon, the author of the Foreword of the
first edition passed away a few years ago, leaving the memory of a great
mathematician and a marvellous man, as did Marcel-Paul Schiitzenberger
this year. He was the spirit behind the scene, and most of the ideas contained in
the book were inspired by him. Also, the collective group of authors almost
entirely consists of his former students. It is a small tribute to dedicate this
book to him.

There is also good news. A new volume on the subject of combinatorics on
words is in preparation. It will contain chapters, writien by new authors, on
topics that had not been included in this volume, making a complementary
work, but one which can be read independently. It will cover in particular
some aspects of symbolic dynamics, the theoryof Young tableaux through the
approach of the plactic monoid, combinatorial aspects of free algebras,
number systems, and word functions.

Perhaps one more word is needed, about the identity of M. Lothaire. In his
review for the Bulletin of the London Mathematical Society, John Howie had
suggested a possible pun on Tauteur’. There is really nothing of this Lacanian
type. Lothaire (or Lothar in German sources} was the grandson of Carolus
Magnus. After a division of the empire with his brothers Charles the Bald and
Louis the German, according to the treatise of Verdun (§43), and following the
Oath of Strasbourg (842), he reigned over lotharingia (Lothari Reg-
num = Lotharingen = Lothringen = Lorraine), a kingdom comprising part of
France, Germany and Italy more or less centered in Alsace (its capital was
Aix-la-Chapeile). The kingdom of Lotharingia was dismantled after the death
of Lothaire (855).

[t became established that the students of M-P. Schiltzenberger, himself of a
renowned alsacian family, were citizens of a mythical kingdom of Lotharingia.
There is today a Lotharingian seminar of combinatorics holding frequent
meetings in France, Germany and ftaly. The name of Lothaire has also been



Preface to this edition i

used as a pseudonym for a ‘festschrift’” in the honor of M-P. Schiitzenberger

{Mots, Hermes, 1990). The intial M. was added as a requirement for the ISBN
and stands for ‘Monsieur’.

DoMmNIQUE PERRIN



CHAPTER 1

Words

1.0. Introduction

This chapter contains the main definitions used in the rest of the book. It
also presents some basic results about words that are of constant use in the
sequel. In the first section are defined words, free monoids, and some terms
about words, such as length and factors.

Section 1.2 is devoted to submonoids and to morphism of free moenoids,
one of the basic tools for words. Many of the proofs of properties of words
involve a substitution from the alphabet into words over another alphabet,
which is just the definition of a morphism of free moncids. A nontrivial
result called the defect theorem is proved. The theorem asserts that if a
relation exists among words in a set, those words can be written on a
smalier alphabet. This is a weak counterpart for free monoids of the
Nielsen--Schreier theorem for subgroups of a free group.

In Section 1.3 the definition of conjugate words is given, together with
some equivalent characterizations. Also defined are primitive words, or
words that are not a repetition of another word. A very useful result, due to
Fine and Wilf, is proved that concerns the possibility of multiple repeti-
tions. The last section introduces the notation of formal series that deal with
linear combinations of words, which will be used in Chapters 5-7 and 11.

A list of problems, some of them difficult, is collected at the end. Two of
them (1.1.2 and 1.2.1) deal with free groups; their object is to point out the
existence of a combinatorial theory of words in free groups, although the
theory is not developed in the present book (see Lyndon and Schupp 1977},
Two others (1.1.3 and 1.3.5) deal with the analysis of algorithms on words.

1.1. Free Monoids and Words

Let A be a set that we shall call an alphabet. Its elements will be called
letters. (In the development of this book, it will often be necessary to
suppose that the alphabet A is finite. Because this assumption is not always
necessary, however, it will be mentioned explicitly whenever it is used.)
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A word over the alphabet 4 is a finite sequence of elemenlts of A;
(a;,a5,...,a,), a,€A.

The set of all words over alphabet 4 is denoted by A*. It is equipped with
a binary operation ohtained by concatenating two sequences.

(ay, 05,000, )by by, b, ) = (ay, 4y, 00, by, By, 0B, )

This binary operation is obviously associative, which allows writing a word
as

alazw--an

instead of
(a),as,...,a,),

by identifying a letter a &€ A4 with the sequence (a).
The empty sequence, cafled the empty word, is a neutral element for the
operation of concatenation. It is denoted by 1; hence, for any wordw

lw=wl=w,

A monoid is a set M with a binary operation that is associative and has a
neutral element denoted by 1,,. Hence, what has been defined on the set 4*
i$ a monoid structure.

A morphism of a monoid M into a monoid N is a mapping ¢ of M into N
compatible with operations of M and N:

cp(mm’) =(P(m)q’(m'): m,meM,

and such that p(l,,) =1y,

ProrostTION 1.1.1. For any mapping & of A into a monoid M, there exists a
unigue morphism @ of monoids from A* into M such that the following diagram
Is commutative:

I

A A*
\'(p
M

Where | is the natural injection of A into A*,

Progf. Left to the reader. |
Because of this property (called a universal property), the set A* of all words
over the alphabet A is called the free monoid over the set A.
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The set of all nonempty words over 4 will be denoted by 4™:
AT =4*—1.

Itis called the free semigroup over A (recall that a sermigroup is a set with an
agsociative binary operation). It may be readily verified that Proposition
1.1.1 can be stated for A* instead of 4* by replacing the term “monoids”
by “semigroups.”

As for any monoid the binary operation of A* may be extended to the
subsets of A4* by defining for X, ¥ C 4*.

XY= {xy|x€ X,yEY}.

We shall come back to this extension in Section 1.4. Consider now some
terminology about words.

The length of the word w=ua,a,---a,, a;,& 4 is the number n of the
Jetters w is a product of. It will be denoted by |w|:

|w|=n.

The length of the empty word is 0 and the mapping wes|w| is a morphism
of the free monoid A* onto the additive monoid N of positive integers.

For a subset B of the alphabet 4, we denote by |w| the number of letiers
of w that belong to B. Therefore,

lwl= 2 |wl,

acs A

Denoted by alph{w) is the subset of the alphabet formed by the letters
actualty occurring in w. Therefore a€ A4 belongs to alph(w) iff

Wl >1.

A word v € A4* is said to be a factor of a word x & A* if there exist words
u, wE A* such that

X = Uow.

The relation “o is factor of x” is an order on A*. A factorv of xE 4% is
said to be proper if v+ x:

A word v is said to be a Jeft factor of xE A* if there exists a word weE A4*
such that

X =vw,

and it is said to be a proper left factor if v+ x. The relation “v is a left factor
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of x” is again an order on 4*; it will be denoted by
U X,
This order has the fundamental property that if
U= x, v'=sx,

then v and ©” are comparable: v <0’ or v’ <.
More precisely, if
ow=o'w,

either there exists s& A* such that v = v’s (and then sw = w'} or there exists
t& A* such that o'= ¢t (and then w = tw"). This will be referred to as the
property of equidivisibility of the free monoid.

The definition of a right factor is symmetrical to that of a left factor, The
reversal of a word w=a,a,- - a,, ;€ A, is the word

wma""‘azal.

Hence v is a left factor of x iff ¢ is a right factor of £. We shall also use the
notation w instead of W; we may then write or all u,ve 4,

() = o,

A word w is palindrome if w=w.
A word v 4* is said to be a subword of a word x € A* if

v=a,a, 0 Ay, 2, €4, n=0,
and there exist y,, y,,...,), & 4% such that
X=Yo@y Whay - ay,-

Therefore v 1s a subword of x if it is a sub-sequence of x.

1.2. Submonoids and Morphisms

A submonoid of a monoid M is a subset ¥ of M containing the neutral
element of M and closed under the operation of M: NN C N, Given a
sul set X of the free monoid 4%, we denote by X* the submonoid of A4*
generated by X. Conversely, given a submonoid P of 4*, there exists a
unique set X that generates P and is minimal for set-inclusion. In fact, X is
the set

X=(P-1)—(P-1)
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of the nonempty words of P that cannot be written as the product of two
nonempty words of P. It is a straightforward verification that X generates P
and that it is contained in any set Y C A* generating P. The set X will be
referred to as the minimal generating set of P.

A monoid M is said to be free if there exist an alphabet B and an
isomorphism of the free monoid B* onto M. For instance, for any word
wE A+ the submonoid generated by w, written w* instead of {w}*, is free.
It is very important (o observe that not all the submonoids of a free monoid
are themselves free (see Example 1.2.2).

PROPOSITION 1.2.1. Let P be a submonoid of A* and X be its minimal
generating set. Then P is free iff any equality

xlxz...xnzylyz...ym’ n,m?U, _xnijX
implies n=m and x; = y;, | <i<n.

The proof is again left to the reader. The minimal generating set of a free
submonoid P of A* is called a code; it is referred to as the basis of P.
A set X C A4* is called a prefix if for x, y€ X.

xsy

implies x = y; it can easily be venified that any prefix X C A7 is a code.

Example 1.2.2. Let A= {a, b}; the set X= (a, b, ab} is not a code since it
is not the minimal generating set of X*. The set ¥ ={a, ab, ba} is the
minimal generating set of ¥*; yet it is not a code because

a(ba)= (ab)a

is a nontrivial equality between products of elements of Y. The set Z=
{aa, ba, baa, bb, bba} can be verified to be a code.

The following characterization of free submonoids of 4* is useful:

ProposrTiON 1.2.3. A submonoid P of A* is free iff for any word wE A*,
one has wio P whenever there exist p, g€ P such that

pwwgeE P,

FProof. Let P be a submonoid of 4* and denote by X its mimimal gener-
ating set. First suppose that the preceding condition holds for P. Then if

X Xy o m Xy = ViV Vs xfexa yjeX’ (1-2})
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we may suppose that x, < y, and let y, =x,w, w& A*. Then
Kot Xy WY Yy

and therefore x,w, wy, - - y, € P; this implies by hypothesis we& P. Since X
is the minimal generating set of P, we have w =1, and this proves that eq,
(1.2.1) is tnvial by induction on n + m. Therefore P is free.

Conversely, if P is free, let @ by an isomorphism of a free monoid B* onto
P, with X = @(B). Then if for p,q& P, one has pw,wqE P, let p(x)=
P, o(¥)=wq, 9(z) = pw, (1} =q. Since @(xy)=g(2t) we have xy=z,
and this implies that z = xu, 4 € B*. Therefore w=¢(u)= P. n

COROLLARY 1.2.4. An intersection of free submonoids of A* is free.

Proof. If the submonoids P, i€ [ are free, and if there exists

p.qeP=P,
ief

such thal pw,wg€ P, then by Proposition 1.2.3, we P, for each i I and
therefore we P. By 1.2.3, this shows that P is free. n

I X is any subset of 4%, the set F of free submonoids of 4* containing X
is not empty (it contains A*} and, by Corollary 1.2.4, it is closed under
intersection. Therefore the intersection of all elements of & is the smatlest
free submonoid containing X; the code generating this submoneid is called
the free hull of X.

THEOREM 1.2.5 (Defect theorem). The free hull Y of a finite subset X C A*,
which is not a code, satisfies the inequality

Card(Y ) < Card{ X)~1.

Proof. Consider the mapping « of X into ¥ associating to x€ X the word
y&€Y such that x& yY*; since ¥ is a code, the mapping « is well defined.
As X is not a code, there exists an equality

Xy Xy X, :ylyl' ¥m
with x,, ;€ X and x, # y,. Therefore, a(x,)=a(y,) and a cannot be
injective.
The following shows that a is surjective: if it were not, let z&€ ¥ be such
that z € of X'); consider the set

Z=(Y~z)z*.
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The set Z is a code since an equality
22y 2, =28y 2y, 2,1 €L, (1.2.2)
can be rewritten
ylzklyzzkz. o ynzknﬁy’lzk'ly'zzk'l. . -y’n,zk’n' (1_2_3)

withz, = y2%,2°,= y,2"7, y, y', €Y = Z, k;, k’;2 0. Since Y is a code Eq.
(1.2.3) is trivial. This implies y, = ¥, k= k(s Yo = ¥'5,... and finally n=n’
and z; = 2,

But we have X C Z* and Z* C Y*, which contradicts the minimality of
the submonoid ¥*. Hence e is surjective, which implies that Y has fewer
¢lements than X. n

As an immediate consequence, of Theorem 1.2.5, there is the following
corollary.

COROLLARY 1.2.6. Each pair of words {x, y} (x, Y& A*) is a code unless x
and y are powers of a single word z & A*.

Morphisms of free monoids play an essential role in the sequel. Let
P B* — A*

be a morphism of free monoids. Clearly it is compleiely characterized by the
images @(b)€ A* of the letters b& B. It is an isomorphism of B* into 4* iff
its restriction to B is injective and if the submonoid @(B*) is a free
submonoid of A%,

A morphism @: B* —» A* is cafled nonerasing if o(B*yc= A*. If ¢ is
non-erasing, then for all w € B*,

le(w)| =|w|.
1.3. Conjugacy

A word x € A* is said to be primitive if it is not a power of another word;
that is, if x %1 and x & z* for z &€ A* implies x = z.

ProrosiTion 1.3.1. ff
x"=y, x, yEA* n,m=0,

there exists a word z such that x, y€ z*,
In particular, for each word we A, there exists o unique primitive word x

Such that we x*,
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Proof If w=x"= p™ with x # y the set {x, y} is not a code and, by the
defect theorem (1.2.5) there exists a word z & A* such that x, y€z*. If
w=x"=y" with x and y primitive, then there exists a word z € A* such
that x =z, y = 2/, i, > 0. This implies x = y = z, |

Proposirion 1.3.2. Two words x, yE AY commute iff they are powers of
the same word. More precisely the set of words commuting with a word x€ A™
is a monoid generated by a single primitive word.

Proof Let z be the unique primitive word such that x& z* Then if
xy = yxfory& A", the set {x,y} is not a code and there exists +&€ 4™ such
that x, y&r*. Then by Proposition 1.3.1, & z*. Therefore the set of words
conunuting with x is generated by z. |

Two words x and y are said to be conjugate if there exist words u, v € A4*
such that

xZuv,  yTou (1.3.1)
This is an equivalence relation on 4* since x is conjugate to y iff y can be
obtained by a cyclic permutation of the letters of x. More precisely, let v be
the permutation of 4™ defined by
ylax)=xa, acd, x€4*,

then the classes of conjugate elements are the orbits of v.

PrOPOSITION 1.3.3. Let x, ye A” and z, ¢t be the primitive words such that
xEz* yEt*. Then x and y are conjugate iff z and t are also conjugate; in this
case, there exists a unique pair (u, ) S A* X A* such that z = uv, t = vu.

Proof. Let x=z* If x=rs, there exists u, v & A* such that z = uv,
r=2z*u,s=vz* and k, + k, + 1= k. Then the conjugate y = sr of x can be

written y = t* with 7 = vu, Moreover the pair (u, ¢) such that z = up, t = vt
is unique since by Proposition 1.3.2 z has | z| distinct conjugates, |

ProposiTionN 1.3.4. Two words x, yEA™ are conjugate iff there exists a
z& A* such that

xXz=7zyp. (1.3.2)
More precisely, equality (1.3.2) holds iff there exist u,v &€ A* such that

x=uv, y=ou, z€ulvu)*. {1.3.3)
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Proof. If Eq. (1.3.3) holds, then (1.3.2) also holds. Conversely, if xz = zy,
for x, yEA™, z€ A%, we have for each n>1

x"z=zy". (1.34)

Let n be such that njx|>|z]=(n~1){x]. Then we deduce from Eq.
(13.4) that

z=x""u,  x=up, vz=yn. (13.5)
Finally y" = vz = vx"" "4 is also equal to (v#)" and since | y| = |x|, we
|

obtain y = vu, proving that Eq. (1.3.3) holds,

It may be observed that, in accordance with the defect theorem, the
equality xz=2zy implies x, y, z&€ {u, v}*, a submonoid with two generators.

The properties of conmjugacy in 4* proved thus far can be viewed as
particular cases of the properties of conjugacy in the free group on 4 (see
Problem 1.3.1).

If Card(A) =k is finite, let us denote by ,(n) the number of classes of
conjugates of primitive words of length r on the alphabet A. If w is a word
of length n and if w=z7 with z primitive and n = gd, then the number of
conjugates of w is exactly 4. Hence

k"= 3 diy(d), (1.3.6)

d|n

the sum running over the divisors of n, By Mébius inversion formula (see
Problem 1.3.2) this is equivalent to:

bln) = S u(ayere (137

where p 15 the Mabius function defined on N —0 as follows:

p()=1,
p(m)=(-1)
if # is the product of { distinct primes and
p(n)=0
if # is divisible by a square.

Proposition 1.3.]1 admits the following refinement (Fine and Wilf 1965):
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ProPOSITION 1.3.5. Let x, y& A*, n=|x|, m=|y|, d = ged(n, m). If twy
powers xP and y? of x and y have a common left factor of length at least equg)
to h+m-d, then x and y are powers of the same word.

Proof. Let u be the common left factor of length n + m —d of x¥, 9. W
first suppose that  ==1 and show that x and y are powers of a single letter,
We may assume that n<m—1. It will be enough to show that the first m—1
letters of u are equal. Denote by #(i) the ith letier of u. By hypothesis, we
have

u(i)=u(i+n), 1<i<m-—1, (1.3.8)
w(j)=u(j+m), 1<j<n-1. (1.3.9)
Let 1<i, jsm-1landj=i+nmodm Theneitherj=i+norj=i+n

- m. In the first case w(i}=u{ ;) by (1.3.8). In the second case u( /)= u(j
+m) by (1.3.9) since j =i+ n—m=n—1, Therefore

u(iY=u(i+ny=u{ j+my=u(j).

Hence u(i)= u{j) whenever 1=<i, j<<m -1 and j—i=nmodm. But
since m,r are supposed to be relatively prime, any element of the set
{1,2,...,m—1} is equal modulom to a multiple of n. This shows that the
first m—1 letters of u are equal. In the general case, we consider the

alphabet B = A% and, by the foregoing argument, x and y are powers of a
single word of length 4. [ |

Example 1.3.6. Consider the sequence of words on A= {a, b} defined as
follows: f;=b, f, =a and

fit =Ll n=l
The sequence of the lengths A = | f,| is the Fibonacci sequence. Two

consecutive elements A, and A, for n>3 are relatively prime. Let g, be
the left factor of £, of length A —2 for n>3. Then

gn“i-] = f;rz""l Er-2
for n=35, as it may be verified by induction. We then have stmultaneously
PN AR A A

Therefore, for each n>5, f2 and f° _, have a commeon left factor of
length A, + A ~2. This shows that the bound given by Proposition 1.3.5
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is optimal. For instance,

s

[ t——

8;=abaababaaba
M St

2 f;

1.4, Formal Series

Faumeration problems on words often lead to considering mappings of
the free monoid into a ring. Such mappings may be viewed (and usefully
handled) as finite or infinite linear combinations of words (see for instance
Problem 1.4.2). This is the motivation for introducing the concept of a
formal series.

Let X be a ring with unit; in the sequel X will be generally be the ring Z
of all integers. A formal series (or series) with coefficients in K and variables
in A 1s just a mapping of the free monoid 4* into K. The set of these serfes
is denoted by K({{A}).

For a series o0& K{(A4)) and a word we& A*%, the value of ¢ on w is
denoted by (o, w) and called the coefficient of w in o; it is an element of X.

For a set X C A%, we denote by X the characteristic series of X, defined by

(X,x)=1 ifx€X,
X, x)=0 ifx€X.

The operations of sum and product of two series ¢, 7€ K((A)) are
defined by:
{ot+r.w)= (o, w)+{r,w),

(or,w) = ; (o, u){r,v),

for any wez A*. These operations turn the set K{{A4)) into a ring. This ring
has a unit that is the series 1, where | is the empty word.

A formal series o& K((4)) such that all but a finite number of its
coefficients are zero is called a polynomial. The set K{A4) of these polynomi-
als is a subring of the ring K({{A)). It is cafled the free (associative)
K-algebra over 4 (see Problem 1.4.1). For each 6 &€ K{{4)) and 7€ K{4),
we define

CR %(o,wﬂr,w}.

This is a bilinear map of K{({A))X K{(4) in K.

The sum may be extended to an infinite number of elements with the
following restriction: A family (o;),c ; of series is said to be locally finite'if
for each we& A*, all but finitely many of the coefficients (g, w) are zero.
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If (0,);; is a locally finite family of series, the sum
9= 30,
e
is well defined since for each w& 4*, the coefficient (o, w) is the sum of ¢
finite set of nonzero coefficients (g, w).

In particular, the family (W), ., is locally finite, and this allows to write
for any o0& K{{A))

o= E <G’w>w’
we A
or, by identifying w with w,
o= 3 {o,w)w.
we A

This is the usual notation for formal series in one variable:
o= 3 g,a"
na=0

with g, = {a, a"). _

Let o be a series such that {0,1) =0; the family (67),.., is then locally
finite since (¢',w)=0 for i>|w|+ 1. This allows us to define the new
series

o*=1+o+0%+ -,
which is called the star of o, It is easy to verify the following:

PROPOSITION 1.4.1, Let 0 & K({A4)) be such that (c,1) =0. The series o*
is the unigue series such that:

o¥{l—g)=(l1—0a)o* =1,

Following is a list of statements relating the operations in K((A4)) with
the operations on the subsets of A* when K is assumed to be of characters-
tic zero.

ProposTFION 1.4.2. For two subsets X, Y of A%, one has
(i) let Z= XUY. Then Z=X+Y iff X\NY =8,
(i) let Z=XY. Then Z=XY iff xy=x"y'=x=x", y =y, for x,x' €
X, y, €Y,
(iity fet X CA™, and P=X* Then P = X* iff X is a code.

The proof is left to the reader as an exercise.
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Notes

The terminology used for words presents some variations in the literature,
gome authors call subword what is called here factor the term subword is
reserved for another use (see Chapter 6). Some call prefix or initial segment
what we call a left factor. Also, the empty word is often denoted by e instead

1.

Of(}eneral references concerning free submonoids are Eilenberg 1974 and
Lallement 1977; Proposition 1.2.3 was known to Schiitzenberger (1956) and
to Cohn (1962). The defect theorem (Theorem 1.2.5) is virtualy foiklore; it
has been proved under various forms by several authors (see Lentin 1972;
Makanin 1976; Ehrenfeucht and Rozenberg 1978). The proof given here is
from Berstel et al. 1979, where some generalizations are discussed.

The results of Section 1.3 are also mainly common knowledge, For
further references see Chapters 8 and 9.

The standard reference for Section 1.4 is Filenberg 1974

Problems
Section 1.1

1.L1L (Levi’s lemma). A monoid M is free iff there exists a morphism A of
M into the monoid N of additive integers such that A'(0)=1,, and
if for any x, y, z,t€M
xy =zt

impligs the existence of a ¥E M such that either x=zu,up = ¢ or
XUz, p =l
L12. Let A be an alphabet and 4= {@|a € A} be a copy of 4. Consider in
the free monoid over the set 4 U A the congruence generated by the
relations
aa=aa=1, aec 4.
a. Show that each word has a unique representative of minimal
length, called a reduced word.
b. Show that the quotient of (AU A)* by this congruence is a group
F; the inverse of the reduced word w is denoted by w,
¢. Show that for any mapping a of 4 into a group G, there exists a

unique morphism ¢ of F onto G making the following diagram
commutative:

A—F

N



14

*1.1L3,

Problem,

F is called the free group over A (see Magnus, Karass, and Solita
1976 or Hall 1959 or Lyndon and Schupp 1977). Henceforth iy
problems about free groups,

p: Fr{AUA),

denotes the mapping associating to each element of F the umqgue
reduced word representing it.

Let @ A* — 4* be the mapping assigning to each word w& 4* the
longest word that is both a proper left and a proper right factor
of w.

a. Let w=a,a,---a, and denote p(i)= j instead of p(a, - q,)=

ay--a;
of P:
Log(l)«0;
2. for i« 2 untii n do
begin
3. jegli—ly
4. while j> 0 and a;% a ;. do j« @(j);
5
6

show that the following algorithm allows computation

ifi=0anda;+a;,,  then o(i)—0

else (i)« 7 +1;

end
(For the notations concerning algorithms, see Aho, Hoperoft, and
Ullman 1974.)

. Show that the number of successive compansons of two letters of

the word w in performung the foregoing algerithm does not
exceed 2n. (Hint: Note that the variable j can be increased at
most n times by one unit.)

. Show that the foregoing algorithm can be used to test whether a

word € A% is a factor of a word v A*. (Hint: Apply the
algorithm of (a) to the word w = ucv.)

This is called a string-matching algorithm (see Knuth, Morris, and
Pratt 1977).

Section 1.2

*1.2.1. Let F be the free group over the set A and H be a subgroup of F.

a. Show that it is possible tochoose a set 2 of representatives of the

right cosets of A in F such that the set p(3) of reduced words
representing Q contamns all its left factors. Such a set @ is called a
Schreier system for H.

b Let Q be a Schreier system for H and

X={paj\p.qEQ,0€ 4, pac(H —1)q};
Show that X generates H.
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¢c. Show that each pag€ X is reduced as written and that, in the
product of two elements of XUX the letters a in the triple
(p. 4, q) never cancel unless the whole product does.

d. Deduce from (a), (b), and (c) that any subgroup H of a free group
F is free and that if H is of finite index 4 in F, then 1t is
isomorphic with a free group on r generators with

r—1=d{k—1), k=Card(4)

(Schreier’s formula; see the references of Problem 1.1.2).
1.2.2. A submonoid N of A* 15 generated by a prefix iff it satisfies:

m,mneN=necN

for all m, n& A*. Such a submonoid is called (right) unitary.
1.2.3. Let P be the set of words

P={wi|we A*}.

Then P is the set of palindromes (i.e., u =i} of even length. Show
that the submonoid P* is right and left unitary.
(Hint: Let 1T be the basis of P*; show that I1 is prefix.} (See Knuth,
Morris and Pratt 1977.)

1.2.4. Let #: A* - B* be a morphism and P C B* be a free submonoid of
B*, Show that 87 (P) is a free submonoid of 4*.

Section 1.3

1.3.1. Show that two words x, y€ A* are conjugate iff they are conjugate
in the free group F over A —that is, iff there exists an element g of F
such that

1

xX=gyg

(Identify A* to a subset of £.)
1.3.2. (Mdbius inversion formula) Let p be the Mobius function; show that

_ 1 =],

dln n=12,

Deduce from this that two functions ¢, ¢ of N—0 in Z are related
by
2 ¥(d)=9p(n)
din
iff
2 u{d)p(n/d)=y(n).

din



1.3.3.

1.3.4.

1.3.5.

Problem

Show directly (without using the defect theorem, that is) that j
{x, y} is not a code, then x and y are powers of a single word.
(Problem 1.1.3} Show that p(w)} = u iff

Wﬁ(st)kﬂs,um(st)ks, k=05, e A"

with | 5| minimal. Deduce that the algorithm of Problem 1.1.3 allows
computation of the primitive word such that w=¢", n21 {Hin:
Use Proposition 1.3.5.)

Let w=a,a,---a,n=l,a,EA. For I<i<n, let (i) be the
greatest integer j=<i ~1 such that

T M PR PNy FRVNRLERY PR L LJT

with (i) =0 if no such integer 7 exists,
a. Show that the following algorithm computes Y=
Lol 0;
2. i1 j 0
3. whilei<<n do
begin
4 while j>> 0 and a, % a, do j+ {j};
3. i—i+1; Je=j+l;
6 if a;=a, then (i) P(j) else Y(i) < j;
end
( Hint: Show that the value of the variable j at line 6 s (i — )+ 1
wheres ¢ is as in Problem 1.1.3.)
b. Show that the algorithm of problem part (a) can be used to test
whether a word # is a factor of a word v.
c. Show that the number of consecutive times the while loop of line
4 may be executed does not exceed the integer r such that

Arpasn<h, i,

where A, is the rth term of the Fibonaccl sequence. Show, using
the sequence of Example 1.3.6 that this bound can be reached.
(See Knuth, Morrts and Pratt 1978; Duval 1981.)

Section 1.4

l.4.1.

For any mapping « of A into an associative K-algebra R, there exists
a unique morphism ¢ of K(A4) into R such that the following
diagram is commutative:

A K A)
R

N2
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142 Let W< A” be a set of words such that no proper factor of a word of
Wisin W
P = A* — A*WA*
be the set of words having no factor in W. Let for each ue W,

X, = A%~ A*WA*

be the set of words having u as a right factor but no other factor in
W. For eachu, €W, let R, , be the finite set

R, ,={tEA™ ~ A*c|mE A*v}.

a. Show that the following equalities hold in Z{{A4}):

[+PA =P+ 3 X, {a.l)
us W
and for each ug W,
Pu=X.+ 3 XR,, (a2)
vE W

b. Show that the system of equalities (a.l) and (a.2), for u& W,
allows computation of P.
c. Show that the formal series

A= Y A,2T

na#=Q

with A, = Card( A"NP), is rational. { Hint: Use the morphism of
Z{{A)) onto L{{z)) sending a€ 4 on 2.)
d. Apply the foregoing methed to show that for W= {aba} one has

WD) WINERD W WIS §

(See Schiitzenberger 1964; for a general reference concerning
linear equations in the ring Z{{A)), see Eilenberg 1974.)



CHAPTER 2

Square-Free Words and
Idempotent Semigroups

2.0. Inatroduction

The investigation of words includes a series of combinatosial studies with
rather surprising conclusions that can be summarized roughly by the
following statement: Each sufficiently long word over a finite alphabe
behaves locally in a regulay fashion. That is to say, an arbitrary word,
subject only to the constraint that it be sufficiently long, possesses some
regularity. This claim becomes meaningful only if one specifies the kind of
regularities that are intended, of course. The discovery and the analysis of
these unavoidable reguloriries constitute a major topic in the combinatorics
of words. A typical example s furnished by van der Waerden’s theorerm.

It should not be concluded that any sufficiently long word is globally
regular. On the contrary, the existence of unaveidable regularities leads w
the dual question of avoidable regularities: properties not auntomatically
shared by all sufficiently long words. For such a property these exist
infinitely many words (finiteness of the alphabet is supposed) that do not
satisfy it. The present chapter is devoted mainly to the study of one such
property.

A sguare is a word of the form uw, with ¥ a nopempty wosd. A word
contains a square if one of its factors is a square; otherwise, the word i
called square-free. For instance, abcacbache contains the square acbach, and
abeacbabel is square-free. The answer to the question of whether every
sufficiently long word contains a square is no, provided the alphabet has ai
least three letters. As will be shown, the existence of infinitely many
square-free words is equivalent to the existence of a squarc-free word that is
infinite (on the right). The formalism of infinite words has the advantage of
allowing concise descriptions. Fusthermore, infinite iteration of a morphism
is a natural and simple way to construct infinite words, and this method
applies especially to the construction of infinite square-free words,

We stast with the investigation of a famous infinite word, called after its
discoversers the word of Thue—Morse. This word contains squares, but it is

18
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cube-free and even has stronger propcrtic_s. Then we turn to the st.ud‘y .of
infinite square-free words, A simple coding of the Thue-Morse infinite
word gives an example of an infinite square-free word. We then establish a
general result of Thue that gives other infinite square-free words.

A more algebraic framework can be used for the theory of square-free
words. Consider the monoid M = 4* U0 obtained by adjoining a zero to the

frec monoid 4*. Next consider the congruence over M generated by the
relations

uue=~0 (ueAd*).

The fact that there exist infinitely many square-free words can be
rephrased: The quotient monoid M/~ is infinite, provided A4 has at least
three letters. A natural analogue is to consider the free idempotent monoid,
that is, the quotient of A* by the congruence generated by

we~u  {uedt).

We will show, in contrast to the previous result, that for each finite alphabet
A, the guoilent monoid 4* /~ is finite.

Many results, extensions, and generalizations concerning the problems
just sketched are not included in the text. They are stated as exercises or
briefly mentioned in the Notes, which also contain some bibliographic
remarks.

2.1. Preliminaries

Before defining infinite words, let us fix some notations concerning
distinct occurrences of a word as a factor in a given word. Let 4 be an
alphabet, wee A*. Let ¥ be a nonempty word having two distinct occur-
rences as a factor in w. Then there are words x, y, x', ¥'€ 4* such that

W Xuy = x'uy’, x#x0

These two occurrences of u either overlap or are consecutive or are disjoint.
More precisely, we may suppose |x| < |x’|. Then three possibilities arise
(see Figure 2.1).

(i) |x'| > |xu|. In this case, x= xuz for some zE A", and w= xuzuy’.
The occurrences of u are disjoint.
(i) |x’| = |xu|. This implies that x’=xu, and consequently w= xuuy’
contains a square. The occurrences of u are adjacen:.
(iiiy |x| <|xu|. The two occurremces of u are said to overlap. The
following lemma gives a more precise description of this case.
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X y
w X' \“i/ yu
()
1]
W
u
(ii)
u
w N
S

u
(1)

Figure 2.1. Two occurrences of w in w: (i) digjoint occurrences, (i) adjacent occursences,
(1) overlapping occurrences

Lemma 2.1.1. Let w be a word; then w contains two everlapping occurrences
of a word u #1 iff w contains a factor of the form avava, with a a letter and v
a word.,

Proof. Assume first w = xuy = x'uy’, where the occurrenices of u overlap,
Then {x| < {x]<{xu| < |x'u|, Consequently

x'=xg, Xt =x'z, x'u = xut
for some nonempty words s, z, 7, whence
U= 5z =zt (2.1.1)

Let a be the first letter of 5, and therefore also of z by Eq. (2.1.1). Set
s=av, z=az". Then by (2.1.1} # = gvaz’ and

w = xsuy’ = xavavaz'y'.

Conversely, if avava is a factor of w, then w=ava clearly has two
overlapping occurrences in w. |

A word of the form avava, with a a letter, is said to overfap. Thus, according
to the lemma, 2 word has two overlapping occurrences of a word iff it
contains an overlapping factor.

We now turn to the definition of infinite words. Let 4 be an alphabet. An
infinite word om A is a function

arf- A
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we use the following notation

a=a(0)a(l)---a(n)---,

and also
a:aoal‘- 1an‘- - y

where a, =#{n} is a letter. The left factor of length k=0of ais
al*l=qapa,---a,.,.

fior wE A*, we write u<a whenever u=al*! for k= |u|. Then clearly
4 = ub where b(m) = a(m + k) for all m= 0. A factor of_g is any word in 4*
that occurs in a, In the sequel, by a word we always mean a finite word,

Infinite words are useful when one deals with properties P of (finite)
words having a special feature, namely that P(xuy) implies P(u) for all
words x, %, y. In other terms, if L, is the set of words for which P holds,
then L, contains the factors of its elements, Note that this holds for the set
of square-free words. When P satisfies this condition we say that P is stable
for factors. Given an infinite word a, we say that 2 has the property £ if each
factor of a satisfies P. Thus it is meaningful to speak about infinite
square-free words.

Eemma 2,12, Let A be a finite alphabet and let P be a property of elemenis
of Aihat is stable for factors. Then the two following conditions are equivalent:

(i} The set Lp of words w in A such that P(w) is infinite.
(i) There exists an infinite word on A with property P.

A particular case is the assertion mentioned in the introduction, namely
that the existence of infinitely many square-free words is eguivalent to the
existence of an infinite square-free word.

Proof, Clearly (if) implies (1). Conversely, if L = L, is infinite, the finite-
ness of A implies that infinitely many words in L start with a same letter,
say agy. Set Ly = LMayA*. Assume by inductionp that there are letters
@y: @y,...,4, such that L, = LNaya,---a,4* is infinite. Then among the
sets (LNagya,- -+ a,bA*),. , at least one is infinite. Choose one letter a,, ,
such that LNaga,---a,a,,,4* is infinite,

Thus there exists a sequence dg, d;,....4,,... of letters in A4 such that
LNaya,--- a,A* is infinite for each n = 0. Define a: N— 4 by a(n}=a,_.
Then each factor of a is a factor of a word in L, thus is itself in L. [ |

Sometimes a simpler method can be applied to construct infinile words
from finite ones. (Note that the proof of the previous lemma gives such a

fonstruction.)
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Let wy, wy,...,W,,... be a sequence of words in A* of unbounded lengy,
such that each w, _, is a left factor of w,. Then define an infinite word a g
A by

a“‘]=w", k=]w,|, n=0,
The definition is consistent because a'*)is a left factor of all w,,, m=> n. The
infinite word defined in this way is called the limif of (w,), .o and j
denoted by
a=limw,.
Consider the following important special case. Let
o A* — A*

be a morphism verifying

() ala)#1 for a€ A, (2.1
(if) there exists a letter a, such that

a(a,)=agu forsome u€A™. (2.1.3)
Then for each n 3 0,
“"M(ao)m“n(au“) :“n(ao)“"(“)-

Thus each «"(a,) is a proper left factor of «”"'(a,), and therefore the limit
of the sequence (a"(ay)), ;o exists. We denote this limit by a“(a,):

a“’(ao) = lima“(ag),
and we say that it is obtained by iterating a on a,,.
With these notations a can be extended to infinite words by setting, for
b=byb, - b
afb) = aby)ol(®,) - - a(B,)- - .
Condition (i} ensures that a(b) is indeed an infinite word, Observe that
a(a)=a for a=a“(a,). (2.1.4)

In other terms, a is a fixed point for a. Indeed set b= a(a). For each left
factor u of a, the word e(u) is a left factor of a(a). Thus each a™( ayhn=1,
is a left factor of b, and b starts with a; by (ii). Consequently b= lima"(a,)
= a; this proves Eq. (2.1.4).



72 The Infinite Words of Thue-Morse 23

2.2, The Infinite Words of Thue-Morse

In this section a special infinite word is defined and its properties are
studied. The main result is that this infinite word has no overlapping factor.
In this section 4 denotes the fixed two-letter alphabet A = (a, b}. Define

a morphism
o A* - A*

by
p(a)=ab, p(b)=ba.

Then p satisfies conditions (2.1.2), (2.1.3) for a,=a and also for a;=b.
Consequently, iteration of g on a and on b yields two infinite words

t=p(a), t=p(d).

By definition, t is the infinite word of Thue-Morse. Computation gives

p(a)=ab p(b)=ba
p*(a)= abba w*(b)= baab
1’(a) = abbabaab #>(b) = baababba

t = abbabaabbaababbabaababbaabbabaab - - -
= baababbaabbabaababbabaabbaababba - -

There are several properties refating the words g"(a), g"(b), n= 0. Consider
the morphism

defined by

a=b, b=a
Thus # is obtained from w by replacing each @ by b and conversely. Of
course w=mw,

ProrosiTioN 2.2.1. Define uy = a, v, =b and forn=10

U, = U0, b2

n+t = v, 4,

Then for all n =0

@) u,=p(a) v, =W (b).
(i) v, =14, u, =,
(i) u,,, v;, are palindromes and @y, .\ = V3,4
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Proof. The proofs are by induction, The initial step is always clear,
Formula (i) follows from

urM-I = un Uy = ”‘n(a)nu’"(b) :Fr"+](ﬂ),
Cogr = Gty = B (B Jp"(@) = p" (D),

next (if) follows from

Oyt = Gl = U0 U0, = s Bra = By = 3
finally for (iii}, observe that for & >0
iy = (0= ) =By il
If & is odd (resp. even) this implies
By = O gy = O (10D = g 0 =1y ), L
There exists an interesting definition of

t:tgt]"'t .-

n

that is independent of the morphism p. First let, for n=0, d,(n) be the
number of 1's in the binary expansion of n, Then we have the following
proposition.

ProposiTioN 2.2.2. For each n =0,

th{a ifdy(n)=0 mod2 (2.2.0)

b ifdyn)=1 mod2

Proof. Note that by (2.1.4) we have
t=p{t)=plte)n(t,) - p(1,) -

and therefore p(1,) = ty,ty,4 for n=10. By the definition of g, this imples

t?.rl _tn’ tln+]:tr; (”"20) (2.22)

Formula (2.2.1) holds for n=0. Thus let n>0. If n=2m, then ¢,=1,, by
(22.2), and d(n)=d,(m). Thus (2.2.1) holds in this case. If n=2m +1,
then ¢, =1, and dy(n)=1+d,(m)mod2, Therefore (2.2.1) holds in this
case 100, [ |
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The inspection of t shows that t is not square-free. However, we will
prove the following:

THEOREM 2.2.3. The infinite word t has no overlapping factor.
COROLLARY 2.2.4. The infinite word t is cube-free.

The proof of the theorem uses two lemmas,

LEMMA 2.2.5. Let X = {ab, ba}, if x € X*, then axa & X* and bxb & X*.

Proof. By induction on |x|. If |x|=0, then indeed aa,bb & X*. Let
<& X* x| and suppose ¥ = axa € X™* (the case bxb & X* is similar). Then
u=xxy " x,, with x,,...,x,€ X; consequently x, = ab and x, = ba. Thus
u=abyba withy = x,- - - x,_ € X*. But now by induction x = byb is not in
X*, contrary to the assumption. ) [ |

LEMMA 2,2.6. Let w& A™. If w has no overlapping factor, then u(w) has no
overlapping factor.

Proof. Assume that g(w) has an overlapping factor for some w& A*. We
show that w also has an overlapping factor.
By aswmption, there are x, v, yE A*, ¢cE€ 4 with

p{w) = xevevey

Note that |cvcve| is odd, but p(w) €& X* with X = {ab, ba}: therefore | p(w)|
is even and |xy| is odd. Thus

* Either: | x| is even, and x, cvcy, cy € X*,
* Or: x| is odd, and xe, veve, y € X*,

This implies that |v| is odd, since otherwise we get from coco € X™* (resp.
seoc € X*) that both v, cve are in X*, which contradicts Lemma 2.2.5.

In the case |x| is even, it follows that cv is in X* and w=rsst with
pr)=x, p(s) = cv, p{t) = cy. But then 5 and ¢ start with the same letter ¢
and ssc is an overlapping factor in w.

In the case | x| is odd, similarly vc € X*, and w = rsst with p{r) = xc, p(s)
=uvc, p(2) = y. Here r and 5 end with ¢ and css is an overlapping factor in w.

[ ]

Proof of Theorem 2.2.3. Assume that t has an occurrence of an overlap-
ping factor. Then it occurs in a left factor u*(a) for some £>0. On the
other hand, since a has no overlapping factor, by iterated application of
Lemma 2.2.6 no p"(a)(n = 0) has an overlapping factor. Contradiction,. W
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2.3. Infinite Square-Free Words

The infinite word of Thue-Morse has square factors. In fact, the only
square-free words over two letters a and b are

a,b,ab,ba,aba, bab.

On the contrary, there exist infinite square-free words over three letters,
This will now be demonstrated.

As before let A={a, b}, and let B ={a, b, c}. Define a morphism
41 B* - 4%
by setting
3(c) = a, b} = ab, & a) = abb
For any infinite word b on B,
§(b) =8(bg)8(b,)- - 8(b,) -

is a well-defined infinite word on A starting with the letter a. Conversely,
consider an infinite word a on A4 without overlapping factors and starting
with a. Then a can be factored as

A= Yol Yy (2.3.1)

with each y, € (a, ab, abb} = 8(B). Indced, each 4 in a is followed by at
most two b since bbb is overlapping, and then followed by a new a
Moreover, the factorization {2.3.1) is unigue. Thus there exists a unique
infinite word b on B such that 8(b}= a,

THEOREM 2.3.1. Let a be an infinite word on A starting with a, and without
overlapping factor, and let b be the infinite word over B such that &(b) = a;
then b is square-free.

Proof Assume the contrary. Then b contains a square, say uu. Let d be
the letter following uu in one of its ccourrences in b. Then 8(uud) is a factor
of a. Since 8(u) = gv for some v E 4* and 5(d) starts with a, a contains the
factor avava. Contradiction. ]

By applying the theorem to the Thue-Morse word t, we obtain an infinite
square-free word m over the three letter alphabet B such that 8(m) == t. This
infinite word is

m = abcachabcbacabcachacabebabeacbabebacabebabe- - -
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Note that the converse of Theorem 2.3.1 is false: There are square-free
infinite words b over B such that 8(b) has overlapping factors (see Problem
2.3.7). There are several alternative ways to obtamn the word m. We quote

just one.

PROPOSITION 2.3.2. Define @ morphism ¢: B*-» B* (with B={a,b,c}) by
g(a)= abe, p(b) = ac, p(c) = b. Then m— ¢“(a).

The proof is left as an exercise,

There exist other constructions that allow one to obtain more systemati-
cally infinite square-free words, We now present one of them. In the sequel
of this paragraph, 4, B- - - are again arbitrary alphabets.

First we introduce a new notion. A morphism a; A*-> B* is square-free if
a( A)== (1} and if a{w) is a square-free word for each square-free word w.
Thus a square-free morphism preserves square-free words. The first condi-
tion is present simply to avoid uninteresting discussions on the square-free-
ness of the empty word. A square-free morphism e« from A* into itself
produces by iteration only square-free words, when one starts with a
square-free word, or simply with a letter. Thus a square-free morphism
usually gives an infinite set of square-free words. Note that the morphism ¢
of Proposition 2.3.2 is not square-free since

¢l aba) = abcacabe

contains a square. The following theorem gives sufficient conditions for a
morphism to be square-free.

THEOREM 2.3.3. Let a: A*— B* be a morphism with o( A)+ {1} such that

(1) a(u) is square-free for each square-free word of length <3,
(ii) No a(a) is a proper factor of an a(b) (a, b in A).

Then « is a square-free morphism.

Proof. First we note that a{a) # for each a € 4; otherwise if a(a)=1 let
b& A be a letter with x = a(b) # 1. Then bab is square-free, but a( bab) = xx
violates condition (i). Next « is injective on 4: if a(a) = a(b), then a(ab} is
a square, consequently @ =& by (i). Furthermore, X = a(4) is a biprefix
code by (ii). Now we prove the following claim.

Claim: If a{a.ay-+ + a,) = xala)y for a,a)€ 4, x, yE B*, then a=a, for
some j,x=a(a, - a; ) y=ofa,, - a,)
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The claim is clear for n =1 by (1i). Arguing by induction on n, assume
n> | If

|xa{a)| = |“(ata2' < ly)|
or
la(a)y|<|a(a, - a,)]|.

the claim foliows by the induction hypothesis. Thus, we may assume that
both

|xa{a}|>|a(a,a; - @, )|
and
la(a)y| > lalay - a,)|.

Consequently, y is a proper right factor of a(a,), and x is a proper left
factor of a(a,):

ala,)=xu, ofa,)=vy
for some u,vin B, and
a(a)=uala,} --ala,_;)v.

By (if), this implies n = 2 and a{a) = up.
The words a{a,a) = xuwv and «(aa,) = wvvy are not square-free. Accord-
ing to (i), @, = a = a,, whernce

XU = uo = oy,

The first equation shows that |x| = |o|. In view of xu = vy, it follows that
x = v. Consequently vu = uv. By a result of Chapter |, a(a)=uv is not a
primitive word and thus is not square-free. This contradicts condition (i)
and proves the claim.

Now we prove the theorem. Assume the conclusion is false. Then there is
a shortest square-free word we A such that a{w) contains a square, say

a(w) = yuuz withu #1.
Setw=a,a, - a,. v;=a(a,) (a,E A). By condition (i), one has n= 4. Next

y 15 a proper left factor of v, and z is a proper right factor of v, since w was
chosen shortest. Also yu is not a left factor of v, since otherwise v,v, is a
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jactor of u, hence of v, violating condition (ii). For the same reason, uz is
pot a right factor of o,. Thus there is an index j (1<j<n) and a
factorization

Uj:.i‘l

such that (see Figure 2.2(1))
VUZD D8, MZ =L,

We may assume 51, since otherwise j— 11 and we can replace v; by
. Next, define y" and 2z’ by

Dj"‘]
v, =y, v, = 2'z.
As mentioned before, y* and z’ are nonempty. Further (see Figure 2.2(it))
umy’vz.. "L}-__]S,
U=t Oy 2, (2.3.2)

Now, we derive a contradiction by showing that w contains a square,
Consider first the case where y¢t = 1. In this case, v, = y’, t; =5, whence by

Egs. (2.3.2)

j— . !
B 010y O O Oy By 2

a(w) /!1\/‘\ f\/v"\f'\ r'\/vn\

5
T

i+ ot ¥
(ii)

Figure 2.2. Occurrence of uu in a{w): (i) Jocalization of uu, (ii) double factorization of u.
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Since af 4) is a prefix code, this implies v; =04 p,- - 20| Oy, ;= 2,
and since v; = z'< v,, we have v, = ;. Thus w = (a,"- aj)2 is a square.

Next conslder the case yt # 1. Muluplymg (2.3.2) by s and z, and by y and
t, gives

suz = (sy" )0y - v (82) = 00,0 0,0, (2.3.3)
YUt = 0,050 0 0= (P04 T, {2') (234)

Consider Eq (2.3.3) first. Then the claim can be applied to each of the

g5---,0;;- Consequently a,--a,., is a factor of a;a;, - - - 4,4, Since

551, az --d,., is neither a left nor a right factor of a;,...,ay; thus

@y -a,. isafactorofa, ;- -a,., and

Pay @, §= 8yt Gpy (2.3.5)
for some p, g€ A*. Now consider Eq. (2.3.4), As before, a;,;---a,-,1s 2
factor of a,- - - a;, and since neither yt nor z' is the empty word, a,_,- -+ a,._,
is a factor of a,+ - @;— . Thus
Pag - d=ay - d,., (2.3.6)
for some p, §& A*. By (2.3.5) and (2.3.6),
ﬁpal' o aj"“]qmq“xﬁaj"ivl‘ "t an%]g: ay- aj"“[

showing that p= g =g = § = 1. Thus setting

we have
w =g xaxa, (2.3.7)
whence by (2.3.3) and (2.3.4)
st=v; =5y, 'z = v, = sz, w=v,=yt
Thus the word
(a18,a,) =v, 0,5, = ytstsz
is not square-free. By condition (i), a,a;a, is not square-free. Therefore

a,*a; or a;=a,. In view of (2.3.7), w contains a square. This yields the
contradiction. |
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Example. A tedious but finite computation shows that the morphism a:
A¥ > A* with A= {a, b, ¢} defined by

al{a) = abcab,  a{b)=acabch,  alc)}= acbeach

fulfifls the two conditions of Theorem 2.3.3 and therefore is a square-free
morph;sm

24. Idempotent Semigroups

Let 4 be an alphabet having at least three letters. Then there are infinitely
many square-free words in 4* As already mentioned in the introduction,
this fact can be rephrased as follows. Let 4* U0 be the monoid obtained by
adjoining a zero to 4, and consider the congruence = generated by

wu=0, ueAdt,

Fach square-free word constitutes an equivalence class modulo this con-
gruence. Consequently the quotient monoid 4* U0/ ~ is infinite,

There is another sitnation where square-free words can be used. Let
m, n> 2 be fixed integers and consider the congruence = over A* generated
by

M=yt g€ 4%, (2.4.1)

Once more, each square-free word defines an equivalence class, and thus the
monoid A% /= is infinite. In fact, this result also holds for a two-letter
alphabet (Brzozowski, Culik II, and Gabrielian 1971).

These considerations can be placed in the framework of the classical
Burnside problem (originally, the Burnside problem was formulated for
groups only, but it is easy to state for semigroups also): Is every finitely
generated torsion semigroup finite? (A torsion semigroup is a semigroup such
that each element generates a finite subsemigroup.) We have just seen that
the answer is negative in general, and this is due to the existence of infinitely
many square-free words. For groups, the answer also is negative (see
Chapter 8 in Herstein 1968). Moreover, the groups of exponent n —that s,
groups where each element has exponent n—are in general infinite (see
Adjan 1979). The proof uses the fact that there are infinitely many square-
free words. For another result on the Burnside problem, see Chapter 7,
Section 7.3,

In one special case, surprisingly, the answer is positive. Let A4 be an
arbitrary finite alphabet, and consider the congruence ~ generated by the
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relations
W~ W, weE A¥, (2.4.?.)
The quotient monoid
M= A%/~
is called the free idempotent monoid on A; indeed, any element in M is

idempotent (mm = m), and any finitely generated idempotent monoid is
easily seen to be a quotient of a free idempotent monoid,

THEGREM 2.4.1 (Green-Rees). The free idempotent monoid on A is finite
and has exactly

g(z) M (k—i+1) (2.4.3)

Kz 0 1=isk

elements, where n= Card( 4).

The numbers (2.4.3) are growing very rapidly. For n=10,1,2,3,4, they arc
1,2,7,160,332381.

Before starting the proof, it will be interesting to note the difference
between the relations (2.4.1) and (2.4.2). For the congruence defined by
(2.4.1), two distinct words can be congruent only if both contain at least one
pth power, for p = min(m, n). On the contrary, two distinct square-frec
words may be congruent for ~. Indeed, the defining relations allow
introduction of squares and then dropping of other ones. We give now a
nontrivial illustration of this situation by venfying that x~ y with x=
bacbcabe and y = bacabe. Both x and y are square-free words, and they are
also equivalent. Indeed, note first that with u = abcaca, we have (boldfaced
factors are those to be reduced) uy = gbcacabacabe ~ abcacabe ~ abeabe ~
abc whence x = {bache Yabe ~ bacheuy = vy for v = bacbcu.

Wext, for r = beabacbcachbebac, we have

xr = bachcabebeabacheachebac
~ bacbeabacbeachcbac
~ bacbeachebac ~ bacbebac ~ bachac ~ bac

whence
¥ = bacabc ~ xrabc ~ xs
with s = rabc. Finally,
X 0Y ~ OPY ™~ XY~ XXS ~ XS~ Y,

which proves the claim.
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Proof of Theorem 2.4.1. Recall from Chapter | that for we A*,
alph(w) = {a€ 4| |w]|,# 0}

[t is clear that x ~ y implies alph(x) == alph( y). First we prove the following
claim:

Claim (©). If alph{ y)} C alphx), there exists u such that x ~ xyu.

This is indeed clear if y = 1. Assume | y| =1, and let y == y'a with g€ 4.
By induction, there is a word #” such that x ~ xy'y’, Furthermore, a €
alph(x), whence x = zaz’. Thus for u=z"y'u’

Xyu == Zaz'y'az'y'u’ ~ zaz'y'w' = xy'u’ ~ x.

This proves Claim (i),

For x& A7, et x” be the shortest left factor of x such that alph(x’)=
alph{x). Setting x"= pa for some p € A%, a € 4, we have alph( p) = alph(x)
—{a}. Symmetrically, the shortest right factor x” of x with alph(x) =
alph(x) has the form x” = bq for some b€ A, g€ A* and alph(q) = alph(x)
—{b}. Thus to x there is associated a quadruple ( p, a, b, g). We write this
fact x =(p, a, b, g}, and prove:

Claim (ity. If x = (p, a, b, q), then x ~ pabyg.

Indeed let, x= pay = zbq. Since alph(y) C alph{x) = alph( pa), there is
by (i) a word u such that pa~ payu = xu. Since alph( pa) Calph{sgq), the
dual of (i) shows that there s a word v with g ~ vpabg = o, where
£= pabq. This Implies that

X = pabg ~ xubg = xw
for w = ubg and
x = zbg ~ 20X = (R
for t = zv. Whence

X R~ (KR o XR ~ xEW ~ W~ R
This proves (it).

In view of Claim (if), we can show that M is finite as follows. Assume that
the finiteness holds for alphabets that have fewer elements than A. If
x=(p,a,b,q), then Card(alph(p)) < Card{4) and Card(alph(g))<
Card( A}, thus there are only finitely many ps and ¢s modulo ~. Since there
are only finitely many letters, M itself is finite. In order to compute the
number of elements in M, we prove the following equivalence.
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Claim (ili). Let x=(p,a,b,q) and x'={(a’,a’, V', q"); then x~x' if
p~p.a=a,b=b,g~q.

Suppose first that p~p’, a=a’, b=V, ¢~ q'. Then pabg~ p'a’b'y’ any
x~ x’ by (if). Suppose now x ~ x", One can assume that x = afy, x'= af?,
for some words a, 8, y& 4*. We distinguish two cases.

Case 1. |aB|>|p|. Setting x = pay, we have
af = pat, =ty
for some ¢ in A”. Then x’= patBy and alph( p) = alph(x)~{a} = alph(x
—{a}. Thus by definition p’= p and a’=a.

Case 2. |aBi=<| p|. Setting x = pay, there is a word s€ 4* such that
p=aBs,  y=sag.

Then x’ = afi*sag and alph(af?s) = alph{afs) = alph{x)—{a} = alph(x")~
{a}. Thus by definition p' = af%s whence p’~ p,a=a’.

The relations b =5', ¢ ~ ¢" are proved in a symmetric manner.

We now are ready to compute the number of elements in M = 4* /~. Let
. A* - M be the canonical morphism and let, for BC 4,

B={x€ 4*|alph(x) = B)}.

Then A* is the disjoint union of the sets B, BC A. Since x~ x’ implies
alph(x) = alph{x")}, each B is a union of equivalence classes mod ~, whence
M is the disjoint union of the sets w(B), B C A.

In view of Claim (iii), if B+ &, there is a bijection

w(B)~ U #(B—{a})x{a} x{p} x=(B=1{b})

a beA
Thus if Card(B) = k =1, and setting ¢, = Card(=(B)), we have
= klc,%__ 1t
Clearly ¢, = |, whence
k ‘
i1
Consequently, M being the disjoint union of the n(B),
n
Cad M= 3 (")c,.
k=0 ( k ) *

This completes the proof. ]
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Notes

_ Axel Thue was the first author to investigate avoidable regularities,
g%éciaUy words without overlapping factors and square-free words. His two
papers (Thue 1906, 1912) on this topic contain the definitions of the words ¢
aid m, and the proofs of Theorems 2.2.3 and 2.3.1 as reported here.
Theorem 2.3.3 is a slight improvement, due to Bean, Ehrenfeucht, and
McNulty (1979), of a result of Thue. The infinite word ¢ was discovered
idependendy by Morse (1921, 1938), the square-freeness of m was proved
by Morse and Hedlund in 1944, Braunholtz in 1963, and Istrail in 1977,
Many other papers have been written on infinite square-free words or
related topics (Arson 1937; Dean 1965; Gottschalk and Hedlund 1964;
Hawkins and Mientka 1956; Leech 1957; Li 1976; Pleasants 1970;
Shepherdson 1958; Zech 1958; Dekking 1976; Entringer, Jackson, and
sehatz 1974; Ehrenfeucht and Rozenberg 1981; Main and Lorentz 1979;
Crochemore 1981). As noted by Hedlund in 1967, some of the work done
Iater is already contained in Thue’s papers, which were forgotten for a long
time,

.One of the problems raised in Thue's 1912 paper that has been signifi-
cantly developed concerns the distance between two occurrences of a factor
in a word. Indeed, an infinite word a is square-free iff whenever xyx is a
factor of a with x 5% 1, then y 5 |, Thus one may define the number

e,(x)=min{] y|: xyx is a factor of a}

and look for lower bounds for e (x). Thue gives an infinite word a over k
letters (for each k= 3) such that e, (x)= k —2 for all x occurring twice in a.
F. Dejean (1972) improves this inequality. She constructs an infinite word a
over three letters such that

ea(x) =3x|

for all factors x occurring twice in x. She also shows that this lower bound is
eptimal. Pansiot, in a forthcoming paper, handles the case of four letters.
For more than four letters, the sharp value of the lower bound remains
unknown.

Square-free morphisms and more generally k th-power-free morphisms are
investigated in Bean, Ehrenfeucht and McNulty 1979, Characterizations of
square-free morphisms are given in Berstel 1979 and Crochemore 1982.
Bean et al. introduce the very interesting concept of so-called avoidable
patterns, which are described as follows:

Let E and A be two alphabets. For easier understanding, E will be called
the pattern alphabet, a word in E™ is a pattern. Letw =¢ee,- - e, (¢,€E)
be a pattern. A word u in A" is a substitution instance of w iff there is a
nonerasing morphism A: E*- A* such that u = Mw). Equivalently, u=
XXy - X, with x),...,x, € 4™ and with x, = x; whenever ¢, =¢,. Setting
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for example E = {e}, 4= {a. b, c}, the word « = abcabe is a substitution iy,
stance of ee.

A word u in A~ avoids the pattern w in E¥ iff no factor of u is 5
substitution instance of w. Thus for example u € 4™ avoids the pattern ee if
u is square-free, and v avoids ee’ee’e iff u has no overlapping factor. Given 4
pattern w in Et, w is called avoidable on 4 if there exist infinitely Many
words u in A* that avoid w. The existence of infinite square-free words, apg
infinite words without overlapping factor can be rephrased as follows: The
word eg is avoidable on a three-letter alphabet, the word ee’ee’e is avoidable
on a two-letter alphabet. This formulation, of course, raises the question of
the structure of avoidable patterns. Among the results of the paper of Bean
et al, we report the following: Let n=Card £; then there is a finits
alphabet 4 such that every pattern w with |w| = 2" is avoidable on A.

Another Interesting extension of square-freeness is abelian square-free.
ness, also called strong nomnrepetitivity, An abelian square is a word uy’,
such that u” is a rearrangement of u, that is {u], = {u’{, for each letter a. A
word is strongly nonrepetitive if it contains no factor that is an abelian
square. Calculation shows that over three letters, every word of length =8
has an abelian square, On the other hand, Pleasants (1970) has shown that
there is an infinite strongly nonrepetitive word over five letters. This
improves considerable the previously known bound of twenty five letters
given by Evdokomov in 1968. The case of four letters is still open. For
refated results, see Justin 1972, T. C. Brown 1971, and Dekking 1979.

Concerning idempotent semugroups, Theorem 2.4.1 is a special case of a
more general result also due to Green and Rees (1952). Let r==1 be an
integer. Then the two following conditions are equivalent:

(i) Any finitely generated group G such that x” =1 for all x in G is finite
(i} Any finitely generated monoid M such that x™ ' = x for all x in M is
finite.

The case considered in Theorem 2.4.1 is r =1, and in this case the group
G is trivially finite. For a proof of the theorem, see Green and Rees 1952 or
Lalternent 1979. Note that there are integers » such that condition (i), and
consequently (i), does not hold; r = 665 is such an integer (see Adian 1979).
Moreover, Theorem 2.4.1 was generalized by Simon (1980) who proved the

result that for a finitely generated semigroup § the following three condi-
tions are equivalent:

(i) § is finite,
(1)) § has only finitely many nonidempotent elements.
(1) There exists an integer m such that for each sequence (s,,...,5,,} in §
there exist i, j (¢ < j) such that s,- - - 5; 15 idempotent.
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Problems
Sition 2.1

41; Let P be a property of words of A* such that I={w|P(w}} is a
& two-sided ideal. Each infinite word on A has a factor in Tiff 4*— Iis
finite ( Hint: Apply Lemma 2.1.2 to (not P).} (See Justin 1972))

22@1 Assume that wuu is a left factor of 7. Then for some n =0, {u|=2"or
e {u| =3.2" and {w{ is a multiple of 2" If ¢ is any morphism such that
t=o(t), then ¢ = p™ for some m = 0. (See Pansiot 1981.)
2.2.2. To each infinite word a over 4 = {a, b}, associate the formal power
series

T &X'

(At

in the variable X and coefficients in F, = Z /2Z defined by 4, =0 or |
according to whether a(f) = a or b. Let y and § be the formal power
series associated to t and i, respectively. Then y and y are the
solutions of the equation

(1+XY22+(1+ X)z+ X=0

in the ring of formal power series over F,. (See Cristol, Kamae,
Mendes-France, and Rauzy 1960.)

2.2.3. To each function f: N - N with f(0) = 0 and f(n + I} — f(n) positive
and odd for n=0, associate the infinite word on 4= {a, b} defined
by

B = @aOray " By " s

where v, =p*(b). Each a,is an infinite word without overlapping
factor, the mapping fia, is injective and consequently the set of
infinite words over A without overlapping factor is not denumerable.
(This is a simplified version of a construction of Kakutani, as
reported in Gottschalk and Hedlund 1955.)
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Section 2.3

23..

23.2,
2.3.3.

*2.34.

2.35.

2.36.

2.3.9.

For cach infinite word a=aga, - -a,--- on 4= {a, b}, define ay
infinite word b=byb,---b,--- on B={(a, b,c} by

a ¥ a,a,.,=aa or bb
b=1b il aja,.,=ab

¢ it a,a,,  =ba

If a has no overapping factor, then b is square-free, If a=1t, then
b=m (Morse and Hedlund 1944).

Prove Proposition 2.3.2 (See Istrail 1977 and also Dekking 1978.)
Define a sequence w, of words over {a, b, c} by

wy, =1,

Wn+]=WnaWnbwnCWn (n;a=0).

Then m =hmw,. (Due to Cousineau unpublished.)
Define over 4 = {a, b, ¢} two mappings 7, ¢ by m{a) = abe, 7(b) = bea,
7(c)=cab and «(d}= w(d) (d& A). Extend 7 to 4* by

m(aa, --a,)= m{a {ay)m{ay)la,)--- .

Then a=w*“(a)} is an infinite square-free word, (See Arson 1937; see

also Yaglom and Yaglom 1967.)

A morphism a: A*-» B* is called kth power-free if a(w) is kth

power-free for each kth-power-free word w. If a: 4*— B* is a

square-free morphism such that

(i} no a(a) is a proper factor of an a(b) (a, bE A),

(i) no a(a) has a nonempty proper left factor that is also a right
factor of a(a),

then a is kth power-free for all k >1. (See Bean, Fhrenfeucht, and

McNulty 1979.)

The set of infinite square-free words over three letters is not denumer-

able ( Hint: Use Problem 2.2.3.)

With the notations of Theorem 2.3.1: b is a square-free word such

that neither aba nor acbea is a factor of b, if and only if 8(b) has no

overlapping factor. (See Thue 1912)



CHAPTER 3

van der Waerden’s Theorem

3,0. Introduction

This chapter is devoted to a study of van der Waerden’s theorem, which
is, according to Khinchin, one of the “pearls of number theory.” This
theorem illustrates a principle of unavoidable regularity: It is impossible to
produce long sequences of elements taken from a finite set that do not
contain subsequences possessing some regularity, in this instance arithmetic
progressions of identicai elements.

During the last fifty years, van der Waerden’s theorem has stimulated a
good deal of research on various aspects of the result. Efforts have been
made to simplify the proof while at the same time generalizing the theorem,
as well as to determine certain numerical constants that occur in the
staternent of the theorem. This work is of an essentially combinatorial
nature. More recently, results from ergodic theory have led to the discovery
of new extensions of van der Waerden's theorem, and, as a result, to a
topological proof.

The plan of the chapter iflustrates this diversity of viewpoints. The first
section, after a brief historical note, presents several different formulations
of van der Waerden’s theorem. The second section gives a combinatorial
proof of an elegant generalization due to Griinwald. The third section,
which concerns “cadences,” gives an interpretation of the theorem in terms
of the free monoid. In the fourth section is presented a topological proof of
van der Waerden’s theorem, due to Firsienberg and Weiss, The final
section is devoted to related results and problems: estimation of various
numerical constants, Szemeredi’s theorem, conjectures of Erdos, and so on.

3.1. Classical Formulations

Some forty years after he proved the theorem that bears his name, van der
Waerden published an article (1965 and 1971) in which he describes the
circumstances of the theorem’s discovery. In 1926, in Hamburg, the

39



a0 van der Waerden’s Theorem 3,

mathematicians E. Artin, O. Schreier, and B. van der Waerden set to work
on the following conjecture of the Duich mathematician Baudet:

ProrosiTion 3.1.1. If N is partitioned into two classes, one of the classes
contains arbitrarily long arithmetic progressions.

The conjecture was extended by Artin to the case of a partition of N into
k classes. (By a partition of a set E into & classes we mean a family
b={E,,...,E.} of pairwise disjoint subsets of £ whose union is £). The
generalization of Baudet’s conjecture is thus:

ProrosiTion 3.1.2. If N is partitioned into k classes, one of the classes
contains arbitrarily long arithmetic progressions. 5

The conjecture was sharpened by Schreier and proved by van der
Waerden in the following form:

TueoreMm 3.1.3. (van der Waerden’s theorem). “For all integers k, IEN
there exists an integer N(k,1YEN such that if the set {0,1.....N(k,I}} s
partitioned into k classes, one of the classes contains an arithmetic progression
of length 1.

It can be shown directly that statements 3.1.2 and 3.1.3 are equivalent. In
his account, van der Waerden proposes a diagonal method that amounts to
using the following compactness argument,

Let us fix the integers k& and /£ 1f 3.1.3 is false, then for each n &N there
exists a partition &, ={E, ,....E, .} of {0,...,n} into k classes such that
no class of &, contains an arithmetic progression of length /. We associate to
each &, a sequence x, < {0,...,k}N defined by

~_ [ il i€E,,
i)w= '
xal) {0 if i>n.

Now consider the set K = {0,...,k}" of all sequences with values in {0,...,k}
as a topological space with the product topology: K is then a compact
metric space that admts the distance function

. 1
d(y,,yz):mf{m’y,(n):yz(n) forallnsuchthat0€n<k}.

Thus the sequence (x, ), =n has at least one limit point x & K, so for each
*EN there exists an integer n(r) such that the first r values of x,,,, and x
are equal. It follows that every term of x isin {1,2,...,k}. Now consider the
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partition F=[F,... F) of N defined by
1€ F iff x(1)=J.

Suppose some class F; of ¥ contains an arithmetic progression of length /.
Then x(tg) = x{1o + @)=+ -+ = x(t; +(! —Da)=1i for some {,EN and a>
(. Thus for some n, x,(25) =X (to+ @)= = x(ty +(I —1)a)=i, conse-
quently the progression {fo, 7, +4,...5 +(/-1}a} is contained in E, ,,
contrary to the hypothesis. So no class of & contains an arithmetic progres-
son of length I, which contradicts Proposition 3.1.2. Thus 3.1.2 implies
31.3. Since 3.1.3 clearly implies 3.1.2 the equivalence of the two statements
is proved.

5,2. A Combinatorial Proof of van der Waerden’s Theorem

The present exposition follows that of Anderson (1976), who proves the
following more general result, due to Grimwald (unpublished).

TarorEM 3.2.1. Let S be a finite subset of N9, For each k-coloring of N9
there exists a positive integer a and a point v in N9 such that the set aS+ v is
monochromatic. Moreover, the nimber a and the coordinates of the point v are
bounded by a function that depends only on 8 and k (and not on the particular
coloring used).

(In this statement the word “k-coloring” is synonymous with “partition
into & classes.” Two points of N are of the same color if they belong to the
same class of the partition. A monochromatic set is one in which all the
elements are of the same color.)

Figure 3.1 illustrates the assertion 3.2.1 in the case k=2 and 4 = 2. Begin
by noting that Theorem 3.2.] implies van der Waerden's theorem. Indeed,

L1

Figure 3.1. Case d=2,k+2.
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i
since van der Waerden’s theorem is equivalent to statement 3.132 j

enough to observe that 3.1.2 follows inmmediately from 3.2.1 upon takmlz
d=]and §={0,1,....0 —1}.

Proof (combinatoric) of Theorem 3.2.1. In the following, S denotes a fiyy,;
subset of N¥ and s an element of N K, denotes the cube of side X
consisting of those points of N¥ all of whose coordinates are less than n, The'
proof consists of establishing the following statement by induction on |,

A(S): for each integer k €N there exists an integer n = n(k) such that fy
every k-coloring of K, K, contains a monochromatic subset of the fory
asS+ o.

Theorem 3.2.1 follows from the statements A(S). Indeed, the number
and the coordinates of v can be bounded by n, since a5+ v 1s contained iy
K,

Let us begin by observing that A(S} is true if § is empty or consists of 3
single point, since any set of cardinality <1 is necessarily monochromatic,
Henceforth we will suppose that S is nonempty.

To show that A(S") implies A(SU {s}) we introduce an auxiliary statement
C( p), where § is fixed and peN.

C(p): Let k€N and s€N. Then there exists an integer n = n( p, k,5)
such that for each k-coloring of K, there exist positive integers a,, 4y,...,a

and a point ©€ N9 such that the ( p 4+ 1) sets !
T;,mu-l-( 2 a,-)S”}”( b a,-)s (0=sg=<p)
DLi g gi<p

are monochromatic subsets of K. :

These “intermediate” assertions between A4(S) and A(SU {s5}) are proved
by induction on p.

p =0: Choose n such that s€ K, and then set u=(0,...,0) and a,=1.
Then 7; = {s} is a monochromatic set contained in K,. Passage from p to
p+1: Let n=n( p, k, 5) be the integer specified in the statement C( p) and
let k' = k", If k colors are available, then there are &’ ways to color the cube
K, (since K, contains n? points). Thus each k-coloring of N? induces a
k’-coloring of N Two points 1 and v will have the same color in the new
k'-coloring if and only il the cubes u+ K, and v + K are colored identi-
cally in the original k-coloring of M. It follows from A(S) that there exists
an integer n' = n'(k") such that for every k’-coloring of K, K. contains a
monochromatic subset of the form a’S+ v/,

Let N =n+n’, and consider a k-coloring of K. This can be extended, in
arbitrary fashion to a k-coloring of N, which induces, as described previ-
ously, a k'-coloring of N? Since N>n" K x contains a monochromatic
subset (with respect to the induced coloring) of the form &’S+ v’. This
means that the |5} cubes K, + a’t ¥ o’ (where ¢ runs over all the points of
§) are colored identically with respect to the original k-coloring. However
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P, K, contamns monochromatic sets

1;=u+( 2 a,.)S+( 2 a,)s (0=g=p).

o=i<q g=i=p

ows, upon setting by =a’ and b, == a,_, for |<<i< p+1, that the sets

;;z(uw')»}«( ) b,.)s+( X b,-)s (0O=g<sp+l)

G<i<yg gEisp+]

nochromatic. Indeed, if 1<g=<p+1, I=T,_,+a’S+ v, which is
inochromatic by construction, If g = 0,

=(u+v’)+( 2 b,.)s

O=isp+1i

is a singleton and hence monochromatic. Thus C(p+ 1) holds, with
A1,k 5)=N.

. Let us now prove A(SU {s}). Fix the number of colors k and apply C(k):
fiere is an integer n such that for every k-coloring of K, there exist k -+
ﬁ%ﬁochmmahc sets Ty,..., . By the pigeonhole principle, two of these sets
(&3{ T, and T, where r< q) must be of the same color:

7}“~—“u*+ﬁ( E a,-).S'w%( E a,-)s+( 2 a,-)s

g=i<r r<i<g gEisk
T=u+( 2z ai)S~1~( 2 a,-)Smin( 2 a,)s
g Gi<r r<i<g g=i=<k

Since we supposed § to be nonempty at the beginning of the induction, §
contains at least one point s,,. [t follows that the set

me( 2 ai)sﬂ+(r3‘_)<qai)(su{s})+( pX a,.)s

o=i<r g=is<k

is monochromatic and contained in X, .
Setting

a= 3 a, and v=ut+| 2 ai)s0+( 2 a,—)s,

ricg O=i<r g<i=k

we find that T= a(SU{s))+ v, which establishes A(SU{s}) and completes
the proof by induction. [ |
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3.3. Application to the Free Monoid

The following interpretation of van der Waerden’s theorem in words j
based on the definition of cadences, first introduced by Gardelle ang
Guilbaud (1964) 1n a slightly different form.

Let T={r,,...,t,} be a finite subset of N with 0<¢,<<¢, --- <t and |y
u=a, - -aa,. ..., EA) be a word in A*. Tis a cadence of uif « p Sy
and 1f a, =a, =" . The number n is called the order of the cadenge,

Let S be a finite subset of N. A cadence of type S of 115 a cadence of u of
the form «85+ B, where « and # are positive integers,

A cadence of the form T's=aS+ f (where o, 8 > 0 and S = {0,1,...,n ~1
is called an arithmetic cadence with common difference a.

Example. The word abbabbabbaab has an anthmeuc cadence of order 4
(=13, B=13,85={0,12,3}). The word abbaabba has no arithmetic cadence
of order greater than 2. The set {1.4,5,8} is a cadence of this word.

Now that we have the defrmtions we can reformulate van der Waerden’s
theorem. To do this, it is enough to observe that a word # of length n overa
k-letter alphabet A4 partitions the set {1,...n} into & classes, each class
consisting of those positions in # where a particular letter occurs, We thug
obtain a bijection between A" and the set of partitions of {1,...,r} into k
classes, giving the following interpretations of Theorems 3.1.3 and 3.2
(withd =1).

ProposTIiON 3.3.1. ff A is an alphabet with k letters and n is an integer,
there exists an integer N = N(k, n) such that each word of length = n has an
arithmetic cadence of order n.

ProrosITION 3.3.2. Let S be a finite subset of N and A be an alphaber with
k letters. There exists an integer N, depending only on 8 and k, such that every
word of length = N has a cadence of type S.

We can, moreover, show directly that these two statements are equivalent:
Proposition 3.3.1 follows from 3.3.2 by setting §=(0,1,...,n~1}, Con-
versely, let § be a finile subset of W and let m be the largest element of S.
By (3.3.1), there exists an integer N such that every word w in 4* of length
= N has an arithmetic cadence of order m + 1, that is, a cadence of the form
al+ B, where T={0,1,...,m}, >0 and 8> 0. Since § C7, it follows that
aS + B is also a cadence of w that establishes Proposition 3.3.2.
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34. A Topological Proof of van der Waerden’s Theorem

The source for the purely topological proof of van der Waerden’s theorem
1o be presented here is the 1978 article of Firstenberg and Weiss, from
which this section borrows considerably. The interested reader shoutd
consult this article for the topological tools used in the proof, along with
pumerous extensions of the theorem. In the present exposition effort has
pecn made as far as possible to limit the references to topology. We only
suppose that the reader is familiar with the usual topological tcr'minolog)'r:
open set, closed set, compact space, continuous function, Hmit point, metric
space, and so forth.

A topological argument has already been used in Section 3.1 to show that
van der Waerden’s theorem is equivalent to the following statement:

If N is partitioned into k classes, one of the classes contains arbitrarily long
arithmetic progressions.

This is the proposttion that we will now prove again by topological
neans.

Let €= {C,,C,,...,C,} be a partition of N into k classes and let p be a
positive integer. Consider the space £ = {1,2,...,k}* of all functions from Z
into {1,...,k} with the product topology: This is a compact metrizable
space that admits the distance function

F A W— i
d(t.r,;.r)—-mf{~v~~~~m~~~r+i

w(n)=u'(n) forall n suchthat~—r<n<r]_

Let v&€ E be the function defined by

v(n)={r if n®0 and ned,
I if n<0

We will show that there exist positive integers m and n such that
v(m)=ov(m+n)=-- =o({m+ pn) (3.4.1)

that is, that C,,,, contains an arithmetic progression of ( p -+ 1) terms. Let
§:  E — F be the shift operator defined by (Su)(n)=u(n+ 1} forallnc Z.
§ is a homeomorphism from E onto itself. Let X be the set of limit points of
the sequence (5"0),an. X 1S nonempty because E is compact, and X is
closed in £ and therefore is itself compact. We will show that there is a
closed nonempty subset K of X that is stable under § (that is S(K)= K)
and minimal with respect to these propertics. This follows from Zorn’s
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lemma. Indeed, the set & of closed sets that satisfy these conditions (which
nonempty, since X< &) is ordered by inclusion. Let ¥ =(F),.,bea totally
ordered faruly of elements of &. Then = F is stable under § and j
contained in X. Now since ¥ is totally ordered, every finite subfamily of §
has a nonempty intersection. It follows from the compactness of X that Fij
nonempty. Thus F is a lower bound of ¥ and Zorn's lemma can now b,
applied. The set K was introduced for the purposes of the following
proposition, which is the key to the proof:

PROPOSITION 3.4.1. For each £> () there exists an element z of K and gy
integer n >0 such that d(8"z, 2} < &, d(§%"z, 2) < &,...,d( 8"z, 2} < ¢.

This proposition will be proved by induction on p. For p = 1, it suffices v
observe that if x& K, then the sequence (5"x), = has a limit point in £-
thus for each £>0 there exist integers << j such that d(S5%x, Sx) <z We
find, upon setting z =S'x and n= j—i, that d(8"z,z)<¢, and the result
follows.

Suppose now that the proposition is true for afl positive integers up
through p — 1. We will need two intermediate lemmas.

Lemma 3.4.2. For each £ 0 there exists a finite set of integers k..., k,
such that for all a, b€ K, min, ., . yd(S%a, b)<e.

Proof. Here is where we use the fact that K is minimal. Recall that the
only closed sets—and, by complementation, the only open sets——of K that
are stable under § are @ and K. Thus if w is 2 nonempty open subset of X,
U, z5"w is 2 nonempty open subset of X stable under S, and hence the
family ($"0),c 7 covers K. Since K is compact, a finite subfamily covers K.
Let {w,...,®,} be a finite covering of K by open sets of diameter <e.
Then, for i=1,...,n, there exists a finite family {S"/@,}, < ;«,, that covers
K. Let a,bc K. Then b€ w; for some i€ (1,...,n}. Since {S"w} .« wr,
covers K, a€ S iw, for some je{1,...,r). Therefore §7™/a€ w, and thus
d(S Mg, by<<e It follows that

min  min Jd(85 " /a,b)<e,
=i l=j=r,

which proves the lema. |

Lemma 3.4.3. For all =0 and for all ac K there exist b& K and n>>10
such that d(S™h, a) <g,...,d(§°"b, a) <«

Proof. By Lemma 3.4.2 there exist integers k,...,k, such that for all
a,be K, min, ;. yd(S*a, b)<e/2.
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gince each S* is uniformly continuous on K, there exists a positive real
qumber 7 such that d(a,a)<n implies d(S*ia, SaY<e/2 for i=

N
L%g follows from the inductive hypothesis that there exist ay& K and n>0
guch that

d(S"ao, ao)'(ﬂ,...,d(s(pw')nao,a0)<ﬁ
Setting by =57 "a, we obtain
d(S"bo, ao) < T’,...,d(Span, ao) <'Q,
from which it follows that
d{ 5™ kiby, Shiay) <e/2,...,d(SP kb, Skiay ) <e /2
for i=1,...,N. (3.4.2)

For each a€ K there is an index j such that d(S%a,, a)<e/2. Finally,
setting b = S*b, yields

a(S"h,a)<e,...,d(SP"b,a)<¢, (3.4.3)
from which Lemma 3.4.3 follows. -

‘The proof of the proposition can now be completed, Let g, be a point in
K. We will construct by induction a sequence a,,...,a, of points in K, a
sequence n,,...,n, of positive integers and a sequence e,,....e, of real
numbers <e/2, such that for all i >0,

d{S"a, a;_,)<e;/2,...,d(§""a, a,_,)<¢ /2. (3.44)

Set &, =& /2. By Lemma 3.4.2, there exist a,¢X and n, > 0 such that Eq.

(34.4) is satisfied (with i =1}, By induction, assyme that the construction is
done for 1< i<r and choice ¢, , <e/2 such that d(a, a")<e,,  implies

d(8™a, Sma’y<eg, /2--- d(S7"a, §P"a’) <, /2. (3.4.5)

By Lemma 4.4.3, there exist a,, € K and n,, ;>0 such that Eg. (3.4.4) is

satisfied with i =r + 1,
Actually the following result holds for all i, j such that 0 <i< j

d(.‘j‘"!+ T, a,ml) <gct d(S-"("J"*"'J'"")aj, a,_}) <. (3.4.6)

We prove {3.4.6) by induction on j —{. For j — i = 0, the result follows from
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Eq. (3.4.4). Assume now j — i>> 0. We have by induction
d(S"f+ -{-nr+laj_’aj)<£j+[.. .d(SP(ﬂI-P ".4l)aj,,ai)<€‘+l. (3.4_7)

Hence by Eq. (3.4.5)

d(S"f_i‘ "‘"raj, S"ia,-) <g /- d(SP("I"P +n')aj'a Spn'aa‘) <g/2
(3.4.8)

Therefore Eq. (3.4.6) follows from (3.4.4) and (3.4.8),
Since K is compact, there exists a pair { < j such that d(a;, a;)<e/2 1t
follows from (3.4.6) that

d(S"a;,a;}<e -+« d(S*"a;,a;)<e (3.4.3)

withn=n, ,+ --- +n»,. This proves Proposition 34.1.

Proposition 3.1.2 now follows easily, Indeed, Proposition 3.4.1 implies
that there exisis an ¢lement z of K and n>0 such that 4(8"z,:)
<d, ..., d(§%"z, 2)< .

By the definition of the distance function, 2{0) = §"z(0}=- - - = $#"z(}),
or, equivalently,

20y =z{n}=-.- = z( pn). (3.4.10)

On the other hand, since z€ K,z is a limit point of the sequence
(85"0),en Thus there exists an integer m>>0 such that d{S$"v, z)<
1/{pn+1). Hence

i) = (S"o)(i) = o(m+i) for O<i<pn (3.4.11)

The Proposition 3.4.1 now follows at once from Egs. (3.4.10) and (3.4.11),
completing the proof of Proposition 3.1.2.

3.5. Further Results and Problems

The principal unsolved problem concerns the values of the numerical
constants that occur in the statement of van der Waerden’s theorem. Let us
denote by AN(k,/) the smallest integer for which every partition of
{1,....N(k, )} into k classes contains at least one arithmetic progression of
fength /. Upper bounds on N{(k,!) obtained directly from the combinatoric
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m;)f of the theorem are astronomical, as they involve pileups of exponents,
(More precisely for & =2 fixed, these upper bounds are not even primitive
recursive functions of /). Moreover, no * reasonable” upper bounds are
gnown. The first few values of N(k, I) are known:

El 1 2 3 4 5
1 1 1 1 1 1
2 2 3 4 5 6
3 3 9 27
4 4 35
5 5 178

Because upper bounds appear to be cut of reach, most of the work has been
aimed at finding lower bounds for N(k, 7).
In 1952 Frdds and Rado proved the following result:

Nk, 1)= () - DK (35.1)

A combinatorial proof of (3.5.1) will be given shortly. This bound was
improved in 1960 by Moser, who used a constructive method.

Nk, {)= [keloek, (35.2)
where ¢ 15 a constant.

The other known results concern N(2, 7). In 1962 Schmidt used a prob-
abilistic method to prove

N(z’ [) o= pi—etiiog 1)!/2’ (353)

where ¢ is a constant.
The best lower bound known was found by Berlekamp (1968), by means
of a constructive method using the finite fields GF(2'):

If lis a prime and 1325, then N(2,1+1)> 2. (3.5.4)

In one of his survey papers, Erdds (1977) also mentions the following
lower bound, which is valid for every /.

N2, 1) =c2, (35.5)

where ¢ is a constant. It appears that these bounds are still quite rough.
Indeed, Erdds has conjectured that N(2, [)'/' - o0, but, so far as we know,
this has not been proved.
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To prove the lower bound, Eq. (3.5.1): Set N = N(k,!+1). We will begi,
by counting the arithmetic progressions of length /+ | in {1,...,N}. First
all, the common difference r of such a progression can vary between | g4
(N ~1)/1]. Second, the first term of the progression lies beiween 1 apy
N --rl, It follows that the number of progressions is

M= 3 (N—ﬂ)z%[ﬂ}ij(zwnzwzlﬁm}i])

e 2

<z LN (N-1)

and thus

NZ—} N?
M<= 3 <73
On the other hand, the number of partitions of {1,..., N} into £ classes iy
kY. Let 1<a,<a, -+ <d,.,< N be an arithmetic progression with (/+1)
terms. The number of partitions of {1,..., N } nto k classes such that one of
the classes comtains thus progression s k™' (indeed, the class of each
element of {1,....N\[4,,. .,4,.,} can be chosen arbitrasily, then the
elements a,,...,4,,, must go into the class containing 4,).

It follows that the number of partitions of {1,...,N} into & classes such
that at least one of the classes contains an arithmetic progression of length
{+1is at most Mk™~!, However, by the definition of N every partition of
{l,...,N} into k classes satisfies this property. Thus &< M&™™', from
which it follows that &'<< M<NZ2/2[ and N= N(k, [+ 1) >QIk')'/2

More than forty years ago, Erdds and Turan (1936) introduced anothe
numerical constant connected with van der Waerden’s theorem: Let us
denote by r(n) the smallest integer such that every subset of {1,...,n} with
ri{n) elements contains an arithmetic progression of length /. For example
the reader can check that r(10)=9 as {1,2,3,5,6.8,9,10} contains mno
arithmetic progression of length 4, but every subset of {1,..., 10} with nine
elements contains such a progression. This example is taken from an artick
by Wagstaff (1979) that contains a table of the first few values of r,(n)~ L.

As Szemeredi (1975) has pointed ou, there is good reason to study these
numbers. Estimation of r,(n) is in itself interesting, and moreover, 1t can
eventually lead to upper bounds for N{k, /). Indeed, it is easy to see that if
r(n)/n<\/k for some integer n, ther N(&, )<<n /k. Finally, estimation of
r{n) is related to an old conjecture in number theory that asserts the
existence of arbitrarily long anthmetic progressions of primes, Let #(rn)
denote the number of primes < n; to prove the conjecture it would suffice to

show that for each [ the inequality r(n)<w(n) holds for at least one value
of n.
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Here is a short historical summary of estimations of r/(n): The triangle
inequality
r{m+n)<r(m)+r(n), (3.5.6)
coved by Erdds and Turan in 1936, leads to a fairly easy proof (see
Problem 3.5.2) that

im ) o g fi%lq, (35.7)

o N n>0
(cf. Behrend 1938). Exdds and Turan (1936) showed that
c,<3/8 (3.5.8)

and conjectured that ¢, =0 for all /. In 1938 Behrend showed that if the
conjecture is false then lim, . ,.c,=1.
In 1942 Salem and Spencer proved the inequality

n'” lug;’gn < f'3(ﬂ) (3.5.9)
for sufficiently large n. This lower bound was improved by Behrend (1946):

ne~oBm < p. (1), (3.5.10)

Furthermore, Moser (1953) found an infinite sequence that contatns no
arithmetic progression of length 3 and that makes it possible to show that
Eg. (3.5.10) holds for all # > 0. Behrend’s result was generalized by Rankin
{1960}, who found the following lower bounds

ne_c(logn)b1<ri(n) Whmb::[]%]‘ (35.11)

The best upper bound for n(n) now known is due to Roth (1952):

(%]

rin)< Toalogn " (3.5.12)
This inequality implies, of eourse, that ¢, = 0. The equality
¢, =0 (3.5.13)

was proved for the first time by Szemeredi (1969) by purely combinatoric
methods employing van der Waerden's theorem. A bit later Roth (1970,
1972) gave an analytic proof which did not use van der Waerden’s theorem,
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Furthermore, Szemeredi (1975) said that Roth’s method probably gives 5
upper bound of the following form:

n
r(ny<——r,
4( ) log(k}n

where k is a sufficiently large (but fixed) integer and where log™n deg,.
nates the k-fold iterated logarithm. Finally, Szemerédi (1975) proved th,
conjecture of Erdés and Turan:

¢=0 forall/ (3.5.14

and collected the $1,000 reward offered by Erdds. Recently, Fiirstenber
(1977}, using ergodic theory, gave another proof of this result. (In fag
Firstenberg proves a much more general result.) Nevertheless, the probley
of precise estimation of r,{(n) remains open.

In a more direct formulation of Szemeredi’s theorem we say that a subse
S of N has density d if

M
Hin SO{Lon)

[~ +]

=d.

Szemeredi’s theorem can be stated as follows: If 8 is a subset of N with
density =0, then S contains arbitrarily long arithmetic progressions.

Erdos has offered $3,000 for the resolution of the following conjecture,
which generalizes the preceding statement: If S is a subset of NA{0} such that

T low,

sSES g

then S contains arbitrarily long arithmetic progressions.

This conjecture, if true, would prove the conjecture on arithmetic progres-
sions of prime numbers (take § to be the set of primes). Let us point out,
with regard to prime numbers, that there exist infinitely many arithmetic
progressions consisting of three primes (Chowla 1944), and that there exists
an arithmetic progression consisting of seventeen primes (Weintraub 1977).
However, little is known on Erd®s’s conjecture; see Gerver (1977,

Notes

Van der Waerden’s original proof can be found in van der Waerden
(1927). See also van der Waerden’s personal account (1965, 1971). An
exposition by Khinchin (1952) and a short proof by Witt (1951), Graham
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and Rothschild (1974), Deuber (1982) are also available. The generalization
by Anderson (1976) given in the text follows essentially the arguments of
witt and Graham-Rothschild.

Erdds’s successive survey papers (1963, 1965, 1974, 1977, 1979)—with
S"ijencer in 1974 and with Graham in 1979—give a good idea of the
advances on van der Waerden’s theorem and related topics. In particular the
reader 1s referred to the paper by Erdos and Graham (1979) for a number of
interesting questions not discussed here and for further references. See also
ihe recent book by Graham, Rothschild and Spencer (1980).

“Fhe ergodic proof of Szemeredi’s theorem is due to Firstenberg (1977).
See also Thouvenot (1978). An analogue of Szemeredi’s theorem in higher
dimensions has been proved by Fiirstenberg and Katznelson (§978). The
topological proof given in the text follows Fiirstenberg and Weiss (1978),
where other extensions are discussed. Girard (1982) has shown that, after a
shght modification, the topological proof leads to an upper bound for
N(k,!). For an application of van der Waerden’s theorem to number
theory, see Shapiro and Spencer (1972).

Problems
Section 3.1

31.1. Let a=(a;);en be a strictly increasing sequence of positive integers
such that there exists an integer M with a,,,— @, < M for all /EN.
Show (without Szemerédi’s theorem) that ¢ contains arbitrarily fong
arithmetic progressions. (Hint: Consider the classes

Ck:{nEEN{EIiEN,aE+k”—”n<ai+,}

for 0k <M -1 and observe that C, C C,-+ k.) (See Brown 1969,
Rabung 1970.)

3.1.2. Show that if N is partitioned into two classes, either one class
contains arbitrarily long sequences of consecutive integers or both
classes contain arbitrarily long arithmetic progression, (Observe that
if the first condition does not hold, then there exists an integer M
such that every interval of length M meets both classes. Now apply
Probiem 3.1.1.)

Section 3.3

3.3.1. Let 4 be an infinite word and 7" a subset of R\{0}. We say that T'is a
cadence for u if all the letters whose position in # befong to 7 are
identical. The definitions of cadence of type § and arithmetic cadence
are the same as in the finite case, Show that the infinite word

aba’b*a’b*---a"b"- - contains no arithmetic cadence of infinite order.
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Pl'ob]f:u]s

3.3.2. Let u be an infinite word whose ith letter is a or b, depending o

whether the first occurrence of 1 (reading from right to left) in gy
binary representation of 7! is an even or odd position. (Formally

Ji1=1 if il=n2¥  with n odd
TN it i1=p25Y with n odd

Show that for all &> 0 there exists an integer n(d) such that 4
contains no arithmetic cadence with common difference d and order
= n(d). (Justin, unpublished; see another method in T. C. Brown
1981.)

Section 3.5

351,

352,

Show that if N is partitioned into k classes, one of the classes
contams arbitrarily long geometric progressions ( Hinr; Given a parti-
tion &={E,...,E.} of N, consider the partition &"={E|,....E}}
defined by n € E; if and only if 2"€ E,. Then apply van der Waerden's
theorem.)

Show that if a sequence (u,), .. o of positive real numbers satisfies the
triangle inequality #,., (< u, +u forallr, s=0, then lim, ,_u,/n=
inf, . o4, /n. (Hint. Show that for n=ngg+r where 0<r<n,,
an/ngann/n(}% ar/")‘



(;HAPTER 4

Repetitive Mappings and
Morphisms

4.0. Introduction

This chapter is devoted to the study of a special type of unavoidable
regularities. We consider a mapping ¢: 4% — E from A™ to a set E, and
we search in a word w for factors of the type wiw, - - w,, with ¢(w))=
g(wy)= -+ = @(w,). The mapping is called repetitive when such a faetor
appears in each sufficiently long word. This is refated both to square-free
words (Chapter 2), by considering the identity mapping, and to van der
Waerden's theorem (Chapter 3), as will be shown later on.

It will first be shown that any mapping from 4™ to a finite set is
repetitive (Theorem 4.1.1). After a direct proof of this fact, it will be shown
how the result can also be deduced from Ramsey’s theorem (which is stated
without proof}.

Investigated also is the special ease where p is a morphism from 4™ to a
semigroup S. First it is proved that a morphism to the semigroup of positive
integers is repetitive when the alphabet is finite (Theorem 4.2.1). Then it is
proved that a morphism to a finite semigroup is aniformly repetitive, in the
sense that the words wy, wy, . . ., w, in the foregoing definition can be chosen
of equal length (Theorem 4.2.2). This is, as will be shown, a generalization
of van der Waerden’s theorem. Finally, the chapter mentions a number of
extensions and other results.

4.1. Repetitive Mappings

The notations and definitions that wifl be used in what follows are
presented in this section. For each word we A" of length »n we shall denote
by

w(i), (i<i<n),

55



s Repeiitive Mappings and MOl‘pmsms 5%

the ¢th letter of w, and
wii, j)=wli)---wl(j} (I<i<j=n).
Given a mapping
AT - E
from A to a sct E, we say thal a word w is a kth-power modulo ¢ (k=15
WO Wy W,
with w,E A" and
plw) =)= =g(w).
A kth-power modulo @ is said to be uniform if we have in addition
il ={wpl == |w,.

The words wy, w,, . . ., w, are said to be components of the k th-power modul;

P.
A word wE A" is said to contain a k th-power modulo ¢ if it has a facty
that is a k th-power modulo ¢.
A mapping

@At - E
from A" to a set £ is reperitive (uniformly repetitive) if for each integer k,

there exists an integer /, such that each word w& 4™ of length I contains s
& th-power modulo ¢ (uniform k th-power modulo ¢).

THEOREM 4.1.1. A mapping ¢: A" — F from A to a finite set is repetitive.

Proof. Suppose that ¢ is a supective mapping from A7 onto E=
{1,2,...,n} and for each i, | <i<n, write

B,= ¢ \(i).

Define a mapping r from A* to N" by

w(u) = (i, iy,...,4,)

where

i, =max{/€ N|uc 4*B!}.
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< p-that is, u is a proper left factor of o —then r(u) # (). In fact,

—uz, with zE& A* and j= p(z). If u€ A*B/, then v &€ A*B/*", hence
, jth component of r(u) is strictly less than that of r(v).

Now let k=1 be an integer and w€& A™ be of length k", The images by 7

' he k" +1 left factors of w, are all distinct. Therefore, there exists at least
ﬁ,ﬁ Jeft factor u of w and an index /, 1<<i< n, such that

ue A*Bf.
In fact, if no such pair (u, /) exists, then
{u)€(0,1,....k—1}"
Jfor each left factor u of w, and the number of possible values of =(u) is at
st k", a contradiction.

‘This proves that w contains a k th-power modulo . [

f,;.‘Example 412 LetA={a,, a,,...,a,}), and let

p: A" - {1,2,....n}

be defined by
p{w)=max{i|a, Ealph(w)}
for every w& A,
Consider the words w,, w,, ..., w, defined by
w.“»zaf""'
w=(woa) wo, (@2<i<n).

Then w, is of length £” — ! and does not contain any kth-power modulo
. This example shows that the bound k" given by the proof of Theorem
4.1.1 is optimal.

For sufficiently long words, a much stronger property of facterization can
be proved as a consequence of Ramsey’s theorem. This theorem is stated
here without proof: see Ramsey (1932), Graham and Rothschild in Rota
(1978) or Graham, Rothschild and Spencer (1980).

Let (X} == {Y¥ C X{card(Y)= k}, the set of k-subsets of the set X.

THEOREM 4.1.3 (Ramsey). Let r, k, n be positive integers with k=r=1.
There exists an mteger R(r,k, n) such that for each set X of cardinality
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R(r,k, n) and each partition Y, Y,, - -, X, of F( X) in n blocks, there exists
k-subset Y of X and a block Y, such that F(Y)CY,.
As a consequence, we have the following:

THEOREM 4.1.4, Let ¢ A" - E be a mapping from A" to a set E wip,
card(E)==n. For each k=1, each word wEA™ of length R(2,k+1,n)
contains a factor ww,- - wy, with w,€ A" and

e(w - we) = @(w; - w.)
for all pairs (i, V), (j, jY(1<i<si’'<kand | < j< j=<k)

Proof. Let we A" be of length I=R(2, k +1, n). We define an equiva-
lence on the set F({1,2,....1+1}) by

{i,iy={(7, 7y W elw(i,#—1)=elw(j, 1)),
for l<i<i=i+4| and 1< j< j <[!+1. By Ramsey’s theorem, there exists
a(k+1)-subset ¥ of {1,2,...,/+ 1} such that all the elements of P,(Y) are
equivalent.
Let Y={i, iy,... 051}, With i, <i, <--- <<i.,, and
""ifﬁw(ij’ijﬂ“'l)
for 1= y< k. The factor ww, - - - w, of w satisfies the property. n

A word wyw;- - - w, satisfying the property stated in Theorem 4.1.4 is of
course a kth-power modulo ¢ with components w,. But this property is
actually much stronger. For instance, for k£ =2 we have

o(w)=g(w,)= @(wm, ),

whereas we have only ¢(w,) = @(w,) for a square modulo ¢.

4.2. Repetitive Morphisms
In this section are investigated the repetitive morphisms
g: AT -8
from A% to a semigroup S.

When S is finite, @ is repetitive by Theorem 4.1.1. We note also that the
mapping ¢ of the example following it is actually a morphism of semu-
groups. Now, applying van der Waerden's theorem, we prove the following
result, where P denotes the additive semigroup of positive integers:
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. TeeOREM 4.2.1. If A is finite, any morphism @: A7 =P from A" to P is
;epetfliw.

. Proof. Let m=max{g(a)lac 4} and B={h|l<i<m)}, an alphabet
with m elements, Define a morphism £: A -> B* by

g(“): by - byb,

for a€ A, with [ = @(a).

Let k=1 and w&€ A™. When applied to the word £(w), van der Waerden’s
theorem shows that there exists an integer n such that, for jw|=n (and
therefore lg(w)l 3”), there exists an a.tithmetic Pr()gfession j]»' . 'Jk» jk+l
of rate r=1, and an integer p, such that for each i, 1<i<<k+1, the jth
lefter of §(w) is b,

For each 7, 1=<issk +1, let i, be the shortest left factor of w such that

()= j.
Then
‘P(”i): Jitp—1

since §(u,)= v;b,- - - b with |v,| = j — L.
‘Now let w, 1 <i=<k, be defined by

Uy, = UMW,
Then
e(w)=o(u)—o(u)= s~ ji=r
Clearly w,w,- « - w; is a & th-power modulo ¢. n

A refinement of Theorem 4.1.1 can be proved for morphisms. It concerns
upniform repetitivity and rnay be viewed as a generalization of van der
Waerden's theorem.

THEOREM 4.2.2. A morphism : A* — S from A™ to a finite semigroup S is
uniformly repetitive.

Progf. Let n = Card(§). We use an induction on n. For n =1, the theorem
is trivial. Suppose it is true for all integer values smaller than n.

Consider the left and right zeroes of the semigroup S. If a semigroup has
more than one left (right) zero, it cannot bave any right (left) zero. This is
gasy to see.
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Suppose that S has at most one left zero (the opposite case is symmetrj.
cal). Let k =1 and w& 4 7. Choose the length of w 10 be a multiple of k, say
|w| = ki, and denote by w,w,,...,w,, the consecutive factors of length ;
of w.

If @(w,) is equal to the left zero of § for each i, | <i <k, then the theorey
is proved. Otherwise, w has a factor of length I, say u, such that ¢(u) is not
a left zero.

Let v, == u(l,i) be the left factor of u of length i, 1<i<{ Let be
sufficiently large and consider the sequence

(‘P(ﬁl)a ‘P(Uz)" . '=‘P(91))'

Van der Waerden's theorem shows that, for a positive integer p, to be
chosen later, there exists an element s€ S and a pair (j, r) with 1< j=
and r =1, such that

(P(vj) w‘p(vjﬁur) e = q’(uj+pr) =s.
Let

Yigoir = Ciggim by Y

for 1<i<p. Then se(y)=s. Let Y={y, »,...,5,)- The subsemigroup
o(Y ) cannot be equal to all of S since its elements 7 satisfy st =s and 5 is
not a left zero of S, (otherwise ¢(i) would also be a left zero).

Hence, by the hypothesis of induction, it is possible to choose p such that
the word y; y,- - - y, contains a uniform k th-power modulo ¢ when consid-
ered as a word over the alphabet Y. Since the length of the words y, is
constant, this is also a uniform & th-power modulo ¢ when it is considered
as a word of 4. This completes the proof. ]

To show that van der Waerden's theorem is a particular case of theorem
422, consider the morphism from 4" to its quotient obtained from the
congruence generated by the refations ab~a for a,b& A, A uniform
kth-power modulo g is just a word w that contains an arithmetic cadence of
order & (see Chapter 3); that is,

W= Wo W aw, - -« aw,
where wy € 4%, a€ 4, and the words w,w,,...,w,.., are all in A* and of the

same length.

4.3. Repetitive Semigroups

J. Justin introduced the concept of a repetitive semigroup and developed
the related theory. (A semigroup § is said to be repetitive if for any finite
alphabet A any morphism from A™ to S is repetitive.)
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Theorems 4.2.1 and 4.2.2 are proved by Justin (1972a) in a slightly
different form (see Problems 4.3.1 and 4.3.2).

The theory developed by Justin goes much further than the results here
(see Justin 1969, 1970, 1971a, 1971b, 1971c, 1972a, 1972b, 1981).

It is impossible to present in this space a complete survey of the theory.
Comments here are limited to one other theorem of Justin’s; in the Prob-
jems section some other results are stated.

TrsorEM 4.3.1 (Justin 1972b). A commuaative semigroup is repetitive iff it
contains no subsemigroup isomorphic to the commudative free semigroup on
{Wo generators.

The fact that the direct product PXP (P is the semigroup of positive
integers) is not repetitive (the “only if” part) is a consequence of the
existence of arbitrarily long words on an alphabet containing two letters
without abelian fifth power. (See Justin 1972b and also Chapter 2 for
discussion of relations with the problem of words without squares.)

The proof of the “if” part uses another resuit of Justin’s. It is a deep
theorem with a very long and technical proof about a “semigroup having
bounded gemerations” (see Justin 1969, 1970); there is also a slightly
simpler, but again very long and technical, proof in Pirillo (1981). The
complete proof of Theorem 4.3.1 therefore cannot be present here. It is
quite general, containing Theorem 4.2.1 as a particular case.

Problems

Section 4.1

41.1 Let A be a finite alphabet and w an infinite word on A (see Chapter
2). Prove that there exists an element a& A and a positive integer p
such that for every positive integer k there are positive integers
fis Fypeaesdy, With

w(ij)ﬁa
for every j, | < j<k, and
iy IS p

for every j, 1< j< k1. (See Brown 1969.)
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Section 4.2

4.2.1.

422,

Let A be a finite alphabet, S a finite semigroup, ¢: 4™ - § X
morphism, and w an mfimte word on 4. Prove that there exisiy an
idempotent ¢ €.5 and a positive integer p such that for every Positiy
integer k& the infinite word w contains a k th-power modulo ¢ wheg,
components w,,w;,...,w, are such that

plw)=e and |w|<p

for every j, 1< j=k (See Brown 1971 and Justin 1972a.)
Given a morphism ¢: A™ — § from A™ 1o a {inite semigroup 5, eaqy
sufficiently long word contains a uniform kth power modulo ¢ whog

components have an idempotent of § as image under ¢ (use Theoten
4.2.2).

Section 4.3

4.3.1.

4.3.2,

Prove that the (semi)group Z of integers is repetitive. (See Justin
1972a.)

Prove that the direct product ZX §, where Z is the (semi)group of
integers and § is a finite semigroup, is repetitive. (See Justin 1972a)

*4.3.3. Prove that the bicyclic semigroup (Le. the quotient of {a, b}* by the

congruence generated by ab~1) s repetitive, (This is a particular cass
of a more general result in Justin 1971b.)



CHAPTER 5
Factorizations of Free Monoids

50. Iniroduction

The aim of this chapter is to study decompositions of words as a unique
ordered product of words taken out of some special sets. More precisely, a
factorization of the free monoid A* is a family (X;),, of subsets of 4™
indexed by a totally ordered set I such that each word w& 4™ may be
writlen in a unique way as

W=XXq 0 X,
with x, € X; and

WP R P

The investigation of factorizations of free monoids can be understood as
that of some basis for free monoids. These factorizations are in fact,.as we
shall see, closely related to some basis in the classical sense of linear
algebra: the basis of the free Lie algebras.

The main feature of the study of factorizations is the fact that their
defimition, which makes use of a multiplicative property of the family
(X;);c,; has strong connections with additive properties of the family
(X;);e ;- This is Schilizenberger’s theorem of factorizations (theorem 5.4.1),
which is a counterpart for free monoids of the well-known Poincare—
Birkhoff—Witt theorem.

Let us begin this chapter by studying a particular factorization that is of
fundamental importance: the factorization in Lyndon words. One uses a
lexicographic order on the free monoid to define Lyndon words as those
primitive words that are minimal in their class of conjugates. This is the
additive property of the set of Lyndon words: their union is a set of
representatives of the conjugate classes of primitive words. In section 5.1 a
number of equivalent definitions of Lyndon words are given, and they are
proven to form a factorization of the free monoid {Theorem 5.1.5).

In Section 5.2 another kind of factorizations, called bisections, are studied,
which correspond to the case where the set I of indices of the family (X,),. ;
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has just two elements. The additive property of these factorizations is the
following (Proposition 5.2.4 and Corollary 5.2.5): for any partition (£, )
of A7, there exists a unique bisection (X, ¥) such that X C P, ¥ C Q.

Section 5.3 contains an exposition of the theory of free Lie algebras. Tt 5
self-contained and does not require any previous knowledge of Lie algebrag
in general. Exhibited first is a basis for the free Lie algebra over the set 4,
defined as a subalgebra of the free associative algebra K{A); this basis i
constructed using Lyndon words. Proved next is the Poincare—Birkhoff- Wiy
theorem (Theorem 5.3.7), which is a fundamental theorem helding for al
free algebras over a field and not only for free Lie algebras. It is used to
prove that to any bisection of a free monoid is associated a decomposition
of the corresponding free Lie algebra into a direct sum of two submodules
(Proposition 5.3.11), Finally the Baker-Campbeli- Hausdorff theorem about
the logarithm and exponential functions in the algebra of power series is
proven; it is used in the following section,

In the final section the theorem of factorizations (Thecrem 5.4.1) iy
proven, It shows how the multiplicative property of a factorization (X)),
can be transformed into an additive property by making use of the loga-
rithm function. This theorem is iflustrated by considering the previously
studied factorizations and some new ones, such as Viennot factorizations,

5.1 Lyndon Words

Recall that a lexicographic order on the free semigroup 4™+ is given by a
total order on the alphabet 4 extended to words in the following way: For
any 4, v& A", u <o iff either vEud™ or

u=ras, v=rbt, with a<pja,bed;r, s, &4
This defines a total order on A*. For future reference, we record twa
praoperties of the lexicographic order:
(E1) VWE A% u<v = wu < wp.
(E£2) i v@ud*Vw,2€ 4* u<v-=uw< vz,
In this section a fixed lexicographic order is defined on 4.
By definition a Lyndon word is a primitive word that is minimal in its

conjugate class. The set of Lyndon waords will be denoted as L.
Equivalently /€ L iff:

Yu,0€ A", 1= ur=1<ou.

Example 5.1.1. For A={a, b} and a<b, the list of the first Lyndon
words 1s

L={a,b,ab,aab, abb, acab, aabb, abbb, aaaab, aaabb, gabab, o)
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. The number of Lyndon words of length n is obviously:

Card(LN4") = 1 3 p(d)[Card( )]

dln

since this is the number of conjugate classes of primitive words of length

(cf. Chapter I, BEq. (1.3.7).
"We shall make use of the following characterization:

PROPOSITION 5.1.2. A word wes 4™ is a Lyndon word iff it Is strictly smaller
than any of its proper right factors:
wELﬁ{VvEA"*",wEAJ‘“vmw< v}.
Proof. Let w be a Lyndon word and v a proper right factor of w:
w=uv, with u,pEA™,

1t must be first shown that v cannot be a left factor of w. If that were the
case, we would have for some re 4™

W=t = uv.
From this equality it can be deduced (see Chapier 1) that for some x, y€ A*
and i=0:
u=xy, t=yx, v=(xy)ix;
whence
we ()

Since w is primitive, x % 1; and as w is a Lyndon word, it is smaller than

its conjugate x(xy) *':

e

Y x<x ()™

(o

Canceling the first x gives by £1:

i+

()" < ()™,

and multiplying on the right by x gives, by £2:

fl

(yx)f+]x< (xy)t'-'Hx

W,

contradicting the definition of Lyndon words; consequently v cannot be a
left factor of w = uo € L. Now the hypothesis v <wup yields by £2 vu<uw, a
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contradiction, we thus have proved that a Lyndon word is smaller thap any
of its proper night factors.

Conversely, if w& 4™ has this property, for any #,0€4™ such gy
w = up, we have the inequalities:

W< v <vu,

showing that w& L. |

The following result gives a second characterization of Lyndon words:

ProPosiTIoN 5.1.3. 4 word wE A~ is a Lyndon word iff w& A or w-=y
with I, mE€ L, I <m. More precisely, if m is the proper right factor of maximg
length of w=Im& L that belongs to L, then I€ I, and I <Im<m.

Proof. We first prove the “if” part of the statement. Suppose that /, me [,
with [<<m. We note first that Jm <m; in fact either ! is a left factor of
m =l and m <m" implies Im <Im’ = m, or it folows from £2. Now, if vis
a right factor of m, we have im <<m < v by Proposition 5.1.2 since me [,
and if ¢ is a right factor of I, we have I <v', whenece by £2, Im<um,
Hence Im is smaller than any of its proper right factors and Im€ L by 5.12,

Conversely, for any we L — A4, let m be its longest proper right factor in
L (it exists since the last letter of w is in L). We set w=Im; if I€ A4, the
property holds; if not, let v be a proper right faclor of L. Since vm & L, Jet¢
be a proper right factor of vm such that 1 < om; then, if we had v <t¢, we
would deduce from v <<t << v the existence of an s <<m such that ¢ = vs and

s would be a proper right factor of m smaller than m, a contradiction with
me L Hence <o and

l<<Im<t=vp,

proving that ! < and, by Proposition 5.1.1, /G L.

Finally, <!m since w = Im & L tmplies Im<!m, and this concludes the
proof. ]

Froposition 5.1.3 gives a recursive algorithm Lo construct Lyadon words;
it should be noticed that the same word may be obtained several times, or
equivalently that the decomposition of a Lyndon word as a product /m, with
{,me& I and < m need not be unique. For instance,

aabb = (aab){b) = (a){abb).

The pair ({, m}, I, m& L such that w= lmn and m of maximal length will be
called the standard factorization of wE L — A, denoted as a(w). The proof of
the following is left as an exercise (Problem 5.1.5).
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;gPROPOSITION 514, Let we€L— A and a(w)}=(I,m) be its standard
";gg,irizaiion. Then for any n€ L such that w<n, the pair (w,n) is the

fuét

dandard factorization of wn€ L iff n<m.

/The main result of this section is the following:

" dggokeM 5.1.5. (Lyndon). Any word w& A may be written uniquely as a
na}ii‘ncrea.?ing product of Lyndon words:

w=hly -1, LeL, L=hL= =,
Proof. Any word wE€ A™ may be written in at least one way as a product
of Lyndon words (since the letters are elements of L):

w=lly o L

choose a factorization with » minimal; then if, for some 7, 1<i<n— 1, we
pave §; <</, 1, by Proposition 5.1.3, the product /,/;, ,& L and therefore n is
not minimal. This proves the existence of at least one nonincreasing
factorization.
To prove the uniqueness of the factorization, suppose
Ly --lL=8t--- 1, Llel,
Lhelz=, (2= >/

-
If, for instance /, is longer than /], we have:
L=ht---Hu
for some left factor u of I, ;. Now, by Proposition 5.1.2,
L<u<l, <K<,

a contradiction. Hence, /, = [], and the result follows by inductiononr. W

The proof just given supplies an algorithm to factorize 2 word in Lyndon
words. The following proposition gives a faster algorithm:

ProposITION 5.1.6. Let w=11,--- 1 be the factorization of wE A" as a
nonincreasing product of Lyndon words. Then [, is the smallest right factor

of w.

Proof. Let v be the smallest right factor of w and set w = yp; then € L
by 5.1.2. If w=1, the result is proved. If not, let s be the smallest right factor
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of u with w= rso. If s<p, then by 5.1.2, su € L, hence sv <v, a COonitrad;..
tion with the definition of ¢. Therefore, s = ¢ and iterating this process Rivey
the factorization of w. N

Notice that we could also have used the proof of 5.1.6 to prove 5.1.5, g,
the algorithm suggested by 5.1.6 is not the best possible. Instead
operating from right to left, it is possible to operate from left to nghy
obtain the factorization of a word w using a number of comparisons of
letters, which is a linear function of the length of w (Duval 1980).

5.2 Bisections of Free Monoids

Let 4 be a (finite or infinite) alphabet; a pair (X, Y of subsets of 4™ i5,
bisection of 4* if any word w& 4* may be written uniquely as

WX\ Xyt X, P Yy ey (5.2

with x, € X, y€Y andr,520.
Equivalently, (X, Y) is a bisection of 4* iff X and ¥ are codes and if any
word w& 4* may be wrtten uniquely as:

w=xy, x& X* ye Y= (527
Example 5.2.1. For A={a, b}, the sets X=a*bh and Y = a form a bisec-
tion of 4*. Indeed, any word w& 4*, either is in a*, or may be written

uniquely

w=a'tbab- - - @ pa'm, =0, r=l.

Ll

Example 5.2.2. Consider, for 4= {a, b}, the congruence of 4* generated
by the relation;

ab~1.

The class of 1 is a submonoid (called the Dyck language—cf. Chapter 11)
which is free; denote as D its basis and set:

X=D*, Y=pDUa,
The pair (X, Y) will be proved to be a bisection of 4*. For instance
w = | abaababbabb| | aba|

may be factorized as indicated by the brackets.
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The definition of a bisection may be reformulated using characteristic
series. A pair (X, ¥') of nonempty subsets of A* is obviously a bisection iff:

A*=(X)*(Y)*. (52.3)
By taking the inverses, we obtain the equality
YX+A=X+Y. (5.2.4)

The equality (5.2.4) means that (X,Y ) is a bisection iff X, Y are codes and:

(i) YXUAC XUY
i) XN¥=2
(i) any wE€( XUY)— A may be written uniguely as

W= X, yeY, xe X,
This suggests a method for constructing bisections that consists in distrib-
uting the elements of 4 between X and Y and then recursively distributing

the elements of YXM A", for each n 2, between X and Y. This method will
be developed later (see Corollary 5.2.5).

Example 5.2.3. The equality of type (5.2.4) corresponding o the bisection
of Example 5.2.1 is
aa*b+a+b=a*b+5b,

which obviously holds.
To prove that (D*b, DUa) is a bisection (Example 5.2.2), we compute

(D+ a)D*b+a+ b=DD*h+ aD*b+a-+b
= D*b+ aD*b+ a

since DD* + | = D*. Now, we have D = aID*h, as may be verified (Problem
5.2.3 or Chapter 11) and therefore,

(D+a)D*b+a+b=D*%+D+a,

proving the Eq. (5.2.4) holds.
The following proposition shows that, in order that { X, ¥) be a bisection,
it is enough that is satisfies a condition seemingly weaker than Eq. (5.2.4):

ProrosiTion 5.2.4. Let X, Y be two disjoint subsets of AT, Then (X, Y) Is a
bissection of A* iff

YXUA = XUY. (5.2.5)
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Proof. The condition is necessary since it is a consequence of Eq. (5.2.4)
Conversely if (5.2.5) holds we proceed by steps; first we have

A* = KOV (5.25)
In fact each word w& A" has at least one factorization

W= 22,002,
with z,& XUY since 4 C XUY. If n is chosen minimal, then z,€ Y, 1</,
—1, implies z, ;€ Y since YX C XUY. This proves (5.2.6). We now proceeq
to prove that the factorization is unique,

Let us first show that for any u, v €& A%,

WE X=pE X*, (5.2.?)

We prove (5.2.7) by induction on » = |uv|. If n=1 it is obvious. Further.
more, if (5.2.7) holds up to n—1, let x =uv € XNA" by (5.2.5), we may
witte x = yx,, », €Y, x, € X and rewriting again y, gives finally

xmykxkxk_.l""x] wl‘.th ykﬁyn/l,)ﬂ@ X.

We then have o = rx,_,---x, with 1 <p<k and r a right factor of x . By
induction hypothesis, we have r& X* and this proves (5.2.7). Symmetrically,
We can prove:

uwE Y=y ¥+, (5.2.8)

We can now show that
xny==1. (52.9)
In fact, in view of (5.2.7), (5.2.8), it is enough to prove that
Xn¥* =g, X*NY=@. (5.2.10)

Suppose that no word of A4* of length at most n — 1 belongs to XNY* or
X*NY, f we AMNX*NY, write w = x| x,- X, ;€ X. Then p>2 since
XNY =@, But, by (5.2.8), x; & ¥*, a contradiction.

Let us now show that X and Y are codes. In fact, in view of (5.2.7), it is
enough to prove that XNX"=@ for r = 2. We proceed by induction on |x|:
suppose that x=x,x, - x,€X with x,€X; then write x = y'x’ wilh
yeY,x'e X. By (3.2.8) and (5.2.10), x| cannot be a left factor of "
therefore x, = y'u with u€ 4", By (5.2.7), x'=ux,---x, is in X*X* a
contradiciion with the induction hypothesis.
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.fFinally, we obtain the uniqueness of the factorization of a word we A*
w=Exgox, Yoy LEX el
since xp = X'y'1x, X' € X* implies x =x', y = y’ by (5.2.1)-(5.2.9). ]
As. an immediate consequence of Proposition 5.2.4 we have the following:
COROLLARY 5,2.5. Let (P, Q) be a partition of A*. There exists a unique
pisection (X, Y) of A* such thar:
xXcre, YCo.

This corollary shows that in order to construct a bisection (X, Y) of A* it
is enough to share the elements of 4 between X and Y and, recursively, to
share the elements of YXN A", for each n= 2, between X and Y.

Example 5.2.5. For A={a, b}, construct X and Y as the preceding
corollary by choosing Lo assign all elernents of YX, whose length is at least
4 to X and to distribute the first ones as in the folowing array:

n X Y

1 a b

2 ba

3 ba

=4 R
One has
R=b%(a+ba)+{b+ b%a)R,

whence

R = {b, b’a}*{b%a’, b*aba}.
The corresponding bisection is

X={a, ba} U {b, b*a}*{b%*, b*aba)
Y={b, b’a}.
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The factorization of a word w may be oblained by considering the gry,
of Figure 5.1. For any word w & A4*, there is a unique path with lahg| W
starting at vertex 1, and the largest left factor of w leading back to vertey 1
gives the left factor of w in X* of its decomposition (this is a small EnCursig,
in automata theory (see Eilenberg 1974 for a method allowing derivation o
graph shown in Figure 5.1 from the expression of X and Y).

The following result provides an alternative construction of bisectigp
that uses the graph shown in Example 5.2.5,

ProposiTioN 5.2.7. A pair (X,Y) of subsets of A™ is a bisection iff the,
exists a partially ordered set Q with a maximal element q* and a morphisy, p
of A* into the monoid of order-preserving mappings of Q into O, that is,

g<q'=qa(w)=<g'a(w),
such that X is the basis of the submonoid

Xr={xedg a(x)=q")
and Y the basis of Y*= A% — XA*,
Proof. M (X, ¥} is a bisection of 4%, let  be the family of subsets of 4*

u”'X*= {vE A*|uwe X*}

for all ue A*. We order these subsets by inclusion. Then
g = X*
is a maximal element since by (5.2.7):
weE X¥=pe X*,

Now, for each we 4*, we define a mapping a(w) of @ into Q by

(7 'X%a(w) = {HW)_]X*.

Figure 5.1. Unique path for factorization of a word w.
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fi:st a is a well-defined mapping of A* into Q€ since
WIXE = o Xt () T X = (ow) T XY,

4ad it is a monoid morphism.
For each we& A*, this mapping is order-preserving since:

WX P () T X C (rw) T X
Finally x€& X* iff g*a{x)=g¢"; and ¥*= A* — XA* as in any bisection.
Conversely, if O satisfies the hypothesis of Proposition 5.2.6, any word
wE A* may be factorized in a unique way as

W= Xy (5.2.11}

where ¢ a(x)=g" and for any left factor u 51 of y,q*. us ¢~. Now the
set

{xedlgte(x)=4"}
is a free submonoid and let X be its basis. The set
P={ycAiy=u u#l,>q a(u)*q"}
is also a submonoid; in fact if y, z& P, then
gra(r)<q* =g aly, 1)<q*a(z)<q"
so that yz & P. This submonoid is free since

we P=ue P,

if ¥ is its basis, then { X, ¥') is a bisection by (2.11). [ ]

FExample 5.26. Continued. The set ¢ may be identified with the set of
vertices of the graph of Figure 5.1 with the order 3<<2 <1 and 4 <l; the
mapping « is defined by ga{w} = ¢’ iff the path with label w beginning at ¢
ends at g’

To end this section here is an interesting example of bisections.

Example 5.2.8. Consider a morphism ¢ from A* into the additive group Z
of rational integers. Define two sets P and N as:

P={pea*|o(p)>0jUl, N={nE4*|o(n)=<0)},
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and further define
R={reA*ir=uww=vEP}, S={s€4*|s=uw=uEN}.

The set R (resp. §) is 2 submonoid containing all right (resp. left) factors of
its elements; let X (resp. Y') be its basis.
The pair (X, ¥) is a bisection of A* since for any word we& 4*, we have

WS, re R, €S,

where r is the smallest left factor of w such that o(r) is maximal among the
a(u), for all left factors u of w.

In the case of the morphism defined by o(a}= —1,6(b)= +1, this
bisection ts the same as that of Example 5.2.2 (see Problem 5.2.3). This
factorization may be graphically obtained as on Figure 5.2,

This example presents an interesting property, which gives a combina-
tortal interpretation of the so-called Sparre-Andersen equivalence principle
(Foata and Schutzenberger 1971).

Let us recall this principle in a simple way. Associate to each sequence
s ={xp,..., x,)E Z" of n rational integers two quantities:

L(s) = the number of strictly positive partial sums s, = x, +x, + -+ +x

II(s) = the index of the first maximum among these partial sums.

i

Sparre-Andersen has discovered the surprising fact that, among the
permutations of a given sequence s, the two numbers L and II have the
same distribution. In terms of probabilities, this means that the two random
variables (defined on sequences of fixed length of respectively independent

o

\j

Figure 5.2 a(a)= — 1, a(b) = +1.



; 7 Bisections of Free Monoids 75

real random variables) equal respectively to the index of the first maximum
and the timme spent above the x-axis, have the same distribution.

To see how this is related to the preceding factorization, associate to each
word we& A" two integers

L{w} = Card{uc P —1|lw& ud*},
which is the number of nonempty left factors of w in P, and
H(w) = {x{

if w=xy, x& X*, y& Y*. Thesc numbers arc obviously the corresponding
ones for the sequence

S:(o’(ai),...,ﬁ(an))

where w = aya.- -4, a,€ A.

To give a proof of the equivalence principle it 15 therefore sufficient to
exbibit a one-to-one mapping of A™ into itself preserving the value of ¢ and
exchanging that of L and I. For this purpose, define a transformaltion p on
A* fixing the letters a& 4 and inductively computed as:

p(wa) = aplw) if waeP,
plwa) = p{w)a if waeN,
It is one-to-one since its inverse is the transformation defined by
t(aw) = t(w)a if awel,
wa} = t{wla i aweN,
PROPOSITION 5.2.9. For every word wE A", one has L(w)=II{pw).

Proof. Let u be the left factor of maximal length of w that belongs to N or
P depending upon w& P or we N. If w = up, we have as a consequence of
the definition of p that
p(wy=7op(u) if weP,
p(w)=plu)v if weN,

where © is the reverse of v. Now, by definition, we have

fEX* H waP,
veY* f welN.
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This proves the property by induction on |w| since:

L{w)=L{u)+|o|, Tp(w)=|o|+(pu) if we&P,
Liw)=1(u), THw)=T{pu) i weN. n

This problem will be considered in a more general framework in Chapier
10.

5.3. Free Lie Algebras

Let K be a commutative ring with unit; a Lie algebra £ (over K} is 3
K-algebra whose product, denoted with brackets, satisfies the two identities;

[xx]=0, (5.3.0)
[[xr]z] + {[yz]x] +[[2x]y] =0. (5.32)

The identity (5.3.1) implies
[xy]+[px]=0 (5.3.3)

and the identity (5.3.2) is called the Jacobi identity. It may be usefully
written as

[[xp]z] = [x[yz]] =L p[xz]]. (5.3.4)

which is equivalent to (5.3.2) using (5.3.3) and can be viewed as a “rewriting
rule” to collect the brackets on the nght side.
For any associative K-algebra R, the product

[xy]=xy—px, x, yER, (5.3.5)

turns the K-medule R into a Lie algebra denoted as R,

When R is the free associative algebra K{A) over the set A, the subalge
bra of R, generated by 4 5 called the free Lie algebra over A, denoted as
£ (A) or £{A} (the adjective free will be justified later on)

The module £{4) is generated by those of its elements that are homoge-
neous polynomials of R. We denote as R, (resp £,(A4)) the submodule of R

(resp. £(4)) generated by homogeneous elements of degree n(n = 0) There-
fore

E(A)= D E£,(4), (535)

Ha=t

and

Eon(4)=[E(4), 2 (4)], (5.3.7)
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ahere, for any two submodules M, N of a Lie algebra £, the symbol [M, N]
denotes the submodule generated by the elements [m, n],me M, ne N Itis
casy to verify that:

Eo(4) =0 (5.3.8)

and
E(4A)=R,. (5.3.9)

It will now be proved that the K-module £(4) is free, and a basis will be

shown,
Choose an order on the set 4 and let L be the set of Lyndon words over

the alphabet A (cf. Section 5.1). We define a mapping A of L into £(A)
inductively by

AMa)=a, a€ A4, (5.3.10)

and
M) =[A(m), A(n)]

i#le I — A and o{l)=(m, n) is the standard factorization of / (see Proposi-
tion 5.1.4).

TueoREM 5.3.1. The K-module £( A} is free with M L} as a basis.
The proof relies on two lemmas,

LemMMa 5.3.2. For each 1€ LNA% k=1, one has MI)=1+r, where r
belongs to the submodule of K{ A) generated by those words wE A* such that
I<w,

Proof The property is true for ¥ =1, and il can be proved by induction
on k: let k=2, /€ LNA* and o(/)=(m, n). Then A(J) = [A(m), A(n)]. By
induction hypothesis A(m)=m++r, A(n)=n+s, where r and s belong,
respectively, to the submodules generated by M ={w& 4'|w>m} and
N={w& A/|w>n} with i=|m|, j=|n|. Then

AMD=mn+ms+r(n+s)—nm—nr—s(m+r).

It can be verified that each term, except mmn, in the right-hand side
belongs to the submodule generated by P = {w& A*|w >1}; for the term nm
this is a consequence of the definition of L and for the others of lexico-
graphic order. This proves the lemma. n
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To state the next lemma, we introduce an order on the sets
X, ={(m,n)ELXLim<n,mneA*}, k=2

By definition, (m, n) <(m’,n")if mn > m’'n’ (note the reversed order) orf
ma=m'n" and m<<m’.

LeMMA 5.3.3. For each (m, n)& X, the element [N(m ), N(n})] belongs to g,
submodule of £(A) generated by the elements N1) with 1€ LNAX g4
o({y={m, n)}

Proof. The lemma is proved by a double induction, first on k and then o
the order defined above on X,. The minimal elements for this order are th
pairs of letters, for which the result obviously holds.

It may be supposed, by the induction hypothesis, that the result holds for
all pairs (#, v)€ X, fory <k or j =k and (4, v} <(m, n).

First, if m€ A, the factorization (m, ») is standard and therefore

[A(m), A(n)] = A(mn).
Further, if m& L — 4, let 6(m)={(u,v). i n< o then, by Propositio

5.1.4, the factorization (m,n) is again standard. Supposing that p<n,
therefore, compute:

[A(m), A(n)] =TEA(u), A(0)], A(n)]
= [A(), [A(0), Mn)]] = [M(0), (A (%), A(n)]].
(5.3.19)

The two terms of the night-hand side of (5.3.11) are treated separately.
For the first one, by induction hypothesis (since |vn| <k):

[?\('o), A(n)] = 2 aA(w;}
with a, € K, w, € L and o(w,) = (v, n), Hence,
[A8), (A (0, AT = S M), A

Now u < uvn << vn < w, and therefore u < w,. As vn <w,, we oblam won <
uw, and {u, w;}<(uv,n)=(m, n); by induction hypothesis, this implies

[?\(u), [A(U)’ ?‘(")]] = 2'3.39\(“’:;')

with w, € L and o(w,;) < (u,w,) <(uv,w)=(m, n).
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. For the second term the argument is similar:
(M) A ()] = SaA(w,)

with w,€ L and o(w;)<(u, n). For each index i, either v<<w; and then
pw, = vun > uon, the Jast inequality resulting from wev € L; either v = w, and
[A(e), A(w )] = 0; of w; < v and w02 unv > uuvn, since vn € L. In all cases,
we obtain by induction hypothesis

[?\(0), MW:‘)] = E a,-}-)\(w,-j)
J

with w;;€ L and w;; = vw, > uvn for the case v <w, w;; 3 w,v>>uvn for the
case © > w,. Therefore the second term of the right-hand side of Eq. (5.3.11)
also belongs to the submodule generated by the A(w) with ¢(w) <{m, n),

and this concludes the proof of the lemma. [

It is easy to deduce Theorem 5.3.1 from the lemmas. In fact, A(L} is a set
of linearly independent elemenis since Lemma 5.3.2 implies that the projec-
tion of the submodule generated by A(L) into the submodule generated by
L is injective. Further, the submodule generated by A(L) is, by Lemma
5,3.3, a subalgebra of K{A4),; since it contains 4, it is equal to £(A). This
proves Theorem 5.3.1.

Example 5.3.4. As an ilustration of the algorithm underlying Lemma
5.3.3: Let 4={a, b, c} with a <b<c, and consider ab, c& L; then A(ab)=
[ab] and

[[able] ={albe]] - [5[ac]]
={albe]]+[{ac]s]

where abe, ach < L and o abc) = (a, be), o ach) = (ac, b).

CororLARY 5.3.5 (Witt's formula). The dimension of £ (A) is

hln) = 3 @)k

dn
with k = Card (A).

In fact, the dimension of £ (4} is, by Theorem 5.3.1. equal to the number
of Lyndon words of length n.

There is of course a striking analogy between the fact that the set L of
Lyndon words is a factorization of the free monoid and the fact that A( L)} is
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a base of [£(4). This is closely related to the classical theorem of Poincar
Birkhoff, and Witt that is proven subsequently.

Given a Lie algebra £, we define an enveloping algebra for £ as gz,
associative algebra U and a morphism ¢ from £ into U, such that for eag),
morphism ¥ from £ into §,, where § is any associative algebra, there exists,
unique morphism, & from U into S such that the following diagram jg
commutative;

The enveloping algebra of £ is obviously unique (up to isomorphism). It is
not difficult to prove directly its existéence. However we shall obtain it as a
consequence of an explicit construction that provides more information on
the enveloping algebra.

Let us make the hypothesis that £ is a free K-module. This is true when 2
is the free Lie algebra £(A4) for any ring X, by Theorem 5.3.1, and it is
always true when K is a field,

Let E be a basis for the K-module £ and consider a one-to-one mapping ¢
from E onto a set B

¢ E— B,

The mapping ¢ extends to an isomorphism from [ onto the free K-mod-
ule K[B] on the set B. This defines a structure of Lie algebra on K{B] by

defining [be] = p([ef ]) for p(e) =b.p(f)=c.
We order the set B and we consider in the free monoid B* the set
F={bby, - b|b€B, n=0, b z=by= - =b}
of nomncreasing words over the alphabet B,
Define the index v(w) of a word we B* as the number of triples (r, 5,?)
of words in 8* such that

w = rasht

with a, & B and e < b. Clearly, for any u, v B* and a, S B with a<<b,
v{ubav) = v{uabv) — 1.

Also, p(w)=0 iff we F,
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LEMMA 5.3.6, There exists a unique endomorphism A of the module K{B)

OMAO=LUIEF
(ii) Mubco) = M ucbv}+ A(u[bclv), u,vE€B*, b,cEB.

Moreover, A maps K{B) onto K|F} and
(i) A(ue)=AMA()o)=MuA(v)), for u,0€K(B).

Proof. The uniqueness of A is obvious since, by condition (i), A is defined
on F (which contains B) und if w=ubcv with u,ve B*, b<l¢, in the
right-hand side of (ii) A is applied to a word of smaller index for the first
erm and of smalfler length for the second. This also shows that A maps
K{B) onto K[F].

For the existence of A, use an induction first on the length and second on
the index. Suppose that a mapping A satisfying (i) and (ii) has already been
defined for the words of length at most » — } and the words of length » with
index at most » —1. Let w& B* be such that |w]|=n, y(w)=»r. We show
that for each pair of factorizations w = ubco = u'b'c’v’, with u,u', v, v'€
B b, b 'EB, b<c b <,

Aucho )+ Mu[be]o) = AMu'cb oY+ A{w'[bcle).  (5.3.12)
We may assume that |u|<<|u’]. If |u|<|#’| —2, then we have u’= ubct
with & B*, By the induction hypothesis, the common value of the two sides
of (5.3.12) is then
A(uchte'd' vy -+ A uchtf b'c’ 0" )+ A uf be] te'bv) + Muf be]1[ e’ 0').

Next, if |u| =|u"| — 1, we have u'= ub,c = b, v =¢'v’. We therefore have
to prove that whenever w =rabces with r, s& B*, a2, b, ¢ B, a<b<¢, then

A(rbacs)+ A(r[abJes) = A rachs )+ A(raf bcls). (5.3.13)

By the induction hypothesis, the left-hand side of (5.3.13) may be
Tewritten as

A(rcbas)+ M(r[bclas)+ A(rbfac}s)+ A(rlables)  (5.3.14)
and the right-hand side of (5.3.13) may be rewritten as

A(rebas)+ A(refab}s)+ A(r[ac)bs)+ A(ralbc]s).  (5.3.15)
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The difference between (5.3.14) and (5.3.15) is equal to

A(r[bclas)—A(ra[be]s) +A(rb[ac]s)—A(r[ac]bs)
+ A(r[ab)es) — A(re[ab]s).

By induction hypothesis, this can be rewritten as
A(rl[belals)+ A(rib[ac]]s)+ M(r{[abe]s).
But by the Jacobi identity,
[[bc]a] +[b[ac]]+[[ab}c] =0

and therefore (5.3.13) holds.

Now A{w) can be defined as the common value of the two sides of
(5.3.12), for all the words of length » and index ». This mapping satisfies
conditions (i) and (ii), and this proves the existence of A. Finally, an easy
induction shows that A satisfies condition (iii). [ ]

We now define an algebra U by defining on the module K{F] the
following product:

uxv=ruv),

where the product uv is that of K({B). The algebra U is associative since,
using condition (iii} of Lemma 5.3.6

us(vew)=AuA{ow)} = AMuow} = A(A(uv)w) = {urv)*w.
Since U contains K[ B there is a morphism of modules
g LU,

This is a morphism of algebras from £ into U, since, for ¢, f& &, there
are, with @(e)=5b, ¢( f) = ¢, the equalities

o(lef]) = [be] =brc—~c*b.

THEOREM 5.3.7. (Poincaré, Birkhoff, Witt). (I, ¢} is the enveloping algebra
of £.

Proof Let § be a morpbism from £ into §,, where § is an associative
algebra. Then any morphism & from U into § such that ¢ = ¢¢ must
satisfy:

é{b)=1Y(e) (5.3.16)
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for each € B, with p(e)=b. This proves the uniqueness of & since B
perates U
To prove the existence of 8, let us define & on B by (5.3.16) and then
multiplicatively on F. Then, for cach r,s€ F,

B(r+s)=0(r}0(s}.
In fact, either rs& ¥ and this follows from the definition of 8, or
¢ = ub, s = ev with u,v& B* b,ce B, b<c. Then
res =A(rs) = Auchv)+ Aufbclv).
Hence
B(rxs)=8(A(ucbo})+ 8(A(ufbe]v).
Now we may suppose, by induction first on |w|, second on the index
r(w) that:
6 (uchv)=8(u)8(ch)b(v),
BA(ufbc]v) =8{u)0]bc]O(v).

Since ¢ is a morphism from £ into §,,
8(r=s)=6{(u)8(b)8(c)8(v)
=@#{r)8(s)
and this concludes the proof. -

The first consequence of Theorem 5.3.7 is a fact that was not obvious at
all from the definition of the enveloping algebra.

CoROLLARY 5.3.8. The canonical morphism @ from a Lie algebra £ into its
enveloping algebra U is injective.
Proof. This is obvious since ¢ is an isomorphism of £ into U = K[F].M

The second corollary justifies the name of free Lie algebra given to the
subalgebra £(4) of K {A); generated by A. We suppose K to be a field
{although the result is true in general).

COROLLARY 5.3.9. The free algebra K(A) is the enveloping algebra of
E£(A) and for any mapping B of the set A into a Lie algebra £, there exists a
unique morphism v from £(A) into £ extending B.

£(4)

B
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Proof. Let R be the enveloping algebra of £(A4), that we can regarg 3,
Corollary 5.3.8 as a submodule of R. As £(4) is a subalgebra of K ¢ 4
there exists a unique morphism of R into K(4) that is the identity o ¢
This implies R = K{A). )

Next, if B is a mapping from A4 into a Lie algebra €, let § be the
enveloping algebra of £. Then, by 5.3.7, £ can be considered as a submody,
of § and therefore B extends uniquely to a morphism y from K(4) inte g
which maps £(4) into €, N

Remark 5.3.10. It is possible to derive Witt's formula (Corollary 5.35
from Theorem 5.3.7 admitting that £( A) is a free K-module. In fact le £
a basis of £2(4) which is supposcd to be totally ordered and formed
homogeneous elements. We denote by |e| the degree of e E

Then the elements

e, ey g e, F o 2e,

form a basis of K{4). The dimension k" (with k = Card( 4)} of the moduy}
of homogeneous polynomials of degree n is therefore also equal to i
coefficient of 2z in the formal series in z:

M a=ze)™
e E
This implies
(1—kz)™'= [ (1—2zlH™",

e E

Or
(1—kz)'= [ (1—2zm) %", (5.3.07)

n=0

Taking the Jogarithm on both sides, we obtain:

k=3 diy(d},

din

which is equivalent to Witt's formula (by the M&bius inversion formula).

As an application of the Poiuncaré theorem, let us consider a biscction
(X,Y) of A* and Z= XUY. Let A be the mapping of Z into £({.4) defined
inductively by A(a)=a for a= 4 and

Mz)=[A(r), A(x)] (53.18)
ifz=yx, ye¥,x€ X
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The subalgebras of K{A) generated by X and Y are freely generated by X
and ¥ since X and ¥ are codes. Hence the subalgebras of K{A4), generated
py X and ¥ may be denoted £( X} and £(¥). The sum of £(X) and £(Y) is
Jirect since X*NY* = 1. The mapping A extends to a morphism of £( X} and

g(X) into £(A4).

PrOPOSITION 5.3.11. The mapping A is an isomorphism from E( XY®E(Y)
onto E«(A)

pProof. Let i be the canonical morphism of £(Z) onto its quotient by the
Lic ideal I generated by the elements

[y,x}—yx, yEY,xeX.

Then the restriction of 7 to the submodule E(X)}BE(Y) is an isomor-
phism of the module £(X)YDE(Y) onto the module £(Z)/ 1. In fact, it is
obviously injective and to see that it is surjective, it is enough to remark
that, by the Jacobi identity, the equalities

[u, 2]z ={ufzz’]] - [2]u, 1] (5.3.19)

forucf,_(X), zE X, €Y (resp. ucf, (Y),z€Y,z'€ X) prove by in-
duction on n that any element of [£ (X}, 2(¥)] (resp. [E(Y) L (X)) is
congruent mod I to an element of £(X)Y®E(Y) of degree at most »; and
therefore that any element of £(Z) is congruent mod [ to an element of
B X)BE(Y).

Hence, there exists a unigque Lie algebra £ on the module E(X)®E(Y)
whose product, denoted (,) extends the product of £(X) and £(¥) and
satisfies

(y,x)=yx, yEY,xEX.

The algebra £ is generated by A since, for any z& Z— A, the equality
z=(y,x)} for z= yx, ye ¥, x& X, shows by induction on |z} that z belongs
to the subalgebra of £ generated by 4.

The mapping A of Z into £(A) extends to a morphism from £(Z) into
£{A) whose kernel contains the ideal J. Therefore A is a morphism from the
Lie afgebra £ into £{ 4). Since it 1s the identity on 4, it is by Corollary 5.3.8
an isomorphism from £ onto £(A4). |

Example 5.3.12. (Lazard’s elimination method). Let (X, ¥) be the bisec-
tion of 4*:

X=g*(4-a), Y=a,
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{cf. Example 5,2.1). Then, by Proposition 5.3.11;
E(4)=Ka+£(B) (5.3.20)

where B is the set of elements

[a[a...[a,B]...]]
\———T—J
i

for i=0 and b+ a. This process, known as Lazard’s elimination method,
may be iterated to obtain a basis of £(4) (see Bourbaki 1971}.

As another application of the Poincaré theorem, the following result gives
a useful characterization of the elements of £(4). Let R=K{A) ang
consider the algebra R@R that is the tensor product of the module R with
itself equipped with the componentwise product:

(u@0)(r®s)=(ur®uvs) (5.321)

In fact, R®R is isomorphic to the algebra of the monoid A4* X 4*, the direct
product of 4* and A4*.

The diagonal mapping § of R is the unique morphism of algebras of R int
R®R such that for e & 4,

8(a)=a®1+1®a. (5.3.22)
It is useful to visualize & as foltlows: the image of 2 word w& 4™ under §

is the sum of all pairs of words u, v & A* such that w is a shuffle of ¥ and v
(see Problem 5.3.5).

THEOREM 5.3.13. (Friedrichs™). If the characteristic of X is O, an element
us K(AY is in £(A) iffs

8u)=u®1+1@u, (5.3.23)

Proof. Let P be the set of elements of R = K{A4) such that Eq. (5.3.23)

holds. Then P contains 4 by (5.3.22) and it is a subalgebra of R, since for
U, vEP,

Slu.v] =[8(u).8(v)] = [4®1+1®u, v®1+1®v]
={u,0]®@1+1®fu, v].

Therefore P contains £(4). Conversely, let E = {e, e,, ...} be a basis for
E(A). Then, since R is the enveloping algebra of £(4), the elements
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p R e e, for m =0, k; 0 form a basis of R and the elements
1

f

m
L

eiklezkz' .. e,,,"m@e[" ezfz. cee
jorm & basis for ROR. We have

slerer e km) = (e@141®¢,)"- - (¢,81+18e,)
pros e]klelkL . emkm® 1 + k]e]klwlezkz- .. emkrn@e[
+kzelklezk2“]. . emkm®ez 3+ -4

+ ke fre ke knT®@e, +p (5.3.24)

where p belongs to the submodule of R®R generated by the elements of the
form

m
elj|€2j2». 'e”ii"'@e]"el)[?' ) em‘rm with 2 Ii;kz.
izl

The second term theough the (m-+1)st term of the right-hand side of
(5.3.24) do not belong to that submodule; therefore, in order that 8(u) be a
linear combination of the basis elements of the form

e[k]ezkz' . emkm®l and }@eljle,jj'l- . emjm,

it is necessary that in the expression of v in terms of the chosen basis, only
dements e *1e,*2- -+ ¢, f~ with one k, =1 and the other k, =0 oceur with
sonzero coefficients (since K is of charactenstic 0). This means that u is a
linear combination of the ¢; and therefore that u <€ £(A4). This proves that
P CE(A) and therefore concludes the proof. [ ]

There is an equivalent form of Friedrichs’ theorem stating that an element
o€ K(A) is in B(A} iff it is orthogonal to all shuffles uoo for u,0E 4™
{se¢ Problem 5.3 4).

We now introduce the logarithm and exponential functions as partial
functions defined on the algebra K({{A)) of formal series over 4, We shall
need to use these functions in more general algebras and we begin by some

From now on, let K be a field of characteristic 0.

Let M be a2 monoid that is a direct product of a finite number of free
monoids and § = K™ be the set of mappings of M into K. We denote as
{o,m) the value of 0€ § for me M. A family (0,),, of elements of § is
said to be locally finite if the set

{iel|{s;, m)+0}
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is finite. If (0,);, is a locally finite family of elements of § the sum

o= 2 o
i€
is defined by
(o, m)= 2 (o, m).

el

In particular, for all o€ § we have

6= 2 (o,mdm

meE M

where we denote by (o, m}ym the element of § with value (¢, m) on m and
0 elsewhere.

If ¢, 7€ S, the product o7 is defined by

(or,my= 2 (o, ud(T,v). (5.325)

m=He

The hypothesis that M is a direct produci of free monoids implies that the
sum in (5.3.25) is finite. These operations turn S into a K-algebra.

When M = A%, this algebra is the same as K{(A4)); when M= 4* X 4%,
the algebra § contains the algebra K({A)Y®K{A) used before; when M i
the free commutative monoid over 4, isomorphic with the direct product of
the free monoids a* for a& A, then § is the same as K [[4]].

Let S be the ideal of § defined by

§U = (o€ 8|(0,1)=0}.

Then for any 0 €S®, the family (0”), ., is locally finite and therefore

62 03
exp(ﬁ)xl+a+_2—’+_3—1+"- (5.3.26)
2 3
tog(i+0) o=+ % — .. (5.3.27)

are well-defined elements of 5. A direct computation shows that
exp(log(1+ ¢)) =1+ ¢, loglexp{c)}) = o, (5.3.28)

so that exp and log are mutually inverse bijections of §¢) onto 1+ 5,
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Moreover, if 0,, 6,& $ and 6,9, == 6,0,, then:

exp(a,)exp(s,) =exp(o,+a,), (5.3.29)
log(1+ a,)(1+a,) = log(l+ 0,) +log(1+ o, ), {5.3.30)
log(expo,expa,) =0, + 0,. (5.3.31)

Let M and N be (wo monoids that are direct products of free mouoids,
and §= KM, T= K" A morphism a of M into T is said to be continuous if
alM 1) CTD, If a is continuous, the family (a(m)),, » is locally finite,
and therefore a extends to a morphism of S into T' by

afe)= 3 (o,md)a(m)}.

me M
We then have for any o& §,
exp(a(o)) = alexp(o)), (5.3.32)
log(a(1+ 0)) = alog(1+ ). (5.3.33)

We now turn back to the algebra § = K({A4)); any element ¢ € § may be
written uniquely

o= X 9

nz=l

with o, a homogeneous polynomial of degree n. The element o will be called
a Lie element if for any n=0, ¢, belongs to £,(4). We denote by £(A) the
set of Lie elements in S.

THrROREM 5.3.14 (Campbell, Baker, Hausdorff). For any a, b€ A, the
element log (exp aexpb) is a Lie element.

Proof. The morphism 8 of R = K{4) into R&R extends to a morphism §
of §= K({A)) into T'= K4**4* by

8(o)= 3 (o,w)8(w).

wEA*

And, by Friedrichs’ theorem, o is a Lie element iff 8(¢)—1®0+ o®1; in
fact, let

azzah

n=0
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with o, homogeneous of degree n. Then, if 6 € £(4),

8(o)= 3 8(e,)= ¥ (1®0,+081)=1@0+a®1.

=0 =0
Conversely, if 8(o) = 1®0+ @1, then for each n=0, 8(0,) = 1®g, +q,

®1 and therefore g, & £(A); hence 6 € £( A).
Now for any 6 €1+ SO, log (6)€ £(A4) iff

8(log(0)) = (loge ) ® 1+ 1®(log o). (5.3.39)

But, since the morphism & of 4* into T is continuous, we have by (5.3.33),

8(log(o)) = log(8(0));
and, also by (5.3.33),
(logo)®1=1log(¢®1), 1®(logo)=1log(1®a).
Hence, (5.3.34) is equivalent to
log(8{(a)) =log{a® 1) +1log(1®0). {5.3.33)

And as (1®e)} (@ D)= (c@1Y1®0¢)=0®0, (5.3.35) is equivalent to

log(8(0)) = log{a®a). (5.3.36)

Taking the exponential of both members of (5.3.36), we obtain that log
(a)eL(d)iff

8(0) = 0®o. (5.3.37)
Thus proves the theorem, since for g, b & 4,
Sexpaexpb) = 8(expa)dlexps)

= (expa®exp a ){exp hb@expb)
=expaexpb®expaexph

proving that log{exp aexp b)Y & £(4), [ ]

The series log(expaexpb) is called the Hausdorff series; it is easy to
calculate its first terms:

log(exp aexpb) = a+b+1i[a, b]+ ;s [[a, b6} + & a a, b]]+ -
(5.3.38)
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Let us denote by S” the set of elements o of § such that each of its
‘I;Dmogeneous components a, belongs to the subspace of R = K{A) gener-
ated by the [u,v] for uc A, ve 4/,i+ j=n. In other words, s & §' iff for
gach n = 0, Zi..00; belongs to the submodule

R'=[R,R],

which is by definition the submodule of R generated by the [r,s] for
r, € R. By definition, the set £(4) of Lie elements is included in R @5,

COROLLARY 5.3.15. For any o, 7€ 1+ SV, the element
z=logoT —loge —logr
belongs to §'.

Proof. If A has just one element, then o7 =70 and z=0. Else, let a be a
continuous morphism of 4* into §* such that a{a) = loge, a(b) = log T for
some d, b€ 4. Theny = log(exp aexp b} — a — b belongs to §” by Eq. (5.3.38).
But Since a is continuous a(R") ¢ R and also «{S") C§". Hence z = a(y)E
;S”. .

It is important to realize that Coroliary 5.3.15 is a much weaker statement
than Theorem 5.3.14; for a direct proof, see Problem 5.3.7,

Corollary 5.3.15 may be generalized to infinite producss as follows: Let 7
be a totally ordered set and (o,),, be a locally finite family of elements of
§; the infinite product

o= [[ (1+g;)

ier
is defined as

=3(ILa)

where J runs over the set of finite subsets of J. We then have:

CororLary 5.3.16. If (0,2, is a locally finite family of elements of
14+ 85O, then the element

z=log [ o,— X loge,
ief iel

belongs 10 S'.
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5.4. The Theorem of Factorizations

Recall that a family ( X;), . ; of subsets of A" indexed by a totally ordereg
set I is a factorization of the free monoid A* if any word wE€ 4+ may b,
written uniquely as:

W= xayx,, With nELxEX, =2, (54

It was shown in Section 5.1 that the family (1),., of Lyndon wordsis 5
factorization and in Section 5.2, we studied the factorizations indexed by 5
two-element set, called bisections.

The main result of this section is the following theorem

THEOREM 5.4.1 (Schitzenberger). Let ( X)), be a family of subsets of A*
indexed by a totally ordered set I. This family is a factorization of A* iff two of
the following conditions are satisfied:

@) each word we A admits ar least one factorization (5.4.1).
(if} each word wE A™ admits at most one factorization (5.4.1).
(ui) Each class C of conjugate elements of A™ meets one and only one of the
submonoids M, = X*, (i€ I') whose minimal generating set is X, and
the elements of CNM, are conjugate within M,.

Proof. First suppose that the family ( X;),.. ; is a factorization of 4*; that
is, that it satisfies conditions (i} and (ii). Then, using characteristic series
with coefficients in the field @ of rational numbers, we have:

A= ] (X,)% (542)
i
and this may be written
-4)7""= [ 0-x,)" (5.4.3)
fel

Taking the logarithm of both members, we obtain by Corollary 5.3.16,

log{1—A) "= 3 log(1-X,) " +2, (5.4.4)

el

where z is a series each homogeneous component of which belongs to the
space generated by the elements [#, 0] = uv— vu, for w, € 47,

Let then C be a class of conjugate elements of 4*. Let n be their commaon
length and p their exponent; that is, the elements of C are the n /p distinct
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conjugates of a word 7, with |u|=n/p (see Proposition 1.3.3.). We then
have:
(log1-A)".C)=( 2 TA. 0=ty =2,  (545)
i>0 ! n 4
snce C contains n /p distinct elements. Now, using Eq. (5.4.4) and (z,C) =
g, we obtain

.

T (og(1-X,) 7', Cy=—. (5.4.6)

rel 4

But for each i€ I, we have
log(1-X) '= 3 Ixs (5.4.7)
J=0d
and therefore, since each X, is a code:
(log(1-%,)"",C)= Z }Ifcard(x{m C). (5.4.8)
J>0

But if wE X/NC, it has at least j/p, distinct conjugates in X/NC and
therefore, for each i€ [ such that X}MC %@, we have

(1og(1-X,) ", C);% (5.4.9)

with equality iff all elements of X;* NC are conjugate within X;*. Comparing
with (5.4.6), we deduce from (5.4.9) that C intersects exactly one submonoid
X#*, proving that condition (i) holds.

Conversely, suppose that condition (it} holds, We first prove that each X;
is a code; let in fact X'= X; and suppose that

x]xz...xn:ylyz...ym

withn, m =1, x;, y, € X; we may suppose that |x,| = |y,| and let x, = y,u.
Then, denoting v == x,- - - x, ;, we have

uu, v e X*,

Let uv = ¢P, with ¢ primitive. By condition (ii), 7 has a conjugate ¢’ in one
of the X;* and then 1'F€ X%, t7€ X* forces X, = X, hence € X* since ¥
and ¢'7 are conjugate. Let u=t*r,0 =5’ w;tim t=rs,k+i+1=p Then
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ou =(sr)P and again sr&& X*; by condition (jii), rs and sr have 1o
conjugate within X* but since ¢ =rs is primitive, this forces, r sg g
Hence, u, v& X*; since x, = y,u and X is the minimal generating set of th
this implies # =1 and x| = y,. This proves by induction on n+ m that ¥ isé
code.

Therefore, if condition (iii) holds, equalities (5.4.7), (5.4.6), and therefor,
(5.4.4) also hold. Let now a be the canonical morphism of the ring 0(¢ 4)
onto the ring Q[[A]] of series in the commuting vanables of A. Sipe
a(2)=0, we have

alog(1-A)"'= ¥ alog(F—X,) "'

1=
and, by formula (5.3.33}, this implies

log(1—eA) "= 3 log(1—aX,) "

ief
or
(1-aA) "= [ 1—-aX,)"". (5.4.10)
ief
Now if we set
R=A*— [] X¥,
el

condition (i) means that the coefficients of — R are nonnegative, while (i)
expresses that the coefficients of R are nonnegative. And, by (54.10),
condition (iii) implies that & R)= 0 Therefore, if condition (iii) is satisfied,
conditions (i) and (i) are equivalent since both imply that R = 0. This
concludes the proof of the theorem, a

In the case of a bisection (X, ), the fact that condition (iif) of Theorem
5.4.1 is satisfied may be directly verified as follows: First, as a consequence
of (5.2.5) we have

YEX* C X*Uxs (5.4.11)

and therefore each word w = xy has a conjugate in X* or Y*, namely yx.
Further, if w& X* and ou€Y¥, then by (5.2.7) and (5.2.8), we hawe
vE X*NY* and therefore v=1; hence each class of conjugate elements
intersects exactly one of the two submonoids X* and Y*, Finally, if two
conjugate elements uv, vu are in X*, then by (5.2.7) 4, v € X* and they are
therefore conjugate within X*,
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%1n the case of Lyndon words, condition (iif) was used in the definition.
“U,Nouce that, knowing Theorem 5.4.1, it is enough to prove that one of the
q"go conditions (i} or (ii) holds to prove that the family (/),., is a
Qfactonzanon of 4*.

: Call a factorization (X,);.; of A* complete if all the sets X, /€T are

singleton sets.

" COROLLARY 5.4.2. If (% )iz s i a complete factorization of A*, the x,, i€ 1
sare a system of representatives of the conjugacy classes of primitive words.

f

. This section ends with further examples of factorizations (others are

treated in the exercises).
~ Let gt A*~ R be a morphism from the free monoid A* into the additive

monoid R and for every r&R, let
C.={ve 4*g(o)=rlol},

5=G-(UGar.

s

The following result is due to Spitzer {1956).

THEOREM 5.4.3. The family (B.),cn (with the usual ordering on R) is a
factorization of A*.

The proof is left to the reader as an exercise (Problem 5.4.6). Observe that
this result has a very simple graphical interpretation: to any word we=
ady--a,, associate the set of points (i,e{a,--a;)) in the plane, with
(0=i=<n. The convex hull of the set formed by these points induces the
factorization w = v,---u,, by taking the points that belong to the hull. As an
example, with @{a)= +1, @(b)= —1, w=baababbab, we have w=
(baa)(ba)(bbaXb)< B, 3 ByB_, 4 B_, (see Figure 5.3).

L 3

blala|blab|bla}b

Figure 5.3. Spitzer’s factorization.
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Our next example is the family of Viennot factorizations defined in the
following result:

TUroREM 5.4 4. Let X be a totally ordered subset of A such that:

D X=AU{xy| x,yEX, x<y}
(i) for any x. p& X such that x <y, then x <<xy< y.
Then the family (x), < x is @ factorization of A*.

Proof. We prove by induction on the length of w A that for any
alphabet A and X © A" satisfying conditions (i) and (i), w may be written
uniquely

WT X\ Xyt X, (5.4.12)

with n 21 and with x,& X and x, = x,> ... = x,. The property is true for
we A; let we A™ be such that [w| = 2. First we may assume that each letter
of A has an occurrence in w—that is, that 4= alph({w). If not, we would
define A= alph(w) and X' = XNA* which has the same properties as the
set X.

As A is finite, it has a minimal element, say @ & A; then a is also the
minimal element of X since any z€ X4 may be written z = xy, with
x, y& X and x <y by condition (i) and that, by (i), x <<xy. proving by
induction that a < xy.

Let

Z=a*(A—a)

Then Z C X since it is easy to prove by induction on i 0 that a’b< X for
any b A—a.

a, x’'<x”. We prove this by induction on the length of x: let the pair
(x’', x")y& X with x = x'x", x"<x", be chosen with | x| maximal. If we had
x = a, then first x” # a and x"¢ Z since otherwise xe 7Z; thus, by induc-
tion, x” may be written x”=t"" with ¢, t"& X —a, (" <t". Therefore
a<t'; but this implies at'& X, by (i}, and by (ii):

at’ <<t <,
and this contradicts the definition of x' since |x"| <]at'] and a¢’, 1”& X, at’

< [n, x=ar't".
As a conseguence, we have

XCZ*Ua. (5.4.13)
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Let
B:B~Z

bea bijection from a set B onto Z extended to an isomorphism from B* to
7*, Then, the set ¥ =g7'(X ~ a} ordered by

y<y if B(y)<p(y)
satisfies conditions (i} and (ii) (with B instead of 4). For condition (i}
Y:BU {y.'yrlly/’ yne Y, yr<yu},

#e clearly have the right member included in the first. Conversely, let
yeY—Bandx=p(y) s x€X—Z~a, we proved above the existence of
a pair x", x"€ X —a such that x =x'x", x"<x”. Then y= y’y” with y'=
§Y(x"), y”=p"'(x") and y'< y”, proving that condition (i) holds for ¥;
condition (1) 1 obviously satisfied.

Coming back to the word wes A+ it can be written in a unique way:

w=za',
with z& Z*, i 2 0 (that is, the pair (Z, @) is a bisection of A%). And for any
factorization (5.4.12) of w:

IEXy Xyt Xy s Kpi ™77 S X L,

since X C Z*Ua by (5.4.13) and g is the minimal element of X. But

IBml(z)lﬂz lwld—a’

which is strictly less than |w| since a€ alph{w) and |w| = 2. Therefore, by
induction, the word u = 87'(z) may be written uniquely:

U Yy Vms

with m=0, y €Y, y,= y,=---=y,. This forces m=n—i and x;=
B, xpmy = B{y,~;) proving both the existence and unicity of the
factorization (5.4.12) n

The family of Viennot factorizations contains the factorization in Lyndon
words. In fact, the set L of Lyndon words satisfies condition (i) by
Proposition 5.1.3 and condition (i) by Proposition 5.1.2.

It can be shown that Spitzer’s factorization may be refined so as to give a
Viennot factorization (Viennot 1978); the factorization obtained has been
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considered by Foata (1965). Viennot factorizations are also closely relageg
to bisections; it may be observed that the proof of Theorem 5.4.4 uses ,
sequence of auxiliary bisections to obtain the factorization as a refinemen;

Notes

Lyndon words were introduced under the name of standard lexicograph,
sequences in (Lyndon 1954) and (Lyndon 1955). They were used to cog.
struct a basis of the free abelian group F, /F,.,. where F, is nth deriveg
group of the free group F on a set A4; in fact F, /F, ; is isomorphic 1
£ (A4). the nth homogeneous component of the free Lie algebra via the
Magnus transformation (see Probelm 5.3.9); the construction of the basis of
F,/F,,, is in fact the same as the construction of the basis of £(4)
associated with Lyndon words described in Section 5.3. The properties of
Lyndon words presented in section 5.1 are from (Chen, Fox, and Lyndoy
1958). Other bases of £(A) have been constructed. One is that of P. Halj
using the so-called basic commutators (see M. Hall 1959 and Problem 54.3),
It was later generalized in Meier-Wunderli 1952. In Shirshov 1958 a basis
for £(A4) is defined that is, up to symmetries, identical (o that of Lyndop,

The notion of a bisection, like the general study of factorizations of free
monoids, goes back to Schutzenberger 1965; this paper contains Proposition
52.1. and Theorem 5.4.1. In a previous paper (Schiitzenberger 1959), the
relation between faclorizations of free monoids and basis of free Lic
algebras is studied.

Factorizations of free monoids have been extensively studied by Viennoi,
Proposition 5.3.9 and Theorem 5.4.4. appear in Viennot 1978. Many of his
results are not presented here. One of them is the construction of trisections
~—that is, factorizations of the type A* = X*¥Y*Z* (Viennot 1974). Another
is the characterization, in terms of the construction of bisections given by
Corollary 5.2.2, of those bisections for which the sets X and Y are recogniz
able, in the sense of Eilenberg 1974, (Viennot 1974). The factorizations
corresponding to Hall sets (see Problem 5.4.3) are also proved to be exactly
those that can be “locally” obtained by iterating bisections (Lazard’s
factorizations in Viennot 1972), therefore giving a basis of the free Lie
algebra £(A); part of this result had been proved in (Michel 1974).

The connections of factorizations with combinatorial probabilities (espe-
cially fluctuations of random variables) where noted in (Schiitzenberger
1965). They are based on the work of Sparre-Andersen and Spitzer (see
Spitzer 1956). The idea of the construction in Proposition 5.2.4 is credited iz
(Foata and Schiitzenberger 1971) to Richards and to Farrell (Farrell 1965).

This chapter’s treatment of free Lie algebras follows essentially Jacobson
1962, For further results and references, see also Bourbaki 1971, 1972 and
Magnus, Karass, and Solitar 1976. The connections of the free Lie algebra
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with the shuffle product appears in Chen, Fox, and Lyndon 1958 and Ree
1958 (see Problems 5.3.2-5.3.6).

Efficient computations in free Lie algebras have been considered by
Michel (1974), who computed tables of the coefficients of the Hausdorff
series. It has been pointed out by Viennot (1978) that the basis of £(A4)
sssociated to Lyndon words was especially convenient for practical uses
since, by Lemma 5.3.2, it is possible to restrict the development of a Lie
¢lement # to the Lyndon monomials and then to invert triangular matrices
io obtain the development of u in the basis A(L). The complexity of
factorizing a word into Lyndon words has been considered by Duval (1980),
who has shown that it is possible to do this using only a number of
comparisons of letters that js a linear function of the length of the word.

Problems
Section 5.1

5.1.1. Prove the following property of lexicographic order:
U w<upe=w=ut, <o,

5.12. Show that if w is longer than three times its period p, there exists a
factorization of w as w=wrrt such that » has period p. (This is a
particular case of the critical factorization theorem; see Chapter §)
(Hint: Let w=(v)"" with |o]=p and v’ a left factor of v; then
define r as the Lyndon word conjugate to v.)

#5,1.3. Show that w€ 4* is a Lyndon word iff for any nontrivial factori-
zation w= uv, there exists a shuffie of u and v greater than w
{Chen, Fox, and Lyndon 1958),

5.14. Let Card(4)=k and define a(k, n} as the minimum number of
words in a set § C A" satisfying Card(A* — A*SA*) < + c0; that is,
all but a finite number of words have a factor in S,

a. Show that a(l,n)=1,a(k, 1)=k,a(k,2)=k(k+1}/2, a(2,5)
=9

b. Show that a(k,n)=k"/n.
{ Hint: Use the fact that the set § must contain an element from
each conjugate class of words of length n.)

¢. Define a set T, C A* as the left factors of length n of the powers
of Lyndon words. Show that Card{A*— A*T, 4*) is finite,

d. Deduce from (c) that for each £>> 0, there exists an integer k(¢)
such that nk™"a(k, n) <1+ ¢ for all n and k = k(e).

e. Define a set §, C A* consisting of all the words @, a&€ 4 and
the words of the form at, wherea € 4, €T, _,, and ¢ <a. Show
that Card{A*— 4*5_A*) is finite.
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f. Deduce from (e} that for each ¢>0, there exists an imtger
n(k, £} such that nk™"a(k, n) <1+ ¢, for n=n(k, e).
g Conclude, by (d) and (f), that if max{k, n} tends to infinity
Emank "alk,n)=1.

{See Schiitzenberger 1964.)

. Call standard factorization of a word we A%4* the pair o(w)=

(/, m) such that w=/m and m is the longest proper right factor o
w in L. Show that if n € L is such that n < m, then o{(lmn) = (/m, n).

. For any w& L — 4, let w=mn with m the longest proper left facty

of win L. Prove that n & L and m <n.

. For any (€L~ A4, let k=au with a& A, uEA™; let n be the

smallest right factor of u in L; prove that

o(l)=(m,n),

with /= mn.

Section 5.7

5.2.L

522

5.2.3

Show directly (without using formal series) that if (X,Y) isa

bisection of 4*, then:

a. AC XUy,

b. No word of XUY has a proper left (resp. right) factor in X (resp.
Yy

c. YXCXUY

d. X+ Xruye

e. each word in XUY ~ 4 may be written uniquely as a product
yx, yeY,x€ X. ;

Let P and @ be two submonoids of 4* such that PNQ =1; define

the left and right associates of P and , respectively, to be

Xr={x& X*x=uv=0E P},

V= {yeY*y=uv~=uc P},
where X and ¥ are minimal getierating sets of X* and ¥Y*. Show
that (X, ¥} is then a bisection of A* (compare with Example 5.2.5).

Let D C{a, b}* be the set defined in Example 52.2; let o be
morphism of A* into Z defined by

ola)= -1, a(b)=1,
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a. Show that we D iff o(w)=0 and e(u)<<0 for any nonempty
proper left factor u of w.
b. Deduce from (a) that

D = ab*h.

Secrion 5.3

53.1. (Dynkin’s theorem). Let K be a field and R" be the subspace of
R=K{A) formed by polynomials with zero constant term. Let A
be the linear mapping of RV into £(A) defined inductively by
Ma)=a for a& A, and

A(wa)={A(w),a], for wed’ acAd.
a. Show that, for ue R™ and ve £(A),
Alwo)=A(u)d(v)

where § is the unique algebra morphism of R into End £ such
that

ud(v)=[u,v]
for u,v&L(A4).
b. Deduce from (a) that

A[u, 0]) = [A(u), o] + [, A()]

for u, v L(A).
¢. Let K be a field of characteristic 0; show that a homogeneous
element v e K of degree n > 0is in (A} iff Alw) = nu.
5.3.2. Let p be the linear mapping of R") into R\ defined inductively by
play=aif ac 4 and

plaub) = plau)b—p{ubla, if a,b€EA, us4*.

Show that p is the adjoint mapping of the mapping A of Problem
5.3.4, that is, that for all u, v € R

(P(u)¢ ”) = (u! ;\(D))

where (, ) is the standard scalar product on R defined by {u, v} =0
or 1, for u, v & A*, according to 4 v or u= v. (see Ree 1958.)

*5.3.3. Let o be the shuffle product on R (cf. Chapter 6) defined induc-
tively by

ugovb=(ucvh)a+{ua-v)b
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5.34.

5.3.5.
*5.3.6.

5.37.

5.3.8,
5.3.9.
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for u,v& A*, a, bE A, Show that for any we A", n >0,

¥ uop(v)=nw,
W My
el
(See Ree 1958.)
Let K be a field of characteristic 0; deduce from 5.3.3 that gy
element ue R is in £(A) iff

(tow,udy=0

for any v,wes R,

Use 5.3.4 1o prove directly Friedrich’'s Theorem (Theorem 3.3.10),
Let S be the (commutative) algebra over the module R equipped
with the shuffle product and . be the set of Lyndon words over the
alphabet A. Show that if K is a field of characteristic 0, § is
isomorphic to the symmetric algebra over the vector space K|[L]
generated by L —that is, that any word we A may be expressed
uniquely as a linear combination of shuffles of Lyndon words.
(Perrin, Viennot, 1981)

Let C be a class of conjugate words of {a, )" and p be its exponent
(that is, any we& C is a pth power of a primitive word). Let 8 be the
number of factors equal to ab in the circular word associated to
more precisely §=0 if CCa*Ub*; if not § is the number of
factors ab in any word of CNa(a, b)*b. Prove that the following
equality holds for each m>1:

- m
2 ((a+b+ab)”, W)=F(nlsm),
we ¢
Y. . ) _ p!
wherc( )15 the binomial c()efflcwntmmmm-; .
q q'p—q)

Deduce from Problem 5.3.7 a direct proof of Corollary 5.3.15.
Let F be the free group over the set 4 and consider the Magnus
transformation {cf. Chapter 6), which is the isomorphism of F into
Z((A)) given by

play=1+a, acAd.

Let (F.}, o be the lower central series of F defined by F, = F and
for n=1,

Fnz[F“*l’F]?



problems

103

where, for any two subgroups G, H of F, the symbol G, H]
denotes the subgroup of F generated by the elements xyx™'y™! for
*E G, y& H. Let i be the mappmg of F into Z( A4} associating to
x & F the homogeneous component of lowest degree of p{x)—1.
Show that i induces an isomorphism of the group F, /F, ,, onto
{2 (A). (See Magnus, Karrass, and Solitar 1976.)

Section 5.4

541

54.2.

*¥3.4.3.

**5.44.

**54.5.

A submonoid M of 4* is, by definition very pure if

ut, Rk M=u, v M.

a. Show that a very pure submonoid is free.

b, Show that a submonoid M of A* is very pure iff the restriction
to M of the conjugation in A* is equal to the conjugation in M
and for any x< 4* n=1, x"€ M implies x & M.

Let 4={1,2,...,n} and, for j& 4, let X, be the subset of 4

X,= j{j+1,...n)x

Prove that the family (X))« <, is a factorization of 4*. (This is,

with the reversed order, the factorization of Lemma 10.2.1)

A magma M is a set with a binary operation denoted (u, v) for

u,vE M. Denote as A0 the free magma over 4. A subset H < 40

is a Hall set if it is totally ordered and if the two following

conditions are satisfied:

@ H=AVU{{a,u)| acd, weH a<u}U{{(u,v),w)|u v.WwE
H(u,v)<w=v)},

(il u,v€ H,(u,v)Y& H={u,v)<n.

Let 8 be the canonical mapping of A’ onto A*; show that for
any Hall set H, the family (x),c g4, is a factorization of 4* (the
order on 8( ) being induced by that on H). (See Viennot 1978.)
Let (x), . » be a Viennot factorization. Let IT be the mapping of X
into 4°) defined inductively by II(a)=a for a€ 4 and

II(x)= (I(y},IKz))

if z is the longest proper right factor of x in X. Show that FI(X) is
a Hall set. (See Viennot 1978.)

A totaily ordered set X C A" is a Lazard factorization if for each
integer n >0, the set XNA" = {x;, x,,...,%.4,} of elements of X
of length at most n ordered as x; <x,<--- <x,,, by the order of
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X satisfies the two following conditions:
O e € =AY, =Y~ x, XX )5 X €Y, =
(Y = x)(x)",
(i) Y N4 =x,
a. Show that a Lazard factorization is a factorization of A*,
b. Show that for any Hall set M, 8(H) is a Lazard factorization,
c. Show that for any Lazard factorization X, there exists a Hall gy
H such that 8( H)= X. (See Viennot 1978.)
5.4.6. Prove Theorem 5.4.3.



CHAPTER 6

Subwords

6.0. Introduction

Let us recall the definition: a word fin A* is a finite sequence of clements
of A, called letters, We shall call a subword of a word f any sequence
contained in the sequence f. The word aba for instance is a subword of the
word bacbeab as well as of the word azabbaa. 1t can be observed immediately
that two sub-sequences of £, distinci as subsequences, muy define the same
subword: thus aba is a subword of bacheab in only one way but may be
obtained as a subword of aabbaa in eight different ways.

A word f being given it is easy to compute the set of its subwords and
their multiplicity; this computation is obtained by a simple induction
formula. The main problem of interest in this chapter, sometimes implicitly
but more often explicitly, is the one of the inverse correspondence. Under
what conditions is a given set of words § the set of subwords, or a subset of
certain kind of the set of subwords, of a word /7 Once these conditions are
met, what are the words f that are thus determined? In which cases are they
uniguely determined? Some of these conditions on that set § are rather
obvious. For instance if g is a subword of f, then any subword of g is a
subword of f. Some conditions are more subtle; if for instance @ and b are
two letters of 4, and if ab and ba are subwords of f, then at least one of the
two words aba and bab is also a subword of f,

In Section 6.3 we shall consider the subwords with their multiplicity, It is
possible to give a complete set of equations that express those relations, In
Section 6.2 we shall be interested in the set of subwords of a word, without
taking into account their multiplicity. More precisely we shall be concerned
with the set T of words that have the same set of subwords of a given length
m. It will be shown that if two words f and g are in T, there exists a word A
also in T such that f and g are both subwords of & (Theorem 6.2.6) and that
for any k less than 2Zm, T has at most one word of length & (Theorem
6.2.16). Before these two main sections we shall recall in Section 6.1 the
simple but basic result of Higman that in any infinite set of words there
always exists one word that is a subword of another word in that set.

103
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6.1. The Division Ordering

If 2 word g is a subword of a word f we shall say that g divides f, and we
shall denote it by g| f. If g does not divide f, we denote it by g} /.

Division is a reflexive and transitive relation. The next remark is very
simple as well: If g divides f then the length of g is less than or equal to the
length of f, and if equality holds for the lengths, then g equals f. Thi
argument will be used throughout the chapter and referred to as the lengsh
argument. As its first consequence, division is an antisymmetric relation,
Finally note that if g divides f, and g’ divides f*, then gg’ divides ff”. This
paragraph is summed up by the following statement:

Prorosirion 6.1.1. Division is a partial ordering of A*, which is compatible
with the product of A*,

Figure 6.1 shows that 4%, equipped with the division ordering, is neither
an inf- nor a sup-semilattice. The main property of division is given by:

Tueorem 6.1.2. Any subset of words over a finite alphabet that are not
comparable pairwise for the division ordering is finite,

Since by the length argument there exists no infinite strictly descending
cham of words, Theorem 6.1.2 yields that division is a well partial ordering,
say by definition of a well partial ordering (see below). This result is due to
Higeman (1952), who gives it explicitly as a corollary of a much stronger
statement. The direct proof given here is taken from Conway 1971 (pp.
62-63). The main idea in that proof is due to Nash-Williams (1963).

aba bab

ab ba

Figure 6.1, The relative situation of four words for the division ordering
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Proof. Suppose, ab absurdo, that there exist infinite sets of pairwise
incomparable elements, and thus, in particular, that there exist infinite
division-free sequences of words £}, f,,...,f,.,... thatis, sequences for which
i< jimplies fi1 f;. Using the axiom of choice we can seloct an “earliest” such
sequence, that is, one that satisfies conditions:

fi is a shortest word beginning an infinite division-free sequence.
£, Is a shortest word such that f}, f; begins such a sequence.
/3 is shortest such that f;, f,, f; begins such a sequence, and so on.

Since 4 1s supposed to be finite, there exist infinitely many f; that begin with
the same letter, say f, = ag,, f;, = ag,... withi;<i, <--- We then have the
infinite division-free sequence f}, £,....f, —1» &1s £2,... Which is “earlier”
than the one we chose; this is a contradiction, n

Observe that even though every set of pairwise incomparable elements is
finite, the number of its eclements is not bounded; indeed there exist
arbitrarily large sets of pairwise incomparable elements {see Problem 6.1.4).

As Conway noted, Higman’s theorem s little known and Theorem 6.1.2
has been rediscovered a number of times. The result is often credited to
Haines (1969) (see also Problem 6.1.3). Kruskal (1972) gave a fairly com-
plete history as well as a survey of the rich and well-developed theory of
well quasi-ordering, in which Theorem 6.1.2 appears to be the most elemen-
tary result.

Well partial ordering may be defined by several equivalent properties that
are worth mentioning, for they apply to our case. Recall first that a subset X
of any ordered set  is an ideal if x in X and x < y imply that y belongs to
X. The ideal generated by X, denoted by X, is the smallest ideal of £
containing X, and is equal to the set of elements of F greater than at least
one element of X. The set of minimal elements of a subset X will be depoted
by min X.

PROPOSITION 6.1.3. The following conditions on a partially ordered set F, are
equivalent:

(1) The ideals of E are finitely generated.
(i} The ascending chain condition holds for the ideals of E.
(i} Every infinite sequence of elements of E has an infinite ascending
sub-sequence.

@v) Every infinite sequence of elements of E has an ascending sub-sequence
of length 2.
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(V) There exist in E neither an infinite strictly descending sequence nor g,
infinite set of pairwise incomparable elements.
(Vi) For every nonempty subset X of E, min X is nonempty and finite,

Proof. The implication (1) = (ii) is a classical phenomenon: if {/,}, for n iy
N, is an ascending chain of ideals, their union [ is an ideal, finitely
generated by hypothesis, and its generators belong all to a certain [ ; (he
chain is stationary from m on. (i)~ (ii). Let S=s5,5,,...,5,... be aq
infinite sequence; (ii) implies that there exists an integer & such that § j;
included in the ideal generated by {s,s,,..., 5,}. There must then be a
least one value,1 < j <k, such that there exist an infinity of s, greater than
5,. The procedure begins again with those s, and s; is the first element of ag
infinite ascending sub-sequence of S. (iii)=+(lv), and (iv) = (v} are obvioyg,
{v)=(vi): Let X be a nonempty subset of £ for any x in X there must be 3
minimal element of X smaller than x since there are no infinite dcscending
sequences, and thus min X is nonempty; it is finite since its elements are
paurrwise incomparable. (vi)== (1) since for any ideal J, min/J is a set of
generators of 1. a

Proposition 6.1.3 is due to Higman (1952); note that we proved Theorem
6.1.2 by establishing property (v) for the division ordering (see Problem
6.1.2 for other applications of Proposition 6.1.3).

Let us now come back to 4*, ordered by division. There is an alternative
way for defining division. Although it does not bring anything new, it offers
a new point of view that may often be convenient to have in mind.

The shuffle of two words fand g of 4* is the subset of 4%, denoted by fog
and defined by:

fog={h|h=fg fg f.g..n=0,
[ €A f=(f - f.g=88 &)

The.skuffle of two subsets X and Y of A* is the union of the shuffles of each
element of X with each element of ¥ and is denoted by Xo¥. One verifies
that the shuffle is 2 commutative and associative operation on $(4*); see
Problem 6.1.12 for an alternative definition of the shuffte.

It is clear that a word g divides a word fif, and only if, there exists a word
# such that f belongs to go h; that is

Viged* glf=fegodr (6.1.1)
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A subset X of A* will be called a shuffle ideal if X= Xo A% since the
fle is associative, the shuffle ideal generated by a subset X is XoA* A
guffle ideal is principal if it is generated by one word. From (6.1.1) 1t
jollows that the shuffle ideals are exactly ideals of the ordered set 4* and
it X= XoA* In order to avoid confusion between the ideals of the
ponoid A%, and the ideals of the ordered set A4*, from now on we call the
fatter shuffle ideals.
As a consequence of Theorem 6.1.2, and Propaosition 6.1.3, any shuffle
ideal is finitely generated. For future reference we state this in the following

equivalent form:

COROLLARY 6.1.4. The boolean algebra generated by the principal shuffle
ideals is equal to the boolean algebra generated by the shuffle ideals.

Example 6.1.5. Let X be the set of square words; that is, X=={f | f=wu,
¢] >1}. Then

X= U (aacd4*)
vy

the set of words that contain at least one letter repeated twice.

6.2. Comparing the Subwords

For every integer m, let J,, be the equivalence relation on A* defined as
follows: Two words f and g are equivalent modulo J, if they have the same
set of subwords of length less than, or equal to m. That is

Vi,ged  f=gl])e(Vseaxs|sm=(s|f=s]g)). (62.1)

[n this section, we shall study the structure of the classes of the equivalence
J

"y

Example 6.2.1. J; is the universal relation on A*; J, coincides with the
mapping equivalence of the function alph:

f=g[J;] = alph( £} = alph(g).

Let S(rn, f) denote the set of subwords of length less than or equal to m of
aword f, and let NS(m, f) denote its complement within

n
A= A"
0
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Thus (6.2.1) may be written as
f=gl L= 5(m, f)=5(m, g},

which shows clearly that J, is indeed an equivalence relation. The class g i
modulo J, will be denoted by [ f],,.

Remark 622 Let m be a fixed integer. By the length argumen j
| f|<mthen [f], is a singleton (it may not be a singleton if | f] = m; g
Problem 6.2.1). Suppose now that | f|=m and let g be a word that has the
same set of subwords of length m as f, then f and g have the same set of
subwords of fength less than or equal to m and g is equivalent to f moduloJ
Hence (6.2.1) splits into two relations:

vigea  |fl<m=(f=gll]l=g=/) (6.22)
viged®  f=g|J,]|=(Vs€A"s|f=s|g). (6.23)

We have the following properties of the relations J,,:
ProPOSITION 6,2.3. For n smaller than m, J, is coarser than J . [
PrOrOSITION 6.2.4. For every m, J,, is a congruence on A* of finite index,

Proof. Let f, g, u, and v be words in 4*. Any subword w of ufv of length
m factors into w = wywywy with w |u,w,|f, and wy|v and then |w,|<m;
hence w is a subword of ugv if f = g[J,,] and 1, is a congruence. Moreover
the index of ./, is equal to the number of distinct subsets SCn, f) when f
ranges over A* and hence is clearly bounded by 2’ where

_ Card(A)™"' -1 _ <m
T T Card( =T = Card(A4*™). |

Observe that not any subset of 4™ is apt to be an S{m, f) for some fin
A*; for example, there exists no fin {a, b)* such that S(2, /)= {a, bb) siace
if @ and bb are contained in §(2, f) so is b and at least one of the two words
ab and ba. Hence 2’ is a strict bound for the index of J,; actually neithera
suitable characterization of the sets S(m, /) nor an explicit function of m
and Card{A4) giving the index of J, are known.

Now, the boolean closure of shuffle ideals is characterized in terms of the
classes modulo J/,,.

ProrosiTION 6.2.5. The family of subsets of A* that are union of classes
modulo J for some integer m is equal to the boolean closure of shuffle idedals.
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proof. Let X'be a union of classes modulo J, for some integer . Since J,,
;s of finite index, the set X is a fintte union of such classes. And the class
module J,, of a word f& A* may be written

[f1.=( so A*\(U 104%)

seSim, [} LENS(m, [}

which belongs to the boolean closure of shuffle ideals.

Conversely, for each f in 4*, the shuffle ideal generated by f is saturated
modulo J,, for each m=|f|. By Corollary 6.1.4, this proves that any
alement of the boolean closure of shuffle ideals is saturated modulo J,, for
some mt: indeed, it is enough to choose m greater than the maximum of the
lengths of the generators of the principal ideals involved in the construction
of X. |

The main result on the classes of the congruences J,, is given by the
following theorem, which appeared first in Simon 1975.

THEOREM 6.2.6. Let m be an integer and let f and g be two words of A*,
equivalent modulo J,,. Then there exists a word h such that both f and g divide
h and such that h is equivalent to f, and to g, modulo T

In other words, any two elements in an equivalence class of J, have a
common upper bound (relative to division) in that equivalence class. Or, in
order to stress the unexpected fact that is stated by Theorem 6.2.6: For any
two words f and g that have the same set of subwords of length m, it is
possible to find 4 word k& that contains both f and g as subwords and that
has no more subwords of length m than f(and g); note that the word A is, in
general, longer than either for g.

There are cases where the theorem obviously holds: when f divides g, or
vice versa, or when f and g contain as subwords all words of length m; in the
latter case any element # of the shuffle of f and g for instance would do. But
of course the theorem remains to be proved in the general case,

Example 6.2.7. m=4  f=a%b%a*h® g=a’ba’d® h=da’b%a'h’

Our proof of Theorem 6.2.6 follows the main line of the one in Simon
1975 but the use of a new notion, the subword distance, will make it more
concise, We thus postpone it until after the definition of the subword

distance. But we may derive immediately some consequences of Theorem
6.2.6:

COROLLARY 6.2.8. For each integer m, any equivalence class modulo I, is
either a singleton or infinite,
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Proof. Suppose that a word f is not isolated in its class modulo J,,. Frop
Theorem 6.2.6 it follows that there exists a word h such that f+% h, f |k, ang
f=h[J). Thus there exist u, and v in 4* a in 4 such that # = ugv ang
fluv, We therefore have

uo =uav[J ]. (6.24)

Now we claim that uv = ua"p[J ] for every integer n=0; it is enough
indeed to show that uwe = uaue[J,] and the claim will follow by induction

Assume that there exists a word w of length m such that w|ugav ang
whuev, Therefore w must factor into w =saat with s|u and t]v. The worg
sat then divides uav and is of length m — 1; by (6.2.4) it divides uv. But they
cither saju, or at|v and in both cases saat|uav: a contradiction which
completes the proof. u

We observe also that, contrary to what happens for upper bounds, two
words f and g in a congruence class of J, might not have a common lower
bound (relative to division) in that congruence class. Indeed, ab = ba[J))
but both ab and ba are minimal words in [ab],. Actually the set of minima
elemenis of a congruence class J,, was characterized in Simon 1972, whers
the following theorem is proved:

THEOREM 6.2.9. Given a word f in A* and an integer m =0, there exist an
integer k=0, words uy, u,,....u, in A*, and subsets B, B,,. B, of A such
that the set win| f |, is given by

mun[ f |, = {100,050, -+ 0,0, | v, is a@ permutation of B} .

Here we say that v in 4* is a permutation of a subset B of 4 if
alph(v) = B and |v|= Card(B).

The definition of the eongruences J, allows definition of a distance on 4*
by means of the following: First let N =N U {oo} be the completion of M as
an upper-semilattice. The element oo is the (least) upper bound of any
unbounded subset of N,

For all f and g in A*, let 8( f, g) be the element of N defined by
8(f g} = max{meN| f=g[/,]}.

Clearly 8( f, g)=cc if and only if f= g, and since for each m and g, J,, is
an equivalence relation coarser than J, , , it follows that:

vi,g.h€A*  8(f, g)=min{8(f, h),8(g. h)}. (6.2.5)

From these two remarks one deduces that the function € defined by
0(f,8)=27%18 s an ultrametric distance on 4* (since relation (6.2.9)
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implies that 6 f, gy<max{B( [, h), 8( g, h}}). Actually we shall be con-
cerned in the sequel only with the function 8, and by abuse of language we
call 8 itself the subword distance, or even, for short, the distance, between f
and g- The triangular relation (6.2.5) for the distance § takes the following
jorm (classical for ultrametric distances, with largest instead of smallest):

ProOPOSITION 6.2.10. Let f, g, and h be in A*. Of the three numbers
5(1.8),8(8, k), and 8( f, ), the two smallest ones are equal.

This may be written as:

vf,g. hEA*  8(f,g)<8(f,h)=8(f g)=min{8(f, k),8(g, h)},
(6.2.6)
or 48

8(f,g)=m and 8(g, hY=m = 8§(f, h)=m,

or it may be rephrased as (with respect to the “distance” 8): Every triangle
has two equat “short™ sides,

Frogf. First rewrite the relation (6.2.5) with f exchanged with A:

5(g, k)= min(8( 1, h),8(1, 8)}. (62.7)
Now the hypothesis

8(f.g)=<8(f.h) (62.8)
matched with (6.2.7) gives
8(f.8)<8(g,h) (6.2.9)
which in turn, by (6.2.5), gives
8(/, g} =min{8(/, k},8(g, h)}. L

We can now state Theorem 6.2.6 under the following form

THEOREM 6.2.11. For any two words f and g in A*® there exists a word ki in
A%, such that both f and g divide h and that 8 f, g) = min{8( [, 1), 8(g. h)}.

The two statements are indeed equivalent: Theorem 6.2.11 implies Theo-
rem 6.2.6, for if f = gfJ ] then 8( f, g) is greater than or equal to m and by
Theorem 6.2.11 so are both 8(f, k) and 8(g, k); that is, f=h=g[J ]

Theorem 6.2.6 implies Theorem 6.2.11 since if we take m = 8( f, g) Theorem
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6.2.6 implies that f = k= g[J, |; that is, both 8( £, k) and 8( g, k) are greate
than or equal to 8( £, g).

In order to prove Theorem 6.2.11 we shall establish a sequence of threg
lemmas and, before that, we present some properties of the division, the
easy verification of which is left to the reader. They will be used implicitly iy
the proofs to come (and have been used in the proof of Corollary 6.2.8),

Let u, v, 5, and ¢ be words in A*, and « and b letters in 4. Then:

stluw = slu or t|o,
satluv = salu or at|v,
at|bv and a#b = at|v.
We shall aiso say that a word z in A* distinguishes words f and g of 4% if ;

divides exactly one of f or g, Tt is clear that for distinct words f and g, any
shortest word distinguishing f and g has length 8( f, g)+ L.

LEMMA 6.2.12. Let u be a word in A* and let a be a letter in A, Then every
shortest word z that distinguishes ua and w has a factorization z = sa, with
5] = 8(ua, u). [

LEMma 6.2.13. Let u and v be words in A* and let a be a letter in A. Then
S(uav, uv) = 8(ua, u)+ 8{av, v). (6.2.10)
Proof. Let sa (resp. at) be a shortest word that distinguishes ua and u
(resp. av and v) as given by Lemma 6.2.12 (resp. its dual); the word sar
distinguishes uav and uo and thus
8(uav, uo) < 8(ua,u)+ 8(av, v).
On the other hand, a word f distinguishing uar and ue must factorize into
f = sat where sa distinguishes ve and « and where at distinguishes av and v.
This implies
8(ua, u)+8(av, v) <8(uav, uv) a

The key idea of the proof of Theorem 6.2.11 lies in the third lemma,

LeMma 6.2.14. Let u, v, and w be words in A* and let a and b be distinc
letters in A. Then

8(uav, ubw) <max{8(ubav, uav), §(uabw,ubw)}.  (6.2.11)
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Proof. Adjust notations, changing v and w, as well as a and b, if
necessary, so that

8 abw, bw)=8(bav, av). (6.2.12)
By Lemma 6.2.12 and its dual, there exist 7, 5, and ¢ in 4* such that

|r] = 8(ua, 1) and ra distinguishes ua and u,
|s| = 8(ub, u) and sb distinguishes ub and u,
[£] = 8(abw, bw) and at distinguishes abw and bw.

If ¢ divides v, then clearly rat divides uar but does not divide ubw, Thus
8(uav, ubw) < |rat] ~1==8{ua, u)+ 8( abw, bw).
By Lemma 6.2.13
8(ua, u)+ 8(abw, bw) = 8{ uabw, ubw);

hence the lemma bolds in this case.
Assume now that ¢ does not divide v, To begin with, we claim that

S(uav, ubw) =< |s|+ 1]. (6.2.13)
Indeed if ¢]w then sbt|ubw. But sbryuav; that is, sbt distinguishes uav and
ubw. Hence the claim holds in this case. Now if 14w, then recalling that
t|bw, it follows that ¢ = br" for some ¢” such that +'|w. Then st = sbt” divides
ubw but does not divide uav since a # b, tyv, and sbtu. Then st distinguishes
uav and uwbw, and hence Eq. (6.2.13) holds again.
Finally (6.2.13) may be written as

8(uav, ubw) < 8{ub, u)+ 8( abw, bw),
and then (6,2.12) implies

8(uav, ubw) < 8(ub, u)+ 8(bav, av),
which gives, by Lemma 6.2.13

8(uav, ubw) < 8 ubav, uav)

and the proof of the lemma is complete. |

' Proof of Theorem 6.2,11. We prove the assertion by induction on the
mieger d(f,g)=|f|+]g| ~2]f Ng|. where f Ag denotes the longest
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common left factor of f and g. Initially we note that if f|g or g| £, they the
assertion holds with k= g or & = f, respectively. This gives, in particula, .
proof of the basis of the induction. Assuming that f}g and g} f, the Cases
where f is a left factor of g or where g is a left factor of f are excluded, gy
there exist u, v, and win A, and a and b in A, such that a % b, f = uay, and
g = ubw. By Lemma 6.2.14

8(/. 5) = max(8(ubav, £ ), 8(uabw, ).
Adjust notations, changing v and w, as well as a and b, if necessary, so thy
8(f. g)<8(ubav, f).

Then, by Proposition 6.2.10

8(f,g)=min{8(ubav, f),8{ubav, g)}. {6.2.14)
On the other hand, a # b, hence

d{ubav, g) = d{ubav, ubw) < |av| + |w],
and thus

d(ubav, g)<|av| + |bw] =d(f, g).

Thus, by the induction hypothesis, there exists f in 4* such that ubav and g
both divide # and

8(ubav, g) = min(8(ubav, 1), (g, h)}. {(6.2.15)
Finally, note that f divides ubav, and then k. Hence, every word that

distinguishes ubav and k also distinguishes f and #. Tt follows that 8( £, k)<
8(ubav, k), and again by Proposition 6.2.10:

8(f, h) = min{8(ubav, k), 8{ubav, f)}. (6.2.16)
Now, (6.2.15) in (6.2.14) give
8( £, g) = min{8(ubav, 1), 5(ubav, k), 8(g, #)},  (62.17)
and (6.2.16) in (6.2.17) give the expected equahty:
8(/, g)=min{8(f, k), 8(g, h)}.

Since by induction g divides & and, as already noted, f also divides &, the
proof is complete,
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’E'he proof of Theorem 6.2.11 we have given here will be a constructive
s as soon as we shall have an effective procedure to compute 8(av, v) and
f“PShortest word that distinguishes between agv and v, Such a procedure is
%ven by the following proposition and its proof,
P

?"”:'PROPOSITION 6.2.15. Let t and © be two words of A*, with t not equal to the

fé' pty word, and let m be a positive integer. Let P(m, 1, v) be the following
Prgg;&caie over N X A X A% there exists a factorization of v into m factors
p=0,0y 7" U, Slch that

P

it alph{z) Calph(v,) C--- Calph{v,,) (6.2.18)

and, by convention, P(0, i, v) holds for any couple (t,v) of A* X A*, We then
-hgve 8(tv, v} = max{m|P(m, 1,v)}.

Proof. We show first the implication
P(m, t,0)=(Vs€ A" s|w=s|v). (6.2.19)

Let v=0 u2 -1, be a factorization of v that satisfies (6.2.18) and let
§= 5,8, 8, 5, in A, be a subword of v of length m. If s does not divide v
there exists a greatest integer §, between 1 and m, such that

587617 Sad V1 O

By (6.2.18) alpha(rv) C alph(v,,), hence s,,|v,,. Thus, j < m and the choice

of j implies that
a1t S Opr T O

These two assertions imply that s, does not belong to alph(v,). On the other
hand, since by hypothesis s;5,,, - 5,, divides tv, they also imply that s,
belongs 1o alph(fe,v,- - - v;..,), which is contained, by (6.2.18), in alph(;), a
contradiction. Hence s divides v.

To each pair (¢, v} of 4™ X A* we now associate an integer (¢, v) and a
word h(t,v) by the following definition:

* If alph()¢ alph(v), then k(r,#}=0 and #(7,v) is any letter in
alph(ry\alph(v);

* If alph(r) C alph(v), then let ¢’ be the shortest left factor of v such that
alph(r) Calph(#’) and let ¢’ be the right factor of v such that v = 10"
Since ¢ is not the empty word, neither is ¢" and t' = r,¢ with ¢ in 4. We
define then k(7, 0} = k(¢’,v"}+ 1 and k(t, v) = ah(t’,0").

We claim now that

B(r,v)[o  and  A{t,vhv, (6.2.20)
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which will be proved by induction on k(¢,v) and which trivially holds fp,
k(r,0)=0.

Wc)note furst that the minimality of the factor ¢ =¢,a implies that ty,
letrer a belongs to alph(¢) but does not belong to alph(z,). Hence if k(s v)
divides ¢'t’, then (¢, v)= ah’(¥’,v") divides #’'v"= tv. On the other hang j5
ah(t’, v’} divides v = fav’, then A{?', v) divides v’ also; the claim is estap.
lished.

It is routine to verify, again by induction on (¢, v), that

P(k(t, v),t,v) (6.2.21)
holds and that

[h(2, 0} = k(t,0) +1. (6.2.22)

Ths completes the proof; indeed,

* (6.221) implies that k(¢, v)<max{m|P{m, 1, v)};
* (6.2.19) implies that max{m|P(m,t,v)}<8(tv,v) and (6.2.20) and
(6.2.22) together imply that 8(to, v) < k(z, v)+1. |

From Proposition 6,2.15 follows immediately:

COROLLARY 6.2.16. For any word f and g in A* and for any integer m we

have ( fg)" = g( fg)"1 /.|

Theorem 6.2.6 and Proposition 6.2.15 (via Corollary 6.2.16) are the key
arguments for the characterization of the quotients of 4* by the con-
gruences J,.: cf. Simon 1975 and Problem 6.2.9. This characterization was
first given in Simon 1972 with a more complicated proof. The presentation
of it in Eilenberg 1976 is modeled after the latter reference.

We now tumn to the problem of characterizing a word f among the other
words of same length by the set of its subwords of a fixed length m. The
solution is given by the following results, due 1o Schiitzenberger and Simon
and that appear here for the first time.

THEOREM 6.2.16. Let A be an alphabet with at least two letters, and let m
and n be two integers. The restriction of the equivalence J,, to A" is the identity
if, and only if, the inequality n<2m — 1 holds,

The example of the two words a™ 'ba™ and ¢™ba™ ! that have the same
set of subwords of length m shows that the condition is necessary. That it is
sufficient is a consequence of the two following lemmas (recall that S(m, f)
denotes the set of subwords of f of length less than, or equal to m). Note
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that the lemmas give a reconstruction of a word f from a (strict) subset of

S(m! f)’

LemMa 6.2.17. Let A= {a, b} be a two-letter alphabet. Let m be an integer
‘gnd let n=2m— ). Every word f of A* of length less than, or equal to n is
uniquely characterized by its length and by the set

D(fY=8(m, fIN(a*b* Ub*a*).

Proof. For a word f, we define
Dif} = S(m, /v (a*b* u b*a*).

Let us assume, for a contradiction, that f and g are different words in 4*,
such that

|fl=|g|<n and D(f)=D(g)=D,
We further define
p=max{|s||s€ DNa*}
and
g = max{|s||s€ DNb*}.

Adjust notation, changing a and b if necessary, so that ¢ < p. Then clearly,
|fl.=pand|f|,> ¢ hence
2g<ptg=<|fl,t|fly=1fl<n=2m-1.

Since ¢ is an integer it follows that g <m, and this implies that | f],=g.
Similarly, |g|, = g. Thus, there exist integers iy, i\, . -,y jo» fi1s. - .1 Such
that

[=albah- . . gle1pgh
and
g= ajﬂbaflb. . aqulbafq_

Sin_ce f# g by assumption, there exists a smallest k, such that i, # j,.
Adjust notation, changing / and g if necessary, so that i, < j,. Since
|f]=1gl, ;= jfor 0<!<k and i, < j, it follows that

jk+1+“' +jq<ik+l+”'+iq‘
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Let 5 and ¢ be given by
5= aiﬂfl'l—i-« +l‘,,+lbq-k and t = bk+lajkﬂ+ +jq+[‘

Clearly 5| g, 54 f, t| f and t4g. Hence since both s and  belong to a*b* + px,s
iv follows that |s|, |¢] > m. Then '

fytig+--+i tg—k=m
amd

kA1 jogy ety = m,
Summing these two inequalities and recalling that i, = j, for 0<</<Ck, anqg
that i, < j,, we have:

Jot it et ftg=lgl=2m,

a contradiction. Thus, i, = j, for every & and f=g Ths concludes the
proof. (]

Remark 6 2.18. Two distinct words f and g of {a, b}* of length less thay
or equal to 2m ~ 1 may be equivalent modulo J,,, e.g. m =4 and abaaba=
abaaabal J,]. But it is noteworthy that under these hypothesis (ie., f = gfJ |
[fl|=2m—1,|g|=<2m—1) the beginning of the proof of Lemma 6217
implies that if | f|,=|f|, then |g|, =g, and | f],=|g],, and this lag
value is determined by the set D, which is common to f and g, even when
the lengths f and g are not known,

LEMMA 6.2.19. Let A be any alphabet and let f be a word of A*. For every
two element subset {a, b} of A let f, , be the longest subword of f that belongs

to {a, b}*. The word f is then uniquely characterized by the set L = { Lonlad
€ 4).

Proof. The first letter x of fis characterized by the condition that, for all ¢
in 4, £, , begins with x; clearly there is exactly one letter x satisfying this
condition. More generally, if # the left factor of length k of f is known, the
(& + D)th letter x of fis characterized by the condition that for all @ in 4, x
is the (|h|, + k|, + Dth letter of f, . n

Froof of Theorem 6.2.16. Let m be an integer and let f be a word of 4* of
length less than or equal to 2m — 1. By Lemma 6.2.19 £ is determined by the
set of subwords f, ,. Each £, , is, a fortiori, of length less than or equal to
2m—1 and then it is characterized by the sct S{m, f)N {a, b}* as soon as
its length is known. From the preceding Remark follows that the smatler of
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e integers | foola=1f]a and [fosls= | fl, is determined by the set
s(m, f). By inspection of all the pairs of letters, 5(m, f) determines all the
qumbers | £, but the largest one, which can be obtained by difference with

1f]- w

The proof just.given for Theorem 6,2.16 using Lemmas 6.2.17 and 6.2.19
is in fact the demonstration of the following stronger result:

PROPOSITION 6.2.20. Any word [ of A* is characterized by its length and by
the set of its subwords that belong to the set

T= |J a*b*
a,bE A*
a# b

and the length of which is less than or equal to

m[n+l’|
m=|——|,

where n is defined by n = max{| f|,+1/|,| a. bE A, a=b}.

6.3. Counting the Subwords

In the very beginning of this chapter, we came back to the definition of a
word as a finite sequence of letters, and we defined a subword of aword f to
be a sub-sequence of /. We also noticed that two sub-sequences of £, distinct
as sub-sequences, may define the same word. For instance in the word
bacheab there is only one sub-sequence equal to aba, but there are two of
them equal to aca, three to ab, and four to bab. Until now we have been
mterested only in the fact whether a word g appears as a sub-sequence in a
word f or not. In this section we shall consider also the number of times g is
a subword of /. Given words f and g in 4*, the number of distinct
sub-sequences of f that are equal to g is called the binomial coefficient of [

and g and is denoted by ( g)

Example 6.3.1. abab \ _ aabbaa \
=3, =§.
ab aba

Let f and g be two words written with only one letter a and of lengths p

»
and g respectively; then ('; q) = (g} where (g ), with integers p and g,
denotes the classical binomial coefficient. This remark justifies our termino-

logy.
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The empty word is defined to be the sequence of length 0 and there
exactly one sub-sequence of length 0 in any sequence. Then

V/E 4 ({) =1. (6.3)

By the length argument we have

vigea  Ifl<lsl=(/)=0. (632)

Recall that, for all f and g in 4%, the Kronecker symbol §; , has value | if
f=g, and 0 otherwise. We then have

PrROPOSITION 6.3.2. The following holds

Vf, g€ 4*Va,bE A, (:;) (;;)M (f) (6:3.3)

Proof. If a+ b, then every sub-sequence of fa that is equal to ghisa
sub-sequence of f, and conversely any such sub-sequence would do. The
formula then holds for that case. If a= b, the sub-sequences of fa that are
equal to ga fall in two classes: those that do not contain the last element of
the sequence fa and those that do. The first ones, as before, are sub.
sequences of f equal to ga, and conversely any such sub-sequence would do.
The latter ones, after cutting their last element, become sub-sequences of f,
equal to g, and conversely any such sub-sequence of f, when added the last
element of the sequence fa, is equal to ga. By construction no sub-sequence
may belong to both classes and the formula is proved. |

Proposition 6.3.2 is the generalization of Pascal’s formula

py_[pr-1 ) p—1
( ‘1) ( q + ( g1
to our binomial coefficients; we indeed used the same argument to prove it

as the one (hat is commonly used for establishing Pascal’s formula. Using

suitable notation, it is possible to make (6.3.3) look even more like Pascal s
formula (cf. Problem 6.3.3)

PROPOSITION 6.3.3. Relations (6.3.1)-(6.3.3) determine the binomial coeffi-
clents (é) for every fand g in A*.
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proof. By nduction on the length of /. Relations (6.3.1) and (6.3.2)
determine (;) for all g in A* (indeed the relation 21; =0 for all g of
kngth greater than 0 would have been sufficient instead of (6.3.2)). and
thent ({: ) is determined for all g in A*: by (6.3.1) for g =1 and by (6.3.3)
jor every g of length greater than 0. [ ]

Remark 6.3.4. As usual with the classical binomial coefficients, we can
order the binomial coefficients in an infinite matrix, the rows and the
columns of which are indexed by 4* and such that the entry (/, g) has value

é: . If rows and columns are both lexicographically ordered, the matrix is
lower triangular; we call it the Pascal matrix P.

Remark 6.3 5. 1f K is any homomorphic image of N, with Zz: N - K, then

(63.1)~(63.3) can be used to define K-binomial coefficients g  and then

A7 . m (f):.
;p( . 2 “holds. For instance if B 1s the boolean semi-ring ¢la 1 if,

and only if (jgr) = 0, that is, if and only if g| f.

We shall now extend Newton’s formula to our binomial coefficients.
Recall that Z{A) (resp. N(A)) denotes the algebra (resp. semi-algebra) of
polynomials in noncommutative indeterminates in 4 with integer {resp.
positive integer) coefficients. We shall call Magnus transformation the alge-
bra endomorphism p of Z{ 4) defined by

pla)=1+a foreveryaind
The restriction of p to N{A} is a semi-algebra endomorphism of N{A).

PrOPOSITION 6.3.6. For every fin A* the following holds:

=3 (1)s (63.4)

= A g

Progf. By induction on the length of /. The equality holds for = 1. Let us
compute p( fa):

s =p(N0+a)=( I (/}a+a)

he At

- 20 2 (0

he A* he A*
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We split the first sum into three parts: &= 1 A= ga for gin 4%, gy
k= gh for g in A* and b in A4, different from a.

(e 3 (D e 2 (Lee 5 (e

1 gE A geE 4™
b d, b#u

Since h is a dummy index in the third sum, it may be written g, and relaiigy,
(6.3.3) completes the proof. u

The polynomial p(f) is sometimes called the Magnus expansion of f:
Proposition 6.3.6 may also be written as

Vi gEA*  (u(f).8)= (é} (6.35)

CoroLLARY 6.3.7. For all f, g, and h in A* one has

ez s

w, u & A%
upFE g

Proof. Since p is an algebra homomorphism p(fh)}= p(fn(k), and
Corollary 6.3.7 expresses the coefficient of g in the product of the two

polynomials p( /} and (k). a

COROLLARY 6.3.8. For all f and g in A* one has

2 (--ﬂ)”“"""(f)(’;]:@,g (63.7)

B At h

Proof. Let = be the algebra endomorphism of Z{ A}, defined by
m(ay=a~1= ~(1-a) forall a in A.

Thus, for all @ in A, w(a)= —u(— a), since p is a homomorphism of
algebra, and from Proposition 6.3.6 1t follows that for all f1n A*

(=D I )" (

hEA*
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Now w and p are inverse endomorphisms of Z{A) since w(u{a))=p(m(a))
—g for all a in A. Thus

B =7 =0 3 =)™ {7 Juth)

he A*

SRS A TSR AL

hE A g A

by Proposition 6.3.6, Exchanging the summations completes the proof. W

Another way to express corollary 6.3.8 is to state that the inverse of the
pascal matrix P, is the A¥X 4* matrix @, the entry (f, h) of which is

(~1)|”+“’5(’{). Since the inverse of the transpose of a matrix M is the

transpose of the inverse of M we gt:,? immediately:

COROLLARY 6.3.9. For all { and g in A* one has

S (e (5 =, "

he A

‘The orthogonal relation given by Corollary 6.3.8, as well as its companion
in Corollary 6.3.9 may be expressed as inverse relations, as is usual when
dealing with combinatorial identities (see Riordan 1968). Thus if s and 7 are
real-valued functions on 4* we have the inverse relations

S‘(.f} = Z (- I)Egl(f)r(g), Hg)= Z (m 1)5)‘[(?)5()(}

ged* g fed*

and

(=" 3 (§)de)  dp=(-0" 2 (F)s(n)

2E A fEA* g

being aware that the latter may rise convergence problems and is likely to be
used with functions that have value zero but on a finite number of words.

In Section 6.1 the shuffle of two words was defined and, by additivity, the
shuffie of two subsets of 4*; this notion was in a sense dual to the one of
subword. Similarly a suitable product on Z{(A4)}, the module of formal
power series on A* with integer coefficients will provide an adjoint to the
Magnus transformation.
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The shuffle product on the module Z{{A4}) is the binary OPeratioy,
denoted by o, and defined inductively by

viedr, fol=lef=f (6.3.5)
Va,bEA, Vf,g€4%,  facgb=([ogb)a+(facg)b (639
Vs, tEZ{(A*)),  set= X (s,f)(t,g)fog (631

f.pe A

For all f and g in A* feg is a homogeneous polynomial of degre.
[ f1+]gl, from (6.3.8) and (6.3.9), by induction on { f{+ | g|- Thus there 5
no problem with the infinite summation in (6.3.10): the family { fo g},
is locally finite,

Shuffle of course bears a close relation to the common idea of shuffling
objects. For instance one can see that the coefficient of a word A in the
shuffle of f and g is the number of ways one can choose a pair of
complementary sub-sequences in A, the first being equal to f and the second
to g (cf. Problem 6.3.9).

BT A

Exumple 6,3.10,

aboab = 4aabb + 2 apab
ab o ba = abab + 2 abba + 2baab + baba.

Remark 6.3.11. The sub-semi-module N(( A} of Z{{A)} is closed under
shuffle product. Observe also that by means of the same relations (6.3.8)-
(6.3.10) shuffle product could have been defined on K{({A4)) for any
commutative semi-ring K.

ProrosiTioN 6.3.12, The shuffle product is a communative and associative
operation.

Both properties, commutativity and associativity, are first established for
the elements of A* hy induction on the sum of the lengths of the operands;
we leave the verification of this to the reader (see also the proof of
Proposition 6.3.15). Relation (6.3.10) then extends both properties to
Z((4)). .

Since relatron (6.3.10) also ensures distributivity of the shuffle over
addition in Z{{4}}), the module Z{{A4}) equipped with the shuffle becomes
an associative and commutative algebra. From (6.3.8), | is the unit element
of that algcbra

We now come to the property we aimed at when defining shuifle. Recall
that A* denotes the charactenistic series of A*,
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%prOPOSITION 6.3.13. For all g in A* the following holds
goar= T (f)f_ (6.3.11)
fe A 8

ﬁ}iﬁivalmtly, Proposition 6.3.13 may also be written as

Vi, gE 4%, (goA*, f)= (fgr) (6.3.12)

hich shows, as announced, that shuffling with A* is the adjoint operator of
die:Magnus transformation. One can say as well that the column of index g
i the Pascal matrix gives the coefficients of g A*, whereas the row of index
{iit the same matrix gives the coefficients of p( /).

“Relation (6.3.12) extends from 4* to Z{4) by linearity:

VE,GEZ(A*Y  (u(F),Gy=(GoA* F) (6.3.13)

Proof of Proposition 6.3.13. We first remark that from (6.3.8) it follows
ihat

vica*, (loA*, f)y=1 (6.3.14)

and that from the fact that goh is a homogeneous polynomial of degree
{g]+ |#| it follows that

Vi, gE 4%, |f|<|gl=(goA*, [)=0. (6.3.15)
We now prove an induction formula for both f and g nonempty. From

A*= 14+ E A*e
cEA
follows

(ghoA*)=gb+ 3 (ghoA*c)
cEA

=gb+ 3 (goA*c)b+ 3 (ghoA*)c
e A cE A

4
=(goA*)b+ 3 (gboA*)e
cE A

Observe that for any s in Z{(A4)) and any b in 4 one has

((s)b, fay=0 if a#b and
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((s)b, fay={s5.f» if a=b. Thus,

(gboA*, fay=((g=A")b, fay+ X ((gboA*)c, fa)

AT

=(ghod*, f) if a+b } (6.3.15)
=(gboA™, f)+(geA" [} if a=b

and by Proposition 6.3.3, (6.3.12) is established. "

In order to get new combinatorial identities between binomial coefficienis
the definition of a new product on Z{(A)), very similar to the shuffls
product, proved to be useful. It has been introduced im Chen, Fox, and
Lyndon 1938,

The infiltration product, or infiliration for short, is the binary operation on
the module Z{{A4)), denoted by 7, and defined inductively by

vied®, [il=1rf=/, (6.3.17)

Vi, g€ A*, Va, beA,

fargb=(f1gb)a+(farg)b+8, (f1g)a (6.3.18)

Vs t€Z((A)),  sti= 3 (s, )L e(f1g). (6.3.19)
f.g€ 4%

Because of the similarity of the definitions of the shuffle and the
infiltration, most of the comments and remarks that have been made for the
shuffle also hold for the infiliration. First, the family {f 1 g}, ;e 4 is locally
finite (see Lemma 6.3.16) so that the summation in (6.3.19) is well defined
Observe also that N{(4}) is closed under infiltration.

As for shuffle, infiltration may be given a definition, less suitable for
formal and inductive proofs, but which gives a more intuitive idea of the
result of the infiltration of two words. The coefficient of aword A in f 1 gis
the number of pairs of sub-sequences of / that meet the two conditions: (i)
they are equal respectively to f and g; (ii) their union gives the whole
sequence # (cf. Problem 6,3.9).

Example 6.3.14.

ab 1 ab— ab +2aab +2abb + 4aabb + 2abab,
ab 1 ba = aba + bab + abab +2 abba + 2 baab + baba.

PrROPOSITION 6.3.15. The infiltration product is commutative and associa-
tive.
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* Proof. As for shuffle, commutativity and associativity of the infiltration
are first established for the elements of 4™, by induction. Since associativity
will have a crucial role in the next proposition we give here an explicit
groof. The equality (f T g)1h=f 1 (gt h)is clear from (6.3.17) as soon as
one of the three words f, g, or k is equal to 1. Let thus £, g, and # be words
in A* and a, b, and ¢ be letters in A; one has

(fargb) 1 he=((f 1 gb)a) 1he+((farg)b}the+8, ,((f1g)a)t he
=((frgb)rhe)a+{((f1gp)a)th)e+8, ((freb)rh)a
+((farg)the)b+{({fatg)brh)e+8, ((fatg)th)b
+8, ,[((f18) the)a+(((f1g)a) th)c+8, ((/ tg)1h)a].

Grouping together the terms of this sum that end with the letter ¢ we obtain

(fargbythe=({frgb)rhc)a+{(fatg)rthcb+((fatgb)th)e
+8, {(f1gb)rh}at 8, ((fatg)th)b
+8, ,({(f18)1he)a
+8, 48, ((f18)1h)a

and that expression is symmetric in f, g, and &, as well as in a, b, and ¢,
once the induction hypothesis is applied to the infiltration products within
the parenthests: they involve words such that the sum of their length is
strictly less than | fa] +{ gb| + {hc], and once it has been noted that 8, ,a=
8, ,band that & .8, =8, .8, 8 .. [ ]

Defining relation (6.3.19) ensures the distributivity of infiltration over the
addition, so that the module Z{{A)) equipped with the infiltration becomes
an associative, and commutative, algebra.

Recall that the valuation of an element s of Z{({4}), denoted by val(s), is
the smallest integer n such that s contains a monomial of degree n with a
aonzero coefficient; by convention val(0) = + 0. We note also deg(FP} the
degree of an element P of Z{4). A first description of the infiltration of
two words is given by the following lemma:

Lemma 6.3.16. Let f and g be two words of A*. The infiltration of f and g is
@ polynomial P(f, g) of degree | f|+|gl. Moreover f 1 g may be written as
frg=P(f,g)+ fog withdeg(P'(f,g))<|f|+|gl (6.3.20)

If{ fl=1gl, f 1 g may also be written as

flg= (;)f+ P(f.g) with|f|<val(P"(f,g)) (6321)
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Proof. The first two assertions are easy to prove by induction and are lef,
to the reader. The proof of (6.3.21) is also easy. It goes by double induc;
on the length of g and then on the length of f. Clearly (6.3.21) holds fg
g=1and for all fin 4*. Let us develop

fargh=(f1gbla+(fatg)b+8, (f1g)a

Case 1. | f| = | gb. Then, by induction hypothesis

faTgb={(£b)f+P”(f,gb)]a+[(?)fa+l°"(faa3)]b

Ma,,,[(g)mp"( 1. g)]a

S[[A RN P

with val @ > | f{+1 and by (6.3.3), relation (6.3.21) holds.

Case 2. | f|<igb|. Then | f| = |g| and it follows:
fa?gbm{(?b)gb-}-P”(gb,f)]a+[(§a)fa$P”(fa,g)]b

+6a,b[(£)f+}’”( 1. g)]a

If f=gand a= b then 8‘,‘,,( é) =] =(£‘;) and (6.3.21) holds; if one of the

two preceding conditions is not met then &, ,,( é ) =0 (f;) and (6.3.21)
holds again. n
CoROLLARY 6.3.17. Vf, g& 4%, (ng,f)“—"(é). (6.322)

Relations (6.3.20)-(6.3.22) do not exhaust the relations among binomial
coefficients, shuffle, and infiltration, In order to state the one we aim at, we
recall one more definition: the Hadamard product of two series s and ¢ of
Z{{A)), denoted by 5 O ¢, is defined by

ViEA*, (501 fy={(s, ) [). (6.3.23)

The Hadamard product may be viewed as a generalization to series (that is,
sets with multiplicity) of the operation of intersection on sets; for instance
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jpe Hadamard product of two characteristic series s and 7 is the characteris-
iic series of the intersection of the supports of s and «.

TurOKEM 6.3.18. For all fand g in A* the following holds:
(foA*)O(goA*)=(/f1g)0A*. (6.3.24)

. Theorem 6.3.18 expresses the equality of two series: if we express instead
ihe equality of their coefficients we obtain

Vi, g hEAY,  (foA*,h)(goA% HY=((f1g)oA", ),
and then, by (6.3.13)

vig.hed,  (f,u(h)(gm(h))=(f18.n(h)),
which may also be written as

Vi, g, he A, (’})(g): 2 <ng,w>(:',). (6.3.25)

we A

This relation is due to Chen, Fox, Lyndon (1958), who present it in a wider
setting. It may be established by induction on the length of the words, as
can all other relations of this section, but it is also an immediate conse-
quence of the associativity of the infiltration,

Proof of Theorem 6.3.18 From (6.3.19) we have

Vi g huEA*,  ((frg)th,uy= 3 (frtg,wd(wih,u)

w4
(6.3.26)

and, similarly

Vig. mued,  (fr(gth),uy= X (g1h,o){f1v,u).

vE A"

(6.3.27)

Setting ¥ = # in (6.3.26) and using (6.3.22) gives

vighea,  ((frg)rhiy= 3 (f1gm(?)

wie 4*

We also set u = & in (6.3,27) and then note that Lemma 6.3.16 implies that
forall f, g, k, and v in A* the product {g1h,e){ f 10, h) is equal 1o zero
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unless # = v, This gives, using again (6.3.22),

v/, g, hE A%, (fT(gwh),h)z(’}]{’;]. N

Example 6.3.19. With f and g taken 10 be letters in 4, (6.3.25) become,

. . YRy _[n) {h
VhC Y, Va, bC AT, (a)(b) (ab)i(ba)' (6'3’28)

By means of the inversion formula (6.3.7) Theorem 6.3.18 gives an expliy
formulation of the coefficients of an infiltration product by means of
binomial coefficients:

COROLLARY 6.3.20 For il f, g, and k in 4* one has

Srgky= 3 (= (n). .

ha A™ g

Remark 6 321 1If f and g are resincted 1o be words over a one-letter
alphabet, (6.3.25) reduces to an expansion formula for the classical binomial
coefficients. More precisely let p and ¢ be positive integers with p = g. Then

rtq
wtar= 3 (3)(s7g)e

= p

and (6.3.25) becomes

waren, r=a (H(0)= 2 G0

s=op

a recorded combinatorial identity (see Riordan 1968; p. 19)
Conversely, relation (6.3.23) gives a complete set of finite identities for
the Magnus expansion of an element of 4*. Once it is noted that all the

coefficients of w( f), for fin A*, are positive, this converse may be stated as
follows.

THEOREM 6.3.22. Let s be a nonzero element of N({A)) such that the
following holds:

VAEEA, (5. IXs, )= B (figwdsow) (6329

we 4

Then there exists a unique word h in A* such that s = u(k); that is, for ofl f in

44 (s, f)z(’}).
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Proof. Some notations prove to be useful. Let k== Card(4) and let
A={ap, az,-0 ;). Leta be the surjective homomorphism from 4* onto M*
sefined by: a(a;) is the element of N¥, all the coordinates of which are 0
put the ith one, which is 1, For all f in 4* we thus have

a={(2(2)-(2))

Let = denote the natural (partial) ordering of N, That ordering is the
;mage under a of the division ordering on A4*; that is,

vf, g€ A*, (é)#ﬂﬂa(g)éa(f). (6.3.30)

It is easy to establish by induction that the following holds;

Vf,g,weA*, (ng,w)#Oma(f)ﬂa(w),
ofg}=<a{w), and a(w)<a(f)+alg) (6.3.31)

Finally let 8= (s, a0, (s ay),.... (8, @)
If we take g to be a letter of A in (6.3.29), we have, using Lemma 6.3.16
and relations (6.3.30) and (6.3.31):

VfEA*, VaEA, <s,f)[<s,a>—(£)]m 3 (‘;’,)@,w)
a(w) = al f)+ala)

(6.3.32)

From now on we make constant and implicit use of the fact that all the
{s, f) as well as all the binomial coefficients are positive integers. The first
consequence of (6.3.32) is then;

Claim 1. Let T be an element of N* that is not smaller than or equal to S
that is, S— 7T is an element of Z*\N* Then for all f such that a(f)=7T,
(s, f>=0.

In particular if § is 0 (of N¥), {5, /)= Ofor all fin 4* and (s, 1) =1 by
taking f= g=1 in (6.3.29) and using the assumption that s is nonzero, We
are done with 2 =1. Let suppose now that S is not the zero element of N¥,

Claim 2. For fin A* such that a{ /)= §, then (s, f) equals 0 or 1.

Indeed if we make f= g in {6.3.29) using (6.3.21), (6.3.31), and Claim !
we have:

(s, [7= 2 {f1fiwy(s,wy=(s,).

weE A"
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Claim 3. There exists a unique # m A* such that af#) = § and (s, hy =1

This is because, if for all f such that a( f)=S5 we had <S,f>m{)’ N
repelitive use of (6.3.32) would give that for all v such that a(v)<§, (s,
is also equal to 0. This is in contradiction with the assumption that g i
different from 0. On the other hand if there were two distinct words, sy
and g, such that a(f)=a(g)=§ and (s, f)= (5. g) =1, (6.329) woylq
read

S (figwdswy=1,

we 4%

which contradicts the conjunction of Theorem 6.3.18 and of Claim 1:
first one asserts that f 1 g is a polynomial of valuation strictly greater thay
|fi1=|g| since f and g are distinct, and the second one ensures thag
(s,w)=0 il wis of length strictly greater than | f {. Now the value of (s, 1)
is determined for all f such that a(f)=S5. A repetitive use of (6.3.3))
uniquely determnes the value of (s, f) for all f such that a(f)<S. But the

numbers ( }}) for all f, also fulfill (6.3.32) and coincide with (s, f) for allf

such that a(f)=§; they must coincide for all f such that a(f)<S$. By
Claim 1 and (6.3.30) they also coincide for all f such that e( f) % 5. |

Like Theorem 6.3.12, Theorem 6 3.14 is due to Chen, Fox, and Lyndon
(1958). But it was stated there in such a context—namely the number (s, f)
needed not to be positive any more—that its proof was of a completely
different nature. Both theorems, as well as the defmition of the infiltration,
are given also in Ochsenschlager 1981a independently of the first reference,
and in the restricted domain of the binomial coefficients. Qur presentation,
and especially the proof of Theorem 6.3.14, is modeled after a preliminary
version of this latter reference.

As stated several times in this section and once again just before,
binormal coefficients may be considered in a more general and algebraic
framework, namely the Magnus representation of the free group and the
free differennal calculus of Fox. This aspect will be sketched in the
problems. It leads also to relations between the shuffie product and the free
Lie algebra that were mentioned in the problems of Chapter 5.

Problems

Section 6.1

6.1.1. On A* define f< g if f is a factor of g. Show that < is a partial
ordering of 4* for which there exist infinite sets of pairwise noncom-
parable elements.
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6.1.2.

6.1.3.

614,

6.1.5,

Well partial ordering. Prove the following corollaries of Proposition

6.1.3:

a, Any subset of a well partially ordered (WPO) set is a WPO set,

b. Let £ and F be two partially ordered (PO) sets. A mapping «
from E into Fis a homomorphism if for any x and y in E x < y
implies a(x)<a(y). Prove that any homomorphic image of a
WPO set is a WPO set.

c. Let E and F be two PO sets; the product £ X F is canonically
ordered by (x, 1)< {y,#)iff x<y and t=tu for all x, y in £ and
all t,u in F. The definition extends to the product of any finite
number of PO sets, Prove that the product of any finite number
of WPO sets is a WPQ set.

d. The free commutative monoid N¥ is thus canonically partially
ordered by the natural ordering on each of its components, Prove,
in two different ways, the theorem of Dickson (1903): N* is a
WPQ set, _ _

For any subset X of 4* let (X), denote the complement of X, the

shuffle ideal generated by X; thatis, (X). = f|Vx€ X =x}f}).

a. Show that for fand g in 4* and for g and b in A,

(2) .(bg) .= (Fabg) U8, ,(fa) a(bg) .

b. Deduce Theorem 6.1.2 from part a and by induction on Card( 4).
(See Jullien 1968.)

Antichains. Let E be a well partially ordered set. For conventence,

we call antichain a set of pairwise incomparable elements. Certain

antichains are contained in arbitrarily large antichains, we call them
narrow. Others that do not have this property we cail wide.

In A*, with the division ordering, the set X = {aba, bab} 1s nar-
row since XUA,UB, is an antichain for every integer n, with A, =
{a@'b"" i< n} and B,= (bla" i <n}, while Y= {ab, ba} is wide,
a. Consider first N*, with the natural ordering, Show that any

antichain of N2 is wide; moreover, given an antichain X=

(g 31} Cxzo Yadsenn (X, ¥p )} Of N2, compute the maximum of

the cardinal of the antichains which contain X, For k=3, give a

necessary and /sufficient condition for an antichain of N* to be

wide,

b. Let k£ = Card(4) and let @ be a surjective homomorphism from
A* onto N*, Give a necessary and sufficient condition for an
antichain X of N* to be such that a~'(X) is wide. See Problem
6.2.9 for a characterization of wide antichains of 4*,

Maximal chains, A chamn is a subset of 4* totally ordered by

division. A chain { £, f;,....£,} is said to be maximal if it is maximal

among the chains the last element of which is f, (we make the
implicit assumption that f| f; iff i=j). A maximal chain always
begins with the empty word, and its length (that is, the number of
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6.1.6.

pmblems

elements) is | f,| + 1. We denote by €, the set of maximal chaing of

length n. We suppose that 4 = {a, b} is a two-letter alphabet,

a. Letf=x;xy - x, be a word in A* of length p. Define the worg,
80:81:--+,8p+ ) bY the following: g, =6f,g,.,= fa, and g =,
coexpgabxgy-ox, for 1<<i< p. Show that these words ar::
distinct and are exactly the { p +2) words of length p + 1, having f
as subword. Deduce that Card(C, _,) = n!

b. Let o be a permutation of the set fn]={1,2,...,n} and let ¢ 1.
represented as a word over [n]; that is, o= 0(1)0(2)---0(,;)_
Recall then that the up - down sequence of o is the word f of 4* o
length n—1, /= x,x; ~ x,, defined by x,=a if o(i)<o(i+])
and x,= b in the opposite case. Let a={f,-f..... ..} be in
,~ and define the sequence of permutations o,, 1< p<n, by
the following induction: o, =1, and, for 1< p=n0, =z,
sz ptDzigyzife, = 22,00 - 2, and if £, is numbered by ;
in the process described in problem part a giving the ( 7+
words of length p having f,_, as subwords; define P(a)=g,
Show that o, is the unique permutation obtained by inserting
the letter (p+1) in o, and having f, as up-down sequence,
Deduce that © is a bijection hetween C,_, and §,, the set of
permutations on n elements, and derive an algorithm to compute
the number p( f) of permutations having f as up-down sequence,

Maximal chains (continued). The cardinality of 4 is now any posi-

tive integer k.

a. Let f= xx;" - x, be a word of 4* of length p. Define the set of
words GD,G,,...,G,u by the following: G,= Af, and G,=
xpXp0 XA ANX )X  x, for 1<i< p. Show that the sets G,
are pairwise disjoint and that G=UJG, is the set of the
(( p + Wk —1)+1) words of length p +1 that have f as subword,
Deduce from this an expression for Card(C, ).

b. Let y= {f,. f.....f,} be a maximal chain and define the frace of
¥ to be the word Tr(y)—~ y, ¥, + - y, where y; is the letter that must
be cancelled from f, in order to get f;_,. Let w= p y,-+ -y, bein
A*; for each j, 1=t j<in define {w, j) to be the number of
occurrences of letters, different from y,, occurring in y, y...J,
increased by 1. Let

H
Fo(w)= [] 1(w, j).
J=1
Deduce from part a that the number of maximal chains v such
that Tr(f) = w is equal to Fo{w).

The reference for both Problems 6.1.5 and 6.1.6 is Viennot
1978. As in Problem 6.1.5 the process described in Problem 6.1.6a
gives rise, for k== 2, to a bijection between C, | and §,, but its
description becomes more involved.
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6 1.7. For every f in A* define B(f) to be the length of the longest
subword of f in which any two consecutive letters are distinct; for
instance S(abbacabaabb)=6. Show that there are exactly B(f)
distinct subwords of f, of length | f]— L

6.1.8. Mobius function. For all { and g in A* definc p(/f, g) by the

T following: (£, £)=0 if f1g, p(f, f)=1 for all f, and u(f,g)=
—ZXp(f, ) where the sum ranges over the words » such that
f|h, h]g, and k5= g (thus the sum is finite).

a, Let 5 and ¢ be two real-valued functions on A*. Show that
s(f)=2,,1g) if and only if #(g)=3,,.s(f ([, ). Hint: De-
fine f(f,g) by {(f,g)=11if f|g, and f(f, £) =0 otherwise and

show that
2 (S mu(h. ).
hEA*

b. For fin A* let (£} be as in exercise 1,10: Show that p(1 ., /)=
(— WY1 if B(f)= fand p(l 4., f) =0 otherwise.

Meobius functions on arbitrary partlally ordered sets are de-
fined and studied in Rota 1964, Part b is a remark in Viennot
1978,

6.1.9. Shuffle and infiltration product. In order to distinguish between the
sub-sequences of a word and the subwords they define, let us
take the following notation: For every integer n, [n]={1,2,...,n}; if
f is a word and I a subset of [|A|]} then h;=h, h, ---h, where
by<iy<oor <joand T={i,iy,..., i}

a. Show that a word k belongs to the shuffle of two words f and g if
and only if there exists a pair (1, J) of subsets of [|A|] such that

@ k=1, h;=g.
(i) TUJ=[|A|}
(iii) INS=2.

b. Define the infiltration product of two words f and g to be the set
of words ki such that there exists a pair (I, J) of subsets of [|#|]
that satisfies conditions (1) and (ii) in part a. Denote the infiltra-
tion of fand g by f 1 2. Show that forall fand gin A*fNg=f1g
If val{ f 1 g) denote the set of words of minimal length of f 1 g,
verify that f 1 g is not always included in val{ f 1 g).

Section 6.2

62.1. Let f be a word in 4* and m=|f|. Of course [f}],,, always
consists of f alone, The class [ f],, needs not to be a singleton since
[a™],, = a™a* with a in 4; show that this is the only possibility for
[f 1., not to be a singleton. On the other one hand, there exist words
fsuch that| 1, is a singleton with n < m; e.g,, |[abab];| =1. Give an
algorithm that, given any word f, computes efficiently the smallest
integer n such that [ f], is a singleton.
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6.2.2.

6.2.3.

6.2.4,

6.2.5.

6.2.6.

6.2.7.

6.2.8.

6.2.9.

6.2.10.

6.2.11.

Problem

fet 4 be the two-letter alphabet {a, b} and let m be a POsitivy,

integer. Let f and g be in 4*. Show that of = bg[J, ] if, and only jf

S(m, af Y= S(m, bg)= A=",

Let 4 be the two-letter alphabet {a, b} and let m be a paositiy,

integer, Let f and g be in A*. Show that aebf = abg(J_1if, and only

if, f = g[J,,.. ]

Based on the ideas in the proof of Theorem 6.2.11 and of Proposi.

tion 6.2.15, write an efficient algorithm to find a shortest word thy,

distingutshes two given distinct words (in O(] fg{*) steps, where f

and g are the given words).

Let R, be the relation on A* defined by fagR, fgiff f, g& 4% acy

and fg = fag(J,.]. Show that RY, is the intersection of the relation f

division with the equivalence relation J_. Show that J, = R~ ", p

=(R, UR;*. "

Given a word f in 4* and an integer m > 0, prove that [f] sy

singleton if and only if for every factonzation = gh of f and fy

every letter ¢ in A, 8(gah, gh)<m,

Given a word fin 4* and an integer m > 0, prove that fis a minima)

element of [ 1], if and only if for every g and # in 4* and for every

ain A, if f= gah then 8 gah, gh)<m.

Given a word f in 4* and an integer m >0, show that if [f]

contains an antichain of cardinality two then it also contains ang-

chains of arbitrarily large cardinality. As a consequence, each class
modulo J,, is ejther a chain or contains arbitrarily large antichain.

Show that an antichain X of 4* is wide (see Problem 6.1.4) if and

only if (X), (see Problem 6.1.3) is the union of a finite family of

chains.

Two elements m and '’ of a monoid M are said 1o be §-equivalent f

they generate the same two-sided ideal (that is, m§m’ = MmM=

Mm'M). A monoid M is said to be ¢-trivial if the equivalence § is

the identity.

a. Show that the quotient of A* by any congruence J,, is $-trivial
{ Hint: Use Corollary 6.2.16 and its dual.)

b. Let M be a finite $-trivial monoid. Show that there exist a fres
monoid 4* and an integer m such that M is a homomorphic
image of the quotient of A* by J,. ( Hint: (i) Let k = Card(M)
and vy a surjective homomorphism from a suitable free monoid 4*
onto M. Using Proposition 6.2.15, show that g = ag[J,] implies
that y{g)=v(ag). (ii) Let m=2k. Using Lemma 6.2.10 show
that fag = fg{J, ] implies v{fag)= v{fg}; complete the proof
with Problem 6.2.5.) (See Simon 1975; for an alternative proof
see Eilenberg 1976.)

Let f be a word of 4* and let ¥(f) be the set of the factors of fof

tength [(|f1/2) + 1. Show that if fis not of the form [ = (uvfu with
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= thenfis uniquely determined by V{f). Verify that f would not be

4 determined if the length of the factors in V{(f) were [|f]/2]

4212, Let f be a word in A and let m be an integer, such that m={| f|
+1)/2. Show that the class [ f],, is a chain, relative to the division
ordering. Based on Proposition 6.2.20 find a better bound for m.

6.‘i13. Characterize the pairs { f, m), f in 4* and 2 in N for which the class
[f]1,, s a chain, relative to the division ordering.

£3.1. a.
b
6.3.2. a

C.

Section 6.3

Show that for all f in A* I, A.(g):z!”

. _ {1+l
Show that for all fand g in A* 2, w(fog, h) = 12l

Prove that for all f and g in 4%, and all 2 in 4 one has

()= 2, (2)

ue A*
wap == f

(Hint:  Use an argument similar to the one in the proof of
Proposition 6.3.2.)

. Show, without any induction argument, that for all g in 4* and

all a in 4 the following holds:
gaoA*=(goA*)aA*
Deduce Proposition 6.3.13 from parts a and b,

6.3.3. Let M and P be two matrices over the same semi-ring of coefficients,
of dimension m, n, and p, g, respectively. As usval the tensor
product of M by P, denoted by M®P is the matrix of dimension
mp, ng, the entries of which are given by

MBP,, y jqr1 ™M 1P i

Tensor product is associative.

Let 4 be an alphabet of cardinality k, I the identity matrix of

dimension &, and U/ the column vector of dimension k, all entries of
which are 1.

a.

Let ¥ be the column vector (resp. the row vector) of dimension k,
the entries of which are the letters of A, in a given total order <.
Show that ¥®F& . .. @¥, where the product has » factors, is the
column vector (resp. the row vector) of dimension k”, the entries
of which are the words of length n, in the lexicographic ordering
induced by <.

. Let C;’ be the (kf, k?)-matrix over the integers, the rows of

which are indexed by 4%, in the lexicographic ordering, the
columns of which are indexed by A4, in the lexicographic order-
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ing, and such that the entry (f, g), with f in A7 and g in 42 j
equal to ( é ) Show that
CP=CP'@U+ crlel.

6.3.4. Magnus representation of free groups. Let A be an alphabet and F g,

free group generated by A,

a. Show thai the homomorphism p; A* — Z{A*), defined by p(g) =
1+ a for a in A, extends to an injective homomorphism of Finto
Z{(AY). (Hine pla™Y=1—a+a?— - +(=1"a"+ ..

b. For u, v in F let us denote by [1, v] = u™'v" 'up the commuitator
of u and v. Let F, be the nth term of the lower central series of F,
thatis, Fo=F, F .= F,, F]where [U,V]is the subgroup geney.
ated by the elements [u, v], u€ U, vE V. Let D, be the subgroup
formed by the elements w of F such that p(w)—1 is a series of
valuation = n (D, is called the nth dimension subgroup). Show
that F, C D,. Indeed we have F, = I (See Problem 5.3.9). Show
that two elements u and o of F (and thus of 4*) are such that
p(u)—pf{v) 5 a series of valuation = r if and only if w!
belongs to F,. (See Magnus, Karass, and Solitar 1976.)

c. Let (1,),en and (v,),cn be two sequences of words in {a, b}
defined by

Uy a, vy = b,
un+I:unvn" ﬂn-{-l v u
These are the Morse~-Thue sequences of Chapter 2. Show that for

any f of length less that n,
Proposition 6.3.6.) u v
d. Show that there exists an f of length » such that ( ")?é( ").

{See Ochsenschlager 1981b.) ! /
6.3.5. Free differential calculus. Let F be the free group generated by 4 and
let & be the homomorphism (of Z-algebra) from Z{F) into Z induced
by the trivial map & F-»1; then foreach sin Z{F), 5= X . p (s, w)w
where the integer (s,w) is zero for all but a finite number of w,
e(5)=2, (s, w). For each a in A let 3/3a, the derivation with

respect w a, be the mapping of Z{F into itself defined by

9

L}")“(?)-(Hfm: Use part b and

Va,b€4,  5-b=8,, (1
Yu,vE F, E?—(uv)ié%u-i‘u%u 2
Vs, tEZ{F), m(s+r) a s+ir (3)

da
that is, (3) expresses that 9/9a is an homc)morphlsm of Z-module.
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a. Prove that for all s and ¢ in Z{F)

Aé@;{sr)z (%s)s(r)%ws*éa«gt. (4)

b. Prove that for all s in Z({F) the following fundamental formula

holds:

s=e{s)+ 2 (%s)(am‘l).

ae A

¢. For every f in A* define the derivation with respect to f by the

following induction:

¢ 9 @
daf ~ da 8

Prove that for all win Fand all fin 4* one has
&)=
af v

{See Fox, 1953.)

**d. Prove that (6.3.25) holds again when k is taken to be any clemen

6.3.6.

6.3.7,

of F (and if (}} is understood to be defined as (u(#h}, /5). (See

Chen, Fox, and Lyndon 1958))
For any integer ¢, let K, be the quotient of N by the congruence
generated by ¢=¢ +1 and let ¢, be the canonical homomorphism
from N onto K ; ¢, extends to a homomorphism from N{4) onto
ltgq( A*). For every integer n let I, , be the congruence of 4* defined
y

f=g[1,.] = vale(p(f~g))>n.

Show that the classes of I,  belong to the boolean algebra of shuffle
ideals. (See Eilenberg 1976.)

For any prime integer p let ¥, be the canonical homomorphism from
N onto Z,=2Z/pZ; y, extends to a homomorphism from N(4)

onto Z {A). For every integer n let H, , be the congruence on 4*
defined by

=g, ] = va(4,(s(7—g)))>n
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6.3.8.

6.3.9.

Probiem,

Show that the quotient of A4* by H, , is a finite p-group G,  and (p,,
conversely, for any finite p group G there exists an z such that ¢ ’13;
quotient of G . {See Filenberg 1976.)

Tierared integrals of Chen. Let R™ be an affine m-space wirth the
coordinate (X, X,,.-.,%,). Let a path o be a function, Lx, y] . pn
ol 1) = (ay(1), ax(1),. &, (1)), such that each a,{) is continuous and
of bounded variations for x<:<y. Let A={a,,a,,...,a,} be 5
alphabet of cardinality m; to each word f of 4*, and to each path 4
we associate an iterated integral symbolically denoted by [ df, agg
inductively defined by

4

Vo, €4, fda;=a () - alx)= [ da(o),
ViEA*, Va,EA, fdfa,.mfy(fdf)dai(:),

If P is a polynomual [,dP is defined by lnearity. Show that
([, df ¥ [ dg)= [, d(fog). (See Chen 1957; Ree 1958) This corre.
spondence between the product of iterated integrals and the shullle
of words has been also observed by Fliess (1981). Thus last author
interprets a formal power series s =2, (s, f)f of R({4)}) as a
functional § over the path o of R™ by means of the formula

S(a)= 3 (. 1) [ d

e ar

Within this framework the addition of functionals corresponds to
the addition of series; show that the product of functionals corre-
sponds to the shuffle product of series.
Shuffle and infiltration product. Take the same notations as in
Problem 6.1.12.
a. Show that for any f, g, and % in A%, {fog, k) is equal to the
number of distinct pairs ([, J} such that

iy hy= fand hr;=g.

(i) TUJ={jh|]

iy INSf=@,
b. Show that (f17g, #) is equal to the number of distinct pairs

(I, J) that satisfy conditions {i) and (ii).



Unavoidable Regularities in
Words and Algebras with
Polynomial Identities

Introduction

Ihis chapter presents combinatorial results, regarding unavoidable regu-
mties in words, close to Ramsey’s and van der Waerden’s theorems (see
apters 3 and 4} and applications to algebras with polynomial identities,
ncerning the Kurosch, Burnside, and Levitzki problem (the Kurosch
oblem is to know whether a finitely generated algebraic algebra is finite
nensional). Of course, the point of view here is combinatorial and not
g-theoretic; that is why we give all the definitions of pi-algebras and
ementary properties that we need. What is interesting in this combina-
ial approach is that it enables us to obtain quickly, without any deep
owledge of ring theory, the beautiful theorem of Shirshov on pi-algebras.
In the first section some combinatorial results are proved (the principal
ine of which is Theorem 7.1.5), which is used in Section 7.2 to prove
Hhirshov’s theorem on pi-algebras (Theorem 7.2.2). The third section gives
zs0me corollaries to that theorem that are of independent interest.

1.1. Some Combinatorial Results

Consider a totally ordered alphabet 4 with a smallest element denoted by
a: a = min(A). The notation < is used here to denote the lexicographic

order on A* (see Chapter 3, éction 5.1}. This notation will allow us to
consider several alphabets.

The subset X of A* defined by
X=a"(A—~a)*

is a code (that is, the basis of a free submonoid, see Chapter 1), as is easily
143
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verified. The submonoid X* is the set of words beginning by a and ending
with another letter than a, together with the empty word:

X*=10ad*(A - a)
X can be considered as an alphabet, totally ordered by = ; one defines then
the lexicographic order § on A* as just shown,

The following lemma shows that in X*  the orders f and < g,

identical.

Levma 7.1.1, Let f, g& X* such that f < g Thenfcz g

Proof. (We must point out that it is not superfiuous.) If £ is a left factor of
g, it is clear. Otherwise f = uxv, g = uyw for some words u, v, w& X* ang
x, y& X such that x < y. The following explains that last inequality:

Either x = rbs, y = rct with r, 5, 1& A* and b, c& 4 such that b < ¢, Then
f=(ur)b(sv) and g = (ur)e{tw); hence f < g. Or x is a proper left factor of
y: y =xbt with b& 4 and r& 4%, From the definition of X it follows that

bska, hence a<<b. Then f = uxv, g = uxbtw, If v =1, f is a proper left factor
of g, hence f< g. If v\, because & X* one has v=ar’, hence f=

(wn)av', g = (b (ow), a0d [ < . .

A word we A* is n-A-divided if there exist words wy,w,,...,w, in A" such
that w = ww,--- w, and that for any permutation e &, —id

w ; WaqWay™ ™" Watny:

There is a formal analogy between this definition and the one of the Lyndon
words (see Chapter 5). However, we must beware of misleading confusions.
We shall speak, in the same way, of words in X* that are n-X-divided. The
following lemma allows us mechanically to associate to any word in X* that
1s (n —1)-X-divided a word in A* that is n-A-divided. In the sequel it will
allow recursion arguments,

Lemma 7.1.2. If we X* is (n— | )-X-divided then wa is n-A-divided.

Example 7.1.3. Let x, y& X* such that xy <yx. By definition xy 15

2-X-divided. Then the word xyg in 4 admits the 3-4-division xya=
a(x'a) y'a) where x = ax’ and y = ay’. We verify it partially for the two
permutations (23) and (123). The first one gives the word ay’ax’a=
yxa ;/iv xya. The second one gives the word x'ay'aa = x'yaa j ax’ya because
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%ﬁc’br with i =0, b > a; hence x’ is strictly greater than ax’ = a'abt in the
i, - .

3praof. w can be writlen as w = Wy _; where the w;s in X* are such
it for any permutation 6€ &, | zd w< Wiy’ © " Wagn—1y BY definition
o, we have w; =aw! i=4,...,n—1 Letu, =a,u, =wia,...,.u, = w,._,a.
T]wn W Wl U

; We verify that this factonzatlon of we 18 an n-A-division.

:For each o€, let 5= oy " Mgy There exist a, 7 in &, such that
g-—ao'r, a(l)=1 and that r is a cycle of the form (1,....r). Indeed let
271, 7=(1,...,r) and @=go7"'; then ¢ = o7 and a(h) =gor7Y(1)
=o(r)=1. Note that 0  id implies that & or 7 5 id.

(i) We have
A= By Wagmy

= Wy @ Wiy @

Wy Wan- @
where € &, __, is defined by B(7) = a(i + 1) — 1. Then e id implies f 5 id,
hence by hypothesis w; Way " Wau—ry 1t follows by Lemma 7.1.1 that
wa < a@.

A
(i) The foregoing above aliows us to conclude when 7= id (because 0 =«
imples & = &), Suppose now 7 #id, that is, r = 2. We have

F=Uenllomy " Uorm
SUar T e BaMair+ 1y " Haga)

Bapy " HoarryMarrt1y" " Yo

From a(2) # 1 it follows that u ;) = a*bo with k>0, b # a; hence &> a and
o€ A4*, by definition of X. Hence o = a*bv’ and &= a**'bv” withv', v" € A*.
Hence & j d. If a=id then wa =&, hence waj&. If as=id, from (i)

wa < &, hence wa < @. [ |
A A

The following theorem regards unavoidable regularities in words. It says
that given integers # and p, every long word contains as a factor either an
n-divided word or a pth power. Let us recall that a factor of a2 word wis a
word u such that w = xuy for some words x, y.

THEOREM 7.1.4. For alf integers k, p, n =1 there exists an integer N(k, p. n)
such that for any totally ordered alphabet A with k elements any word w in A*
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of length at least N(k, p, r) contains as a factor either a pth power of a
nonempty word or an n-A-divided word.

Proof (by double induction on n and k). Fix p=1. It is clear thy
N(k, p,1) exsts for any k. Suppose that N(k, p,n—1) exists for any
(n==2). The existence of N(1, p, n) is clear; suppose now that N(k — 1, p, n)
exists (k= 2) and let us show the existence of N(k, p, n).

Let

N={(p+N{k=1, p,n))(N(kN¥,=tpmFr p n—1)+1)

Let 4 be a totally ordered alphabet of cardinality & and w& A* a word of
fength at least N.

(i} If w contains as a left factor a word w& (4N a)¥* 717" thep y
contains by induction a pth power or an n-divided word.
{ii) 1f w contains as a right factor a word u€ a”a*, then w contains a pth
power.
(iii) We can therefore suppose that w contains a word w, with

[wil > (p+ Nk =1, p,n YN (kM 1057, p on—1)
and  w,Ead*{AN a).
Then
wEX* and wi=xx, o x,.x5,6X

(iv) Each x; can be written x; = a% with s& (4™ a)*. By the same
argument as in (i) and (if), we may suppose ¢ <p and |s| <N(k—
1, p, ), hence |x,| < p-+ N(k —1, p, n). This implies

r>N(kN(k-l,p,n)+P’ p.n— 1)

(v) We apply the induction hypothesis to the alphabet {x& X||x|<p+
N{k -1, p,n)} and may conclude that x,---x,_; contains a pth
power or a word u that is (n-—1)»-X-divided; in this last case w,
(hence w) contains the word ua, which is n-4-divided (Lemma 7.1.2).

We may therefore define N¥{k, p, ») = N and the theorem is proved. B

It goes without saying that the numbers N(k, p, n) as constructed in the
last proof grow armnazingly with k and n. The following result, whose proof
uses a pretty combmatorial argument moderates a litle bit this growth: the
length of the pth power may be bounded.
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"THEOREM 7.1.5. Let k, p, n=1 be integers such that p = 2n. There exists an
eger N(k, p, n) such that for any totally ordered alphabet A of cardinality k,
word w in A of length at least N(k, p, n) contains as a factor either an
-divided word or a word of the form u? with 0<|ui<n.

& Proof Let N= N(k, p, n) be the integer of Theorem 7.1.4. Let 4 and w be
x*;,s before. If w admits no n-divided factor, w contains a factor of the form
m,;p =1, We may suppose that v is primitive (that is, v is not a power of
dinother word, see Chapter 1, Section 1.3). If {v{=n, the number of
% njugates of v (a conjugate of v is a word of the form fg, with v = g f, ibid.)
"l =n, since v is primitive. Let v, <v,<--- <<y, be n of them. Since
%2211 o” contains as a factor the word v*" = (v"")" now v? contains each
tﬁ}:ﬂ as a factor. From that we deduce that ©# contains a word of the form

f“""(vlvl)(”zvz) (v, v,

;?Thls factorization of fis an n-division. Indeed, for each o€ &, —id let i be
the smallest integer such that o(i)# . Theno(l)=1,...,0(i — 1) =i —1,0()
Y= j=i hence o applied to f gives the word

#.

(v,00) - (vrwtﬁfwf)("’ﬁivf)gs

g

which is strictly greater than
S={owh) - (v 0l ool Dk

because j > i implies v, > v, [

1.2. Algebras with Polynomial Identities

The results of the previous section are now used to prove a theorem
regarding pi-algebras.

K denotes a commutative ring with neutral element denoted by L. If IR is
an (associative) K-algebra we shall always make the hypothesis that for any
m in 3t one has lm = m.

We denote by K, (X the free K-algebra without neutral element gener-
ated by X (that is, the K-algebra of noncommutative polynomials without
constant term over X').

Let 9t be a K-algebra, IR satisfies the polynomial identity P =0 if there
exists an alphabet X = (x,....,x,}, a nonzero polynomial P(x,,...,x )€ K
(X) such that for any m,,.. ,m, in I one has P(m], M) = 0 The
degree of the identity is the degree of P. The identity is called admissible
(according to Shirshov) if there is a word w such that w = deg(P) and that
the coefficient of w in P is invertible in K (it is always true if K is a field).
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The following lemma shows that a pi-algebra (that is, an algcbra sausfymg
an admissible polynomial identity) always satisfies a multilinear identity,

Lemma 7.2,1. If IR satisfies an admissible polynomial identity of degree ,
then M satisfies an identity of the form

Xy X, = E kaxou)"'xa(n)
&G, —id

for some k,in K.

Proof. W verifies an admissible identity of the form P(x,...,x )= 0; we
may suppose that there is a word w, of length n = deg(P) and of coeff‘ icient
1in P.

(i) We may suppose that for each x € X, {wy|, =<1. Indeed, if |wy|, >2, Iy

Q= Plx,+ X000, %5000 X,) = (X102 )= PlXgs 10 Xy,

where x_,, is a new letter. Then Q # 0 and R verifies the identity Q =9,
Furthermore deg(() = deg(P) and, letting w, = ux,vx w, the coefficient of
the word wy = ux,0x,, w in Q is 1 and {wg|, <{wy|,., |w0ﬁx ory = L and for
each iin {2,...,q} |wgl, = (woﬁx We then conclude by induction.

(il We may suppose w:=x, - x, and, replacing if necessary P by
P(x,,...,x,,0,...,0), that

X={x,,...,x,}.

(iiiy We may suppose that Vwe& supp(P) (that is, the support of F),
Vx&€ X, [w|, =1 Indeed let

Q=P(x,,...,x, )~ P(0, x,,....x,)

Then deg(P) = deg(Q), supp(Q) C supp(P), the coefficient of w, in @ is1
and (0, x,,...,x,) =0, showing that for any w in supp(Q), |w|, =1. We
conclude by induction on the x/s.
(iv) For each we supp{P), we have |w|,>1 for each x€ X by (iii).

Since deg(P)=n = Card( X), this implies |w|, = l. Finally the coefficient
of x,x, - - x,in P is 1 and the lemma is proved. N

We come now to the Kurosch problem: Is a finitely generated K-algebra,
each element of which is integral over K, always a finitely generated
K-module?

Let us recall that an element x is called integral over X if there exist
dy,--.,a,. in K such that

e — 1
xP=agx?" g, x

Or equivalently, K [x] is 2 finitely generated K-module.
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The Levitzki problem is similar: Is a finitely generated algebra, each
elcment of which is nilpotent, always nilpotent? (That is, there exists r such
“hat any product of r elements vanishes.) These problems admit both a
‘mgauve answer (the theorem of Golod and Shafarevitch; see Chapter § in
““erstein 1968). Hlowcver, in the case of pi-algebras, the answer is affirma-
five; the hypothesis may even be weakened.

" TueoreMm 72.2. Let M be a finitely generated K-algebra, generated by
My, .. ..M, and satisfying an admissible polynamial identity of degree n. If any
producr of no more than n— 1 of the m;’s is nilpotent (resp. integral over K
sthen M is nilpotent (resp. a finitely generated K-module).

-

Proof. M verifies an identity of the form shown m Lemma 7.2.1. Let
A={ay,...,a;} be a totally ordered alphabet and

e K (A)y- M

the algebra morphism defined by ¢(a,) =m,. Let § = Ker¢. Let p be an
integer such that p = 2n and that for any nonempty word « in 4* of length
at most n — 1, @(u)* =0 (resp. @(u) verifies an equation of the following
type: @(u)? = a, p(u)?"' + -+ +a,_,p(u) for some g, in K).

Let N = N(k, p, n) be the integer of Theorem 7.1.5.

Any word in A4* of length at least N contains as a factor either a pth
-power of some word u, 0 <{u|<n, or an n-divided word. In the second
case, by the identity displayed in Lemma 7.2.1, w is equal modulo ¢ to a
linear combination of words of the same length as w and which are strictly
greater than w in the alphabetical ordcr; sinec these words are only in finite
number, we deduce inductively that w is equal modulo ¢ to a linear
combination of words of the same length each of which contains a pth
power uf with 0 < |u| <n. Hence p(w) =10 and M is nilpotent (resp. w is
equal modulo § to a linear combination of words of length < |w|; hence M
is generated, as K-module, by the elements g(v), 0< |v| < N). [

7.3. Consequences

Theorem 7.2.2 is used next to prove two corollaries; their proofs use some
results that are not proved in this book. By 9l (K) is denoted the algebra
of n X n matnces over K.

COROLLARY 7.3.1. Let my,....m, & (K). If every product of no more
than 2n —1 of the matrices m; is a nilpotent matrix, then the semigroup
generated by the m s is nilpotent.
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Proof. In view of Amitsur-Levitzki’s theorem (see Procesi 1973, Chapiy,
1, Theorem 5.2) 9, (K ) verifies an admissible identity of degree 2n. Tp;g
identity is clearly verified by the algebra ® generated by the matrices 5,
Hence, by Theorem 7.2.2, 9% is nilpotent and the corollary follows. N

A semigroup S is called periodic if every element of S generates a finje
semigroup. The Burnside problem (extended to semigroups) is to knoy
whether every finitely generated periodic semigroup is [inite. The answer j5
negative in general (even for groups, see Herstein 1968: Chapter 8). Hoy.
ever, it was shown by Schur that the answer is positive for subgroups of
9 (C) (see Kaplansky 1969: Theorem G), and this result has been extended
to subgroups of pi-algcbras (see Procesi 1973: Chapter 6, Corollary 2.8). O
the other hand it has been extended to subsemigroups of M (K') when K js
a field, see McNaughton and Zalcstein 1975. It can be extended further.

CoROLLARY 7.3.2. Let K be a field and 5 be a finitely generated periodic
subsemigroup of a pi-algebra. Then S is finite.

Proof. For gach x€ S, there exist integers & and p, k# p, such that
x* = x?. Hence every x in S is algebraic over K. Let M be the subalgebra
generated by §. It verifies a polynomial identity, hence by Theorem 7.2.2,
9 is finite dimensional over K. From that we deduce that ¥t admits a
faithful representation by matrices over K and the problem is reduced to the

Burnside problem for subsemigroups of % (K) (McNaughton and
Zalcstein 1975). [ |

Notes

All the results of Section 7.1 are due to Shirshov; they can be found im
Shirshov 19574 except Theorem 7.1.5, which uses an argument extracted
from Shirshov 1957b.

Lemma 7.2.1 is classical, see Shirshov 1937a, Chapter 6 in Herstein 1968,
or Chapter 1 in Procesi 1973. Theorem 7.2.2 is from Shirshov 1937b. In the
same paper he proves a more general result, which is the material of
Problems 7.1.1, 7.1.2, and 7.2.1. An algebraic proof of Theorem 7.2.2. cin
be found in Procesi 1973, and the same proof as here (Shirshov’s original
proof) may also be found in Rowen 1980, § 4.2. For further information
about the Kurosch and Burnside problems see Kaplansky 1969; see also
Chapter 2.

About Corollary 7.3.1: If K is a field and § a subsemigroup of 9N (X)
each matrix of which is nilpotent, § can be put into triangular form as
shown by Levitzki; see Theorem 32 in Kaplansky 1969, which implies that
the nilpotency index of 5 is <n; that is, §" = 0. Furthermore the corollary
shows that if § is not nilpotent then there exists a nonnilpotent matrix in §,
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al to a product of no more than 2n — | of the generators. A related result

theorem of Jacob (1980): there exists an integer N (depending on X, n,
g the number of generators) and a pseudo-regular matrix in S, equal to a
duct of no more than ¥ of the generalors; see Problem 7.3.1. I has been
ended in Reutenauer 1980: From any long product of any matrices one
, extract a subproduct that is a pseudo-regular matrix.

'},1.1. Let u,,...u,, v,w be words, with v nonempty and w not a left factor
' of v. Show that the word

] H . n
U "Wl " w0 Wi,

admits an n-divided factor.
1.1.2. A language L (that is a subset of A" ) is bounded if there exist words
" fraeef, such that

LCff Tt

Notice that each finite union of bounded languages is bounded. Show
that 4* is not bounded (use Chapter 2). Let n=1. Show that the set
of words admitting no n-divided factor is a bounded language (use
the previous problem and Theorem 7.1.5).

7.1.3. A guasi-power of order 0 is any non-empty word. A quasi-power of
order n+1 is a word of the form uvw where w is a quasi-power of
order n. Show that given a (finite) alphabet A, there exisis a sequence
of integers N(n) such that each word on 4 of length at least N(n)
contains a factor that is a quasi-power of order n.

Section 7.2

72.1. Let It be a K-algebra and
p: K. (A~

a surjective morphism (K is a commutative ring and 4 a finite
alphabet). Suppose that IR is a pi-algebra. Show that there is a
bounded language L such that 3% is equal to the submodule generated
by @(L) (use the previous problem). Deduce Theorem 7.2.2. again.
{Reference Shirshov 1957: Theorem 1.)

1.2.2. Let K be a commutative ring with field of fractions F. Let § be a
finitely generated multiplicative subsemigroup of M (F) such that
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each me& § is integral over K. Show that there exists d in K, 4+
verifying: dS COL(K). '

Section 7.3

7.3.1. A matrix m is pseudo-regular if it is contained in a subgroup of the
multiplicative semigroup of 9K (K'), where K is a field. Show that i
is equivalent to: Ker mMNImm = 0 (letting m act on the right on £ ",
Show that if @, v are matrices such that rank(#) = rank(uou) then yy
is pseudo-regular. Let

pr A= I (K)

be a monoid morphism from a finitely generated free monoid into the
multiplicative monoid of n by n matrices over K, Show that if wis 3
word of length at least N{n} (see Problem 7.1.3) then w contains 3
factor # =1 such that pu is pseudo-regular,



CHAPTER 8

The Critical Factorization
Theorem

8.1. Preliminaries

Periodicity is an important property of words that is often used in
applications of combinatorics on words. The main results concerning it are
the theorem of Fine and Wilf already given in Chapter 1 and the Critical
Factorization theorem that is the object of this chapter. Both admit generali-
.zation to functions of real variables, a topic that will not be touched here.

In alf that follows, we shall be considering a fixed word w =a,a,- - - a, of
positive length n, where a,, a,,.. .,4,& 4. The peried p = w{w) of w is the
minimum length of the words admitting w as a factor of some of their
powers; these words of minimal length p are the cyefic roots of w. Further-
more, w i8 primitive if it is not a proper power of one of its cyclic roots,
primary iff it is a cyclic root of itself, and periodic iff n==2p.

For instance w = qaabaa of length 6 has period 4; its cyclic roots are
aaab, aaba, abaa, baaa. It is not primary or periodic; its cyclic roots are all
primitive, but only aaab and baaa are primary. The word asabaeabaa is
periodic; it is also primitive, and its cyclic roots are the same as for w.

It is clear that the set (denoted vw') of the cyclic roots of w is a conjugacy
class including all the factors a,a,,," -+ a;,, - Of length p of w. It contains
p distinct primitive words and, accordingly, some of them are not factors of
w when w is not periodic. We leave it to the reader to check the following
statement.

ProposiTioN 8.1.1. Equivalent definitions of the period p of w are

(i) p=n—|v|, where v is the longest word + w that is a left and a right
factor of w;

(1) p=niff w is primary; otherwise it is the least positive integer such that
one has identically a,= a,, ,. (A=i<i+p=n)

For the sake of completeness the theorem of Fine and Wilf will be
reformutated in the present notation. An algebraic proof was given in
Chapter 1.

153
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TuroreM 8.1.2. Let w=w'uw" (with w,w"' & A*, uc A*), P’Zw(w’u),
P =n(uw"), and d be the greatest common divisor of p’ and p".

Iflu|=p'+ p" —donehas p’= p" = w(w).

8.2. The Critical Factorization Theorem

Let us consider a given factorization of the fixed word w=a, -+ a_inyp
two factors w'=a, - --a; and w'=ga,, - -a,. We always assume that it is
proper; thatis, w',w” 1,

The set of the cross factors of (w',w"} is by definition

Clw',w")y={ug A" | A*unA*w'=#@ and wd*Nw'A*+3 )

The minimum of the length of the cross factors of (w’, w’) 15 the virtua]
period p(w',w") of the factorization,

The factorization (w’, w™) is critical iff p(w',w”) is equal to the period p
of w.

An explanation of this formal definition is needed. Assume for instance
i= p, the period of w. Then the cyclic root u=a,_,,, -~ a; (a4, is a right
factor of the Jeft term w'=a,--- a, of the factorization; that is, w'& 4*y,
implying A*unA*w’s@. Let us say that it is left internal. When {w”{>p
the same situation is obtained symmetrically on the right (that is, for the
right term w"=a,, ;- -- a,) with the same word u when |w”| = p, because
gy =Gy Bipyy ™= Qpigenn @ =, When [w”[<p, the same
equations show that w” is equal to a left factor of w. Thus we have
< w”A* implying again ud* Nw” 4% @ In this case we say that u is right
external.

The same applies with obvious modifications when i << p. We see that ¢he
set C = C(w’,w") of the cross factors contains always at least one cyclic root
of w, hence that the virtua! period of a factorization never exceeds the true
period of the word.

In fact it is “usually” far smaller. For example if w=a™p™ (with
n, m=1), the virtual period of any factorization is 1 (and it is internal on
both sides) except for the factorization (w’=a", w” = b™) where it attains
its maximal value n + m = w(w) (and it is external on both sides).

A more typical example is that of the word w = agcabaca (n=8, p="7).
The successive virtual periods p; of the factorizations {w/,w/") (({w/| =i,
{w/'| =n-i) 1=i=T) are indicated below:

W= a,8,¢,a5b,a,0,a
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For instance, if /=35 (that is, w{ = gaceb, w{' = aca), one finds ps=4,
pecause this is the length of the shortest corresponding cross factor s = acab
(which is left internal and right external). For { = 3, the shortest cross factor
is uy = abacaac, which has length 7 (and is external on both sides). By our
gefinition the factorizations for i = 2,3,4 are critical. The main theorem of
this chapter can now be stated. To give it in its most useful form let us
exclude the case where the period p of w is 1. Indeed, in that case, w consists
of the same letter repeated n times and every factorization is critical.

TreoreM 3.2.1 (Critical Factorization Theorem). Let w be a word of period
p>1. Any sequence of p—1 successive factorizations {(w],w/'}| j<|w]<
j+p} contains at least one critical factorization. The corresponding shortest
cross factor is a primary cyclic root of w.

A corollary is the fact that any comjugacy class of primitive words
contains primary words. This fact can be proved directly considering
Lyndon words (Chapter 5). The same technique allows an easy proof of the
theorem in the special case n 2 3p (see Problem 5.1.2).

The theorem as given is sharp. Indeed the word w = a™ba™ {m 1) has
period p = m +1 and exactly two critical factorizations, viz. (™, ba™) and
{a™b,a™). Only one of them is contained in the sequence of the p — 1 first
(or last) factorizations.

The proof is by induction on the length of w. It is more or less an
existence proof because we do not know how to find the critical factoriza-
tions (or the primary words) other than by sifting out the other ones. Thus
we proceed leisurely in order to provide the maximum information on the
structure of the word.

We keep the same notations and let € = C(w’, w").

ProposITION 8.2.2. A cross factor u & C of minimal length is primary.

Proof. Suppose that u& C is not primary—that Is, that = «'g” = g'u’ for
some ', g°, g€ A*. One has € A*u’, hence A%u C A*u' implying A*v’ N
A*w’'+ @ The same holds on the right showing that ¥’ Is also a cross factor.
Since | u’] << |u| we conclude that # has not minimal length. |

ProposiTION 8.2.3. The set C contains a unique shortest cross factor u. If

|| = p, v is a cyclic root of w. This condition is satisfied if u is external on
bath sides.

Proof. Note that any right (feft) internal cross factor in C is strictly
shorter than any right (left) external one. Thus a cross factor # of minimal
length is internal on at least one side except if every cross factor in € is
external on both sides—that is except if C C A*w' Nw” 4*.
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Since internal cross factors are true factors of w, this proves the unicity of
the minimal #& C and the fact that it is a cyclic root of w except in the
completely external case which we consider now.

Let v& A* (that is, possibly v =1) be the longest word that is a right
factor of the right term w” (w”& A*v) and a left factor of the left term
(w'E v4*). We have w'=vy’,w" = y"”v, where y', y'€ A™, because other-
wise w' or w" would itsell be a cross factor, contradicting the hypothesis
that every cross factor is exiernal.

Setu=y" vy = yw=w'y By construction ¥& € and by our choice of
v it is the (unique!) shortest word in A7 w Nw”A", Since C is contained in
this Jast set by hypothesis, u is indeed the desired shortest cross factor,

We verify that u is a cyclic root of w. Observe first that no word of length
k=|w|or k= fw”| is a left and a right factor of w, because otherwise we
would have w'& € or w'€C. In view of ¥/, ¥ #1, this shows that v is the
longest left and right factor of w—that is, that w=1y’y"v has period
oy y"] = |ul- "

The next result is the key to the proof.

LemMMa 8.2.4. Let y& A* be a right (left) factor of the left {right) term w'
(w™ of the factorization and let q = n(y) be its period. If u is the shortest
cross factor of (w',w”) one has |u| <gq or | y] <]u|.

Proof Since u must be primary it suffices to take a cross factor w'
safisfying the opposite inequalities ¢ << |#'] < | y| and to verify that u’ is not
primary.

In view of ' C, w'& A*y, and (&’ <ly| we have y = y‘u’. Because of

q < |w| we can write &’ = u"z with |z] = ¢, u" € A™. However, since g is the
period of y its left factor y'u” is also a right factor—that is, '€ A* w’ —
showing that « is not primary. [ ]

Prorosirion 8.2.5. Let b& A be a letter and assume that (w'.w”) is a
eritical factorization of w.

If w and wb have the same period, (w',w”b) is a critical factorization of wb.
In the opposite case, (w',w"b) is critical iff (w',w") is right external and, then
{w’,w"b} is external on both sides.

Proof. Let u as before and v be the shortest cross factor of (w', w'b).

In view of the minimum character of u and v one has |u] <|v| with
equality iff u = 0.

Suppose first that u is right inteenal; that is, w” & ud*. It is also a cross
factor of (w’,w”b); hence v=u and the factorization (w’, w"b)} of wb is
critical iff w{wb) = p.

Suppose on the contrary that #= w”cx for some letter ¢ A and word
x € A*. Because of |v| = |u], v is not a left factor of w” and accordingly it
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has the form v = w''bx’ for some x'& 4*. The hypothesis that (w',w") is
critical is equivalent with u& {yw) (the set of cyclic roots of w), that is with
¢=@,.p4y- Thus when wh has the same peried p as w--that is, when
b=,y —WE have b = c; hence, as in the first case, v = ¥ and (w',w"b)
is critical.

Therefore we can assume 7(wh)+ p,c¥b and consequently |v| > |u].
Note first that v is right external because |u] > |w"”| and [w"b| = |w"] +1.

To complete the proof it suffices by Proposition 8.2.3 to show that v is
left external; that is, that |v] > |w']. However, this follows from Lemma
8.24. with w’ instead of y and w”b and v instead of w'* and u, since we have
[o] > |u] = a(w)= a(w). [ |

CoroLLARY 8.2.6. Under the assumption that w(a,---a,b)<p, every
critical factorization (w',w') of w=a,---a, gives a critical factorization
(w',w"b) of wb.

Proof. Let p'= w(wb), w=a,--a,, and j= n(wb). By the last result it
suffices to show that when p # p’ the hypothesis F< p implies that every
critical factorization of w is right external. This condition is ceriainly
satisfied when p = n since then the shortest cross factor has length n=|w|.
Thus we have only to consider the case when f<<p<lp and p< p’.

We cannot have p= p because this would entail b=a,_,,,; that is,
p=p'. Thus < p. Consider any critical factorization (w’,w’’} of w. The
word w” is a factor of w, hence of wb and, consequently its period ¢ is at
most §<< p. Applying Lemma 8.2.4 with y = w", we conclude that the length
|u] of the shortest cross factor satisfies |u] > |w”]—that is, that this
factorization is right external. n

Proof of Theorem 8.2.1. The theorem is easily verified for words of short
length. Thus, in order to keep the same notation, we shall assume that the
theorem is already established for words of length n, n>2, and, letting
w=a,-- - a, as before, it will suffice to verify its truth for wb (b& 4). We
SeLW = 8y - 4, § = w(wh), p* = n(wh).

By symmetry we can suppose F< p (= w{w)) and we distinguish three
cases:

M F=p=n<p*(=ntl)
() p=p=p*
(i) p<p

There is no further case. Indeed under the assumption g = p<n, one has
b=a, .., iwen—p+1=2) and a,=a,,, (since 1+ p<n) implying
that wb has the same period p as w and wh.

In each of the three cases, Proposition 8.2.5 and Corollary 8,2.6 show that
every critical factorization (w', w") of w gives a critical factorization (w’, w"b)
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of wh. It remains to verify that any sequence of p* —1 factorizations of wp
contains a cntical one. Since p* = p this follows instantly from the induction
hypo:hesis on w provided that p*> p, or more generally, provided that one
has ascertained the existence of a critical factorizalion of wb that is nght
external.

Case 1. By the induction hypothesis w has a critical factorization. It js
nght external since p = n. Thus it gives a cntical factorization of wb, and the
full result follows since w(wh) = n + 1.

Case 2. Since w(w) = n(wb) every critical factorization of w gives one of
wh. By symmetry the same holds for wh. Thus by the induction hypothesis
on wb we conclude that wb has a critical factorization (w',w”b) with
|w”b| < p, and the result is entirely proved. An example of this case is

w=a?*""ba?" !, (p=2).

Case 3. Consider a critical factorization {w’,w') of w. Since v’ =1, w is
a factor of #, hence of Wb and accordingly its period ¢ is at most F<p.
Applying Lemina 8.2.4 with y = w", we see that the shortest cross factor u
must satisfy |u|>|w”]. Thus it is right external and, accordingly, by
Proposition 8.2.5, (w',w"”b) is a critical factorization of wb. Now the same
lemma with y= w"b shows that the corresponding cross factor is strictly
longer than w*'b, proving that {w’, w”b) is also external and concluding the
proof. u

Consider the set J of the factorizations of w that are not internal on both
sides. They belong to three types: left external and right internal, left and
right external, and left internal and right external.

The next property shows that the factorizations appear in this order when
w is read from left to nght. Also, the sequence (p;: j& J) of the virtual
periods corresponding to the factorizations in J is unimodal in the sense
that if j< j*< j” one cannot have p; > p,. < p,... For simplicity the property
is stated on one side only.

ProposiTion 8.2.7. Let u and v be the shortest cross factors of the
Jactorizations (w', xw"") and (w'x,w" ") (x& A*) of w and assume that u is
left internal and right external. Then v is left internal. Further, |u| = |v| with
equality only if v is right external and a conjugate of u.

Progf. Let w” = xw"”’. The hypothesis means that there is a word y& 4*
such that w'y is a right factor of the left term w’ and that no strictly shorter
right factor of w' is a left factor of a word in w"”A4*.

Thus the left term w'x of the factorization (w'x, w''*) has at least one right

factor, viz. w'”’yx, which belongs to w”’4*. This shows that the minimal
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cross factor v is left internal. We have the inequalities
lof <[w”"yx| = [xw"'y| = |u],

which prove that the virtual period |v| is at most equal to the vistual perzod
[u] with equality iff © = w"’yx. Since w"'yx is a conjugate of u = xw''y, the
equality o] = | u] entails that © be right external as u. n

8.3. An Application

This section gives an application of the critical factorization theorem to a
problem arising in the study of free submonoids and free groups.

Let w=a,- -~ a, be a fixed word, as before, and let X be a given finite set
of words of positive length. In the case of interest the words of X are short
with respect to w and we assume | x| << n for all x€ X.

The problem is to find upper bounds to the number of different ways w
can appear as factor in a word of the submonoid X* generated by X or, in
equivalent manner, to bound the number of factorizations of w of the form
w=x"yx” withy€ X* and x" (resp. x") a prefix {resp suffix) of X --that i 15,
a proper left {resp, right) factor of a word of X that is not itself a word of'X.

For instance, let w = bababbaba, X == {a, bb, bab}. Two such factoriza-
tions can be found: w = [(bab) a) bb)(a)]ba and w = b{{a) bab) bab)(a)],
where the term y is between square brackets and the pair x”, x" is respec-
tively (1, ba) and (&, 1).

A X-interpretation of w is a factorization w = xyx,---xx,,, where
0<r,x,€ Xfor lsi=r, x,,, (resp. x,}is a prefix (resp. suffix of X). It is
disjoint from another X-interpretation y,y,---y. ¥, iff xpx,---x;#
Yoyi+ -y forany i<r, j<s. The X-degree of w is the maximum number of
elements in a system of pairwise disjoint X-interpretations of w.

The main result of this section may be stated as follows:

THEOREM 8.3.1:-If the period of w is strictly greater than the periods of the
words of X, the X-degree of w is at most Card( X).

The restriction upon the periodicity of w is clearly necessary to obtain
such a bound. The word w=a" has p+1 X-interpretation when X consists
of a* only, The notion of disjointedness has algebraic motivations that have
no place here. It suffices to note that without this restriction the number of
X-nterpretations of w could grow exponentially with its length when there
are words that admit several factorizations as product of words of X (that is,
when X is not a code).

The bound given by the theorem is not far from being sharp, and it is
even conjectured that the exact value is — 1+ Card( X). Indeed if X is the
biprefix code made up of af and of p words of the form a’ba’ where ; and j
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take each of the values 0,1,...,p ~1 exactly once, it is easily verified th
any word w admits exactly p pairwise disjoint X-factorizations provideg that
two successive bs are separated by more than 2p—2 a’s (that is, we
{ﬂ a2p Zb)* *)

The proof of the theorem uses a lemma of independent interest. T,
handle conveniently the various occurrences of the same word as a factor of
w, we need one more definition: a covering.

Let v=a,---a; (i=j) be a segment of w and x be a word of length 4
least j+1—i. A covering of v by x is a segment v'=a, - - a, such thy
i'i< j< j and that v'=x or that i'=1 (resp. j//=n) with v’ a proper
right (resp. left) factor of x.

Let now w=w’vw” where v=a, - - - a, as above and where w’,w”e 4

LEMMA 8.3.2. If the segment v has rwo coverings by x, the virtual period of
any factorization {w'v’,0"w") (¢', 0" € 4*,0'v" = ©) is al most equal to the
period of x.

Proof. Leta,---a;,a,---a, be the two coverings of v by x. We cap
suppose §, < i, and j; = g ]2, where at least one inequality is strict.

There are several cases (o consider. Assume first that both words a; - - - a;
and a, ---a, are equal to x. Thus i, — i, = j,— j; and the common value 4
of this dxfference is strictly less than |x| because the two intervals [i), j ]
and [i,, j,] overlap on [/, j] or on a larger interval. Also wc have a, = a,_,
for every k satisfying i, <k <k +d < j,. It follows that for any factoriza-
tion {(w'v’, "W’ (v'v” = v), the nght factor of length 4 of w'v’ is equal to
the left factor of the same length of v"w".

It also follows that the period p of x is at most d. Suppose p <d and let g
be the length of the shortest cross factor of (w'v’, o'w”). By Lemma 824
we have ¢ < p or a=|w't’]. Since g <d where 4 is at most equal to the
length of w'v’ we conciude that ¢ < p and the result is proved in this case,

Assume now that a;---a, =x", a proper right factor of x, but that the
same 15 not true for a; - - - 4, Defining x” by x'x"” = x and replacing w’ by

w’ cannot decrease the v1rtual period. The same can be done for w” if the
covering a4 is right external, and we are back to the initial case.

It remasns only to discuss the case where botha; ---a; anda, - --a, are
external on the same side, say on the left. Then we have ;< j, and
a,---a; = x| equal to a right factor of the right factora,-- - a; = x of x. It
is clear that in fact x enters in the discussion only through x;; replacing it
by x} we are back to the previous case, where only one of the two coverings
1s not internal. The conclusion is that the virtual period is bounded by the
period of x5, which is itself at most equal to that of x, and the result is
proved in all cases. |

Proof of Theorem 8.3.1. Let (w',w'") be a critical factorization of w. We
have 1< |w'| =< |w| - .
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“For each A-interpretation w = x,x,- - x,., (0=<r), there is a smallest s
i&h that [xgx;- - - x| =i and a word x = x, that produces a covering of the
jgment v=a; of length 1 of w. If there exists a system of 1+ CardX
jirwise disjoint X-interpretations, at Ieast two of them lead to the same
ord x and the conclusion follows from the preceding lemma. |

jotes

“The critical factorization theorem and its application in Section 8.3 have
gen discovered by Cesari and Vincent (1978). The presentation given here
sliows closely Duval (1979), who contributed many crucial improvements
nd developed a deeper theory in his thesis (1980). Further applications also
pe to Duval relate the period of a word to the maximum length of its
rimary factors, a problem originally attacked in Ehrenfeucht and Silberger
979 and in Assous and Pouzet 1979. See Duval 1980 for the best result
nown so far in this direction.



CHAPTER 9

Equations in Words

9.0 Introduction

Let us consider two words x, y of the free monoid A%, satisfying the
equality:

Xy = yx. (9.0.1)

By Proposition 1.3.2 of Chapter 1, there exist a word ¥ € 4* and two
integers n, p >0 such that

n

x=u" and y=u’ (9.0.2)

In this chapter, we will view x and y as the letters of an alphabet E, We
will say that xy = yx is an equation in the unknowns Z = {x, y} and that the
morphism a:  E* - A* defined by a(x) = #" and a{ y}= u* is a solution of
the equation. Observe that all solutions of this particular equation are of
this type.

The basic notions on equations are presented in Section 9.1. In Section
9.2, we consider a few equations whose families of solutions admit a finite
description, as in the preceding example. Indeed, the family of solutions of
Eq. (9.0.1) is entirely described by the unique expression (9.0.2), where u
runs over all words and n, p over afl positive integers. This idea is formal-
ized in Section 9.3, which introduces the notion of parametrizable equations
and where it is recalled that all equations in three unknowns are parametriz-
able.

Not all equations are parametrizable, however, We are thus led in Section
9.4 to define the rank of an equation, which is the maximum number of the
letters occurring in the expression of particular solutions cafled principal. An
effective construction of these solutions i1s given in Section 9.5 that in
Section 9.6 leads to the notion of graph associated with an cquation. This
allows in Section 9.7 the effective calculation of the rank of all quadratic
equations —that is, the calculation of all equations for which each letter has

162
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exactly one occurrence in each member of the equation. Finally, in Section
9.8 it is shown how the present theory is related to some other ones, such as
theories of equations with constants, of test sets, and so on,

9.1. Preliminaries

Consider a fixed, finite, nonempty alphabet == {x,,...,x,}, and a set &
of pairs of words (e, e’) € E* X E*, Let us ask for all morphisms « of Z* into
some free monoid A* such that a{e) = afe’) holds for all {(e,e)E5. It is
natural to speak of & as a system of equarions in E* (or equivalently in the
unknowns x,,...,xp} and of a as a solution of this system, over the free
monoid A*. Let us also say that a satisfies &.

Very little can be found in the literature on infinite systems of equations,
apart from some resubts in the theory of test sets, which will be presented in
the last section of this chapter. For finite systems of equations, there is no
loss of generality in restricting consideration to single equations. Indeed, let
us say that a morphism a: Z* - 4* is cyclic if there exists v € A* such that
a{x) € v* holds for all x€ E. Then the following can be established (see
Hmelevskd 1976):

PrOPOSITION 9.1.1. Let & be a finite system of equations in E*. Then there
exists an equation (e,e’)EEXXE¥ such that for all noncyelic morphisms
o B* A% we have: a satisfies & iff it satisfies (e,e).

It is worth observing that in the proof of the proposition, Hmelevskii
effectively constructs (e, e’) from .

The problem of solving equations in free monoids was preceded by the
corresponding problem in free groups. One of the oldest problems posed
was indeed as follows: What are the morphisms a of the free group
generated by the three elements x, y, z, into an arbitrary free group F, for
which a(x?y?:%)=1 holds? The theory of equations has since been ex-
tended to various classes of monoids (for example, by Putcha 1979). It
should be remembered that, because of the natural embedding of E* in the
free group G generated by the elements of =, all solutions of an equation in
Z* can be viewed as a solution of the corresponding equation in G. An
application of this remark can be seen in Section 9.2.

From now on we shall consider only single equations {e, ¢’). Further,
unless otherwise mentioned, we shall assume that each element in E has an
occurrence in either e or ¢'. In the same way, if a: E* — A* is a solution, we
shall assume that each element in 4 occurs either in a{e) or in afe’). Thus 4
is finite.

Since solutions of an equation are defined as morphisms satisfying some
fixed relation, we need some elementary notions involving morphisms,
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Given a morphism a: Z* -~ 4*, we say that it is

* Total, if each leiter of A has some occurrence in a word a{x), for som,
xEE;

* Nonerasing (see Chapter 1), if a(x)+ 1 holds for all x& &

* Cyclic, if there exists a word © € A* such that a(x) € v* holds for each
xEE;

* Triviaf, if a(x) =1 holds for all x& =.

Notice that a total morphism a: Z* -» A* is trivial iff A=9.

Given two total morphisms, a;: Z* - AF and a,: ¥ - 47, we say that ¢,
divides a, and we write a; < a, iff there exists a nonerasing morphism
§: A* — A% satisfying a, = @ o a,. We say that a, and «, are equitalent, and
we write o, ~ a,, iff a; < a, and a; < a;. In fact it can easily be seen that &,
and a, are equivalent iff they are equal up to a renaming of the alphabets 4,
and A, —that is, iff there exists a morphism #: A} - 4%, mapping bijectively
A, onto A,, satisfying a, = o e, and thus &) =8 o ;. In the sequel, unless
otherwise stated, we shall not distinguish between two equivalent mor-
phisms.

'The rank of a morphism a: Z* — 4*, denoted rank a, is the cardinality of
the basis of the free hull of the set a(Z)= {a(x)E A*[x S E} (see Chapter
1}. Obviously, two equivatent morphisms have the same rank.

PrOPOSITION 9.1.2. Given two arbitrary morphisms w: B¥ - A* and
§: A¥ - B*, we have

rank(foa) < rank(e).

Proof. Let X = a(X) and ¥ = 8( X). Let U,V be the free hulls of X and ¥
respectively. Let W be the free hull of 8(U), Then X CU* implies ¥ C W*
Since W* is free, we have P*C W™ by the definition of the free hull,
Further, since ¥  F*, we have X C 87(F*). Since F* is free, 87 '(F*) is
free (see Problem 1.2.4). Therefore we have U C @& '(V*). This implies
(L) CF* and consequently W™ CJ*. We have thus proved that V= W. By
the definition, rank (#oa} = Card(¥) and rank (a) = Card(U7). We have, by
the defect theorem (1.2.5), Card(W) < Card(#(U/)). Since V=W and
Card(#(U)) < Card(l7), we obtain Card(})< Card(l’), which was to be
proved. [ ]

9.2. A Classical Equation: (x"y™, z7)

As a direct consequence of the defect theorem (Theorem 1.2.5) equations
in two unknowns have only cyclic solutions. Solving these equations thus
amounts to determining all solutions of some linear homogeneous diophan-

tine equation. It is not hard to see that all such solutions are linear
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. combinations of finitely many “minimal” solutions that can be constructed
. effectively (see Problem 9.4.4).

For equations with more than two unknowns, the situation is much more
complex, as the next sections show. Solved here are a few equations in three
and four unknowns that admit noncyclic solutions. We will concentrate on
the equation (x"y™, z#) and show that, provided n, m, p are greater than 1,
it admits only cyclic solutions (for the case n=1 or m=1 see Problem
92.1).

This last result plays a crucial role in studying the morphisms & of {a, b}*
into itself, for which #(u) is imprimitive only if u is itself imprimitive.
Lentin and Schittzenberger (1967) proved that these morphisms are char-
acterized by the fact that for all words » in the set a*bUba*, #{u) is
primitive.

Appel and Djorup (1968} have solved a related equation. Indeed consider
E={x,,...,x,, y} and let n be an integer greater than or equal to 4. Those
authors show that the equation (x[...x}, y") admits only cyclic solutions.

Lyndon and Schiitzenberger (1962) have proved that the equation
{x"y™, z7) in free groups, admits only cyclic solutions, provided n, m, p= 2.
In particular this implies the same result for free monocids. The case of free
monoids will be treated after the solving of a few particular equations that
will help in establishing the result,

ProPOSITION 9.2.1. For all solutions a: E* — A* of the equation (xyz, zxy),
there exist two words u, v € A* and integers i, j, k =0 satisfying:

alx)=(uww)u, a(yp)=c(ue) and a(z)=(u)".

Proof. Consider the new alphabet @ = {a, b} and denote by p: @% - 5+
the morphisin defined by

pla)=xy and o(b)=2z

For any solution a: ¥ - 4* of the equation (xyz,zxy), the morphism
ao@: O% > 4* is a solution of the equation (ab, ba). By the defect theorem,
this means that there exist # @ A* and integers n, m = 0 such that e[p(a)]=
u" and a[g(d)]=u"™

Equality a{xy)=a(x)a({y}=u" implies that for some u,,u,& A* and
some mteger 0= p <n we have a{x) = (u,u;)2u,, oy} = uy(uu, )" 77,
and ¥ = u,u,, which vields the result,

PropOsiTiON 9.2.2. For all solutions «: E*-> A* of the equation
(xy2x, z1°z), there exist two words u, vE A* and integers i, j, k,1=0 such
that

a(x)=(uo)u, e(p)y=ov(uY, alz)=(uv)",
a(t)=u(uv)', and i+ j=k+1
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Proof. Set
alxy=a, aly)=5, a(z)=c, alt)=d.

Then we obtain ab’a = cd®c. Arguing on the lengths of these words we
conclude that this equality splits in two: ab = ¢d and ba = dc. Without logg
of generality we may assume that |a] = |c|. Then there exists e € 4* wity
g=ce and d = eb. After substitution in ba = dc, we get bee = ebe. Because
of the preceding proposition, there exist u, v& A4* and i, j, k>0 such that
b= (uvYu, ¢ =v(uv)’, and e = (uv)*. This completes the proof. ™

Consider now the equaton ((xy)}™x, z") where for obvious reasons we
assume m >0 and a>1. Solving it amounts to determining under what
conditions a periodic word, as defined in Chapfer 8, is imprimitive.

Assume now m > 1 and let a: ¥ — 4* be a solution. Then by Proposition
1.3.5 of Chapter 1, there exist a word ¥ &€ 4* and two integers i, j=0
satisfying a{xy}= ' and a{z) = #/. This yields

al(xy)"x}=u"a(x)=uw"=afz")
that is, a(x) = u/""'"™ and finally
a(y) = w0,
Therefore all solutions are cyclic. We are thus left with the case m=1.
PropPOSITION 9.2.3. Let a: E* ~» A* be a noncyclic solution of the eguation

(xyx, z") where n>1. Then there exist two words u,vE A* and an integer
i 0 such that

alx)=(uo)'u, a(y)=ou{(u0) "'u)" Cuv, and a(z)= () u.

Proof. Using the same argument as in the discussion of the equation
((xy)"x, ") with m>1, we may assume |a{x}| <|a(z)|. Then comparing
the left factors and then the right factors of length |a{z)] in the equality
al(x}al yya(x) = a(z)", we get a(z) = a(x)w=1ta{x) for some w,1E A%,
Then by Proposition 1.3.4 of Chapter 1, we have, for some u, & A* and
somei=>0: a(x)=(uv)u,a(z)=(uv)* 'u,w=vu and ¢ = uv, which com-
pletes the proof. o

We now turn to the main result of this section.

THEOREM 92.4. For all integers n, m, p = 2, the equation ( x"y™, 27} admits
only cyclic solutions.

Proof. Assume by contradiction that there exist a finite set A, three words
u, v, wE A* that are not powers of a commeon word, and integers n, m, p=>2



%47 A Classical Equation (x"y™, Z%) 167

quch that the equality ¥"v™ = w? holds. Further, we may assume that w is of
minimal length. Observe that under these conditions, no two of the three
words u, v, w are powers of a common word.

By Proposition 1.3.5 of Chapter 1 the two following inequalities hold:

(n=D)]u]<|w| (9.2.1)
(m =1} o] <]w| (9.2:2)

‘We can mle out two trivial cases. Assume p =4, Then we have
|urom| <2((n~1)|u]+(m—Djv]) <4]w| < [w?|
Now if p =3 and n, m 2 3, we obtain:
furo™| <3((n— 1} u] +(m —1)|o]} <3|w] < |w?]
‘We are thus left with the following cases:

Case 1. n=12, m=13, and p =3 (by symmetry this covers the case n=3,
m=2, and p=73).
Inequalities (9.2.1) and (5.2.2) vield

(m—1v]<|w] and [u]<|w], ie. |w]|<|u?|<2|w|.
Thus, there exist two words w,, w, € A* with

wwWy = 02, (5.2.3)

Wl Wy = D (9.2.4)

and ww, = w. By Proposition 9.2.3, the first equality implies w, = (ab)a,
w, = ba*h and ¥ = (ab)™*'a for some a, b€ A* and r=0.

Assume first r <1; that is, |wy| > |w,{. Then because of Proposition 9.2.3
applied to Eq. (9.2.4), w;,wy and v are powers of a common word and so are
u, v, and w.

Assume next r = 2, and substitute w, and w, in Eq. (9.2.4), We get

ba(ab) " aab=v™. {9.2.5)

Then for some conjugate v’ of v we have (ab) " *aabba = v'™. Because of
m= 3, we obtain |(ab) *2a| = |ab| + |v’|, which by Proposition 1.3.5 shows
that ab and v’ are powers of a common word. This yields ab = (cd) and
v=1{dc)/ for some ¢,d € A* and some 7, j=0. Comparing the two right
factors of fength |ab] in {9.2.5) we have ab=(dc). Thus a, b and therefore
u, v, w are powers of a common word.
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Case 2. n=m=12 and p = 3. As in the former case, for some Wi Wy g
we have '

WiHLW, = ul (9-2.6)

Wo Wy = 0 (9.2.7)

and wyw, == w. By Proposition 9.2.3, the first equality implies w, = (abyy
w, = ba’h, and u = (ab) ™ 'a, where a, bE A* and r = 0. Substituting iy Eq‘
(9.2.7) gives v* = ba(ab) " ‘aab.

Assume first that 7 is even: v = 2r". Then we obtain v = ba(ab)” *1g =
a,(ba) " 'ab, where a=a,a, and |a,| =[a,|. Comparing the two left fac.
tors of length |ba| of this last equality, yields ba,a, =a,ba, —tha
is, a, = a,. Therefore, ¢ and b are powers of a common word, and so are 5
and v.

Now if r is odd, r=2r'+1; then we get v=ba(ab) ab, = b,(ab) aah
where b= b,b, and |b,| = [ b,|. Comparing the two left factors of length | g
in this last equality yeelds b, b,a = b,ub, —that i5, b, = b,. Thus a and b are
powers of a common word, and so are ¥ and o,

Case 3. n,m= 2 and p = 2. By symmetry, we may assume that there exist
0, 0, EA* with w=u"v,= vy(0,0,)""" where v=uv,v,. Multiply both
members of this last equality on the right by v,. Then we get u"vi = (v,0,)",
Since |v,v;| = |v| < |w|, the minimality of |w| implies that 4, v, and vy,
are powers of a common word. Thus so are 1 and v.

As a consequence, in all cases, we are led to a contradiction. This
completes the proof. n

9.3. Equations in Three Unknowns

The solutions of each equation considered in the preceding section are
given by a general formula where two types of “parameters” occur: “ word
parameters” (« and ©) and “numerical parameters” (4, j, k, and ). Thisis
true in generat for equations in three unknowns, This fact can be formalized
using the notion of parametric words {see Lyndon 1960), which we shall
now recall.

Denote by N{T | the seminng of polynomials with coefficients in N in the
commutative indeterminates T ={¢,,...,¢,}. A parametric word over the
alphabet @ is defined as follows:

(i) Every letter in © is a parametric word.
(i) If w, and w, are parametric words, then (w,w, ) is a parametric word.
(iti) If w is a parametric word and P a polynomial in N[T'], then (w)’ isa
parametric word,
{(iv) All parametric words are obtained inductively applying (i), (i), ().
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(hiven a parametric word w, every assignment of values in a free monoid
to the letters of @, and of values in N to the indeterminates {r,,...,7,}
fifines a unique word w’ in A*. We will say that w' is the value of w (under
Tis assignment). Then we have (see Hmelevskii 1976):

THEOREM 9.3.1. Given an equation with three unknowns x, y, z there exists
finite family {(u,, 0, W)} <1<, of triples of parametric words over an
habet with two letters, such that for each noncyclic solution @: =¥ — A* we

alx}y=u;, aly)=tv}, a(z)=w,,

jhere for some 1<<i<<r, uj, v}, and w; are the values of u,;, v; and w; under the
same assignment.

We shall express this fact by saying that the equations in three unknowns
tare parametrizable. Actually Hmelevskii shows more than that. He proves
hat we can associate with each triple a finite family of linear inequalities in
Ezhe indeterminates ¢ ,..., 1, in such a way that the family of triples, together
avith these inequalities, characterizes all noncyclic solutions of the given
gquation. Moreover his proof gives an effective construction of the triples
iand inequalities in question. However, in the same work (1976), he points
‘out that the equation (xyz, ztx) in four unknowns is not parametrizable,

9.4. Rank of an Equation

In the preceding section the fact was mentioned that equations in more
than three unknowns are not parametrizable--that is, that there does not
exist a finite collection of formulas representing all their solutions. As an
illustration of what happens, let us consider the equation {xyz, ztx), for
which it was recalled at the end of Section 9.3 that such a finite collection
does not exist.

Consider the particular solution:

a(x)=ab, aly)=babca, al(z)=ab’ab, a(t)=ca’b?,

where a, b, ¢ are letters of an alphabet 4. The basis of the free hull
containing a{x), a(¥), a(z), and a{t}, consists of the three words u=ab,
v=h, and w = ca. Now if we no longer consider u, v, w as words over the
alphabet 4 but, rather, as letters of a new alphabet B, then the morphism:

B(x)=u,  B(y)=vuw, Blz)=uwon, B(t)=wuo

obtained after substituting &, v, and w in a{x), a{y), a(z}, and a(?), again
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satisfies the equation (xyz, ztx). Thus u,v,w may be viewed as worg
parameters of a parametric word in the same way as in the preceding
section. Consequently, the rank of a solution appears as the number of worg
parameters occurring in the most general formula of which it is a value
under some assgnment.

Therefore, since given an equation there is no guarantee that its solutions
can be represented by a fimte collection of parametric words as defined iy
Seciion 9.3, we will ask for the maximum number of word parameters
occurring in the parametric words obtained as indicated in the foregoing
example,

We are thus led to define the rank of an equation (e, e”), written
rank(e, e}, as the maximum rank of its solutions. In particular we have
rank(e, ") =<1 iff (e, €") has only cyclic solutions. Henceforth the study of
equations here will be focused on determining their rank. We first show that
instead of considering all solutions we can restrict ourselves to special
solutions called principai solutions.

A solution a!E*-> 4* of the equation (e,e”) is principal if for all
solutions B: £* — B* dividing it, that is, for which there exists a nonerasing
morphism &: B* — A* with a= 8§, we have a= 5. Remember that because
of the convention of Secton 9.1, we do not distinguish between two
equivalent principal solutions.

Clcarly, any solution can be divided by some principal solution. Indeed, if f:
=* - B*is principal, there is nothing to prove. Otherwise, § can bedivided by
some nonequivalent solution «: =* — 4* which means that there exists a
nonerasing morphism 6: A*-> B* satisfying § = fu. Set S =3, .| f(x)!. If
10(x)| > 1 holds for some x € Ethenweobtain' ) _ - ta{x}] < S. Otherwise, we
have 3 ,.=la{x}| = § and 6 defines a noninjective mapping of 4 onto B.
However, the cardinality of 4 is bounded by § which completes the
verifivation by induction on 3. Actually we shall see in the next section that
there exists a unique principal solution dividing a given solution.

The importance of principal solutions is due to the fact that according to
Proposition 9.1.2, the rank of (¢, e} is equal to the maximum rank of all its
principal solutions, Notice further that the rank of a principal solution
o Z* - A* equals the cardinality of 4: rank (a) = Card 4.

Example 9.4.1. The principal solutions a: £* -» 4* of the equation (xy, y2)
are of one of the following types:

1. a(x)=ealy)=alz)=1.
2. a(x}=a(z)=1,a{y)=a with A= {a}.
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3. a(x)=a(z)=a, a(y)=a? with 4={a), and p>0.

4, a(x)=ab, a(y)=(ab)a, afz)=ba with
A={(a,b} and p=>0.

Thus rank{xyp, yz}=2.

Finally, the study of the rank of an equation reduces to the study of the
rank of the nonerasing solutions of certain equations as follows:

Let a: E*— A* be a nontrivial solution of the equation (e, ¢). Then
= {xe Ea{x)# 1} is nonempty. Denote by II the projection of E* into
g+ defined by

x i xeE®
H(")“{l it xEENE

Then the morphism a': 2* — A* defined by o'(x) = a{x) for all x& =" is
a nonerasing solution of the equation (II(e), [I{¢)) and we have the
following:

PROPOSITION 9.4.2. The solution a of the equation (e, ¢") is principal iff the
selution o of the eguation (1L(e),(1¥(e") is itself principal.

The proof is left to the reader.

9.5 Fundamental Solutions

The purpose of this section is to prove the uniqueness of the principal
solution dividing a given solution. This result can be established with the
help of different methods available in the literature (such as that in Lentin
1972a). We shall adapt here, in the case of free monoids, a method used in
the theory of equations in free groups and based on the Nielsen transforma-
tions. This leads to the notion of fundamental solutions, whose equivalence
to the principal solutions we prove. The reader is referred to Lyndon (1959)
for the corresponding result for free groups.

It is convenient to extend the notation alph to any subset. For each
X ¢ E* we define:

alph X= 1) alphx.

rEX

Let now x and x" be two arbitrary distinct letters of Z. The following
terminology is borrowed from Lyndon (1959):
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We denote by ¢, . the morphism of Z* into itself, which takes x* to xx’
and which leaves all other letters invariant:

_Jy i yeEN{xT)
q']xx'{y)— ;

xx' if p=x

Then ¢ .. is injective. More precisely its extension to the free group
generated by E defines an automorphism of this group, which is a Nielsen
transformation.

We denote by ¢, . the morphism of Z* into itself, which takes x’ to x and
which leaves all other letters invariant:

. '(y)m_m{y if yeE~N{x"}

x if y=x

We shall now associate with certain pairs of words (e, e )€ E%X Z*, some
of the transformations just defined. We do nor assume any longer that
alph{ee’y = E.

Suppose neither e nor e’ is a left factor of the other: e= gxh and
e'= gx'k’, where g, h, Y€ Z*, x, x'EE and x # x’. Then we say that the
two morphisms ¢, and ¢,., are the two regular elementary transformations
attached 1o (e,¢’) and that the morphism e,,. is the singulor elementary
transformation attached to (e, e’).

More generally, a transformation atiached to (e, ¢’) is any product ,... ¢,
where for each 1=i<n, ¢, i5 an elementary transformation attached to
(Pier--0e) @ ... (e)). When e=¢’, the unique transformation at-
tached to {e, e’} is, by definition, the identity over =*,

Consider a transformation ¢ attached to (e, e’) and satisfying p(e)=
g(e”). We set I' =alph(ee’} and A = alphe(I'). If we identify ¢ with the
total morphism 1t defines from I'* into A¥, then ¢ can be viewed as a
solution of the equation (e, ¢'). Such a solution is called fundamental.

Example 9.5.1. Consider the equation (xyz, xzx)

FPairs of words Attached elementary transformations
(e, e}y = (xyz, xzx}) ?=¢,
(€3, €3)=(xzpz, x2x} P2 = Py
(5, €3) = (yxzyz, yxzyx) P13 = &y

(e, e4) = (yzzyz, yzzyz)
Thus ¢;¢,9; = is a fundamental solution of (xyz, xzx). It is defined by

p(x)=yz  o(y)=z elz)=z
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The next proposition shows that with the identification just defined, a
soluteon is principal iff it is fundamental:

PROPOSITION 9.5.2. Each nonerasing solution a:  Z* -» A* of the equation
(e, €") has a unigue factorization a = 8,... ¢, where @,... @, is a factorization
of a fundamental sofution of (e, e’} intc elementary transformations and where
for all x& = we have 0(x)#* 1 iff x€ alphg,... ¢ (E).

Proof. Let g be the largest common left factor of ¢ and e”: e = gf and
¢’ = gf’. We shall proceed by induction on m = Card(alph( ff")).

Assume m = (. Then we have ¢ = g = ¢’. The unique factorization of « is
obtained by setting # = a, n =1, and by taking the identity morphism for ¢,.

If m == 0, then necessarily we have e = gxh and ¢’ = gx'#’, where f = xh, [
=x'W,x, x'E =, and x ¥ x’. Thus we have

a(e) = a(g)a(x}alh) = a(g)a(xYa( i) = ol ') (9.5.1)

For a fixed m, we proceed by induction on:
¢, = min{$, abs(ja(x)| - |x(x"}| )8} with § = ZNEE Byl

where abs(n} denotes the absolute value of the integer n.
Let us first consider the case o, = 0; that is, by Eq. (9.5.1):

a(x)=a(x’). (9.5.2)

If there exists a factorization satisfying the proposition, then necessarily
the elementary transformation ¢, is singular. Indeed, assume by contradic-
tion that we have for instance: ¢, = ¢,... Then we get

a(x) = (0g,... 0 x))(09,...9;(x)) = (b, .0, (x')){ 8,...0(x))
= o X WO, 9o %)) (9.5.3)

Because of the hypothesis, this shows that a{x"} is a proper left factor of
a(x), which contradicts (9.5.2). Setting ¢, =e,,., we get a=ag,, which
yields ag (e) = ap (¢). Consider ¢ (e) = g h, and ¢,(e") =g K}, where g,
is the longest common left factor of ¢,(e) and g,(e). Then we obtain:
Card(alph(k,h}))<m —1, which by the induction hypothesis implies the
existence of a umque factorization, a=f#y,... p,, satisfying the conditions of
the proposition for the solution « of the equation (¢,(e), ¢ (e"). Then
a== fq,...¢, is the required factorization,

Consider now the case o, > 0; that is, o, = S. Without loss of generality
we may assume that |afx)| >|a{x")|. Because of equality (9.5.1), we get
o x) = afx"yu for some uE€ A" . As in the preceding case, it can be verified
that if « admits a factorization as in the proposition, then necessarly
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®; = Py, Let B Z% - A* be the morphism defined by f(x) = u and ( y) =
a(y) if yEEN{x}. Then we have a=fg, and thus B¢ (€)= B (.
Furthermore we obtain

o< X |B(x)]=5—|a(x)|<S.

x& =

By the induction hypothesis there exists a unique factorization 8= fg,.,. ¢
satisfying the proposition. It then suffices to consider the factorization
a=0g,..9,. ]

The preceding result shows that each nonerasing solution can be divided
by a unigue fundamental solution that is also a principal solution. Con-
versely it shows that each principal nonerasing solution equals some funda-
mental solution. The existence and unigueness of the principal solution
dividing a given solution can, with the help of Proposition 9.4.2, be
extended to all (not necessanly nonerasing) solutions. Thus we have the
following:

THEOREM 9.5.3. Each solution of a given equation can be divided by some
unique principal solition.

Let now a: E*— A* be a principal nonerasing solution of the equation
{e,e"). As observed in Section 9.4, we have rank a = Card A. Moreover, if
@,...¢, is the factorization of a into elementary transformations, we have
Card 4 = Card(alph{¢,...%,(ee"))). Thus we can state:

COROLLARY 9.5.4. Let @....p, be the factorization into elementary trans-
Jormations of a principal nonerasing solution a of (e, e”). Then we have

rank a= Card{alph{ee’)) — k
where k Is the number of singular transformations occurring in g,...¢,.

Since all regular transformations are injective, in the factorization g, ..,
of a principal nonerasing solution there always occurs at least one singular
transformation. Therefore, the rank of any nonerasing principal solution of
the equation (e, '), with e»= ¢’ is inferior to the number Card(alph(ee’)).
This can be extended without any difficulty to all (not necessarily noneras-
ing) principal solutions. We thus get the “equational” version of the defect
theorem (1.2.5) of Chapter 1:

THEOREM 9.5.5. Let (e, ¢")E Z* X Z* be an equation such that e+ ¢’. Then
rank(e, e’y < Card(alph{ ee")).
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sl
2

9.6. The Graph Associated with an Equation

i

Proposition 9.5.2 shows how we get a principal solution of a given
‘equation by applying successive transformations to the equation. This
‘suggests the idea of defining an oriented graph whose vertices are the
different equations obtained-and whose edges are labeled by the elementary
wransformations applied at each step (see Lentin (1972a)).

Formally, denote by E the subset of Z* X Z* consisting of the pair (1,1)
and of all pairs { f, /") of words such that f and /' are nonempty and start
with a different letter. We consider E as the set of vertices of an oriented
graph G, an edge joining the vertex (f, f7) to the vertex (g, g’) iff there
exists an elementary transformation ¢: 2% —» E* attached to (f, /) and
satisfying @( f)=hg and ()= hg', where h is the longest common left
factor of { £} and @( f7). Such an edge is labeled by .

Consider now an equation (e, )& Z* X E* and assume ¢ and ¢’ are two
nonempty words starting with a different letter (this is no restriction of
“generality). Then by Proposition 9.5.2, each principal nonerasing solution a
is represented in G by a unique path joining (e, e’} to {1, 1). The labels in the
path give the factorization of a into elementary transformations. Con-
versely, each such path gives rise to a principal solution whose rank can be
calculated using Corollary 9.5.4.

The graph associated with (e, e’y is defined as the subgraph ¢ of G whose
vertices are all pairs ( f, /)€ E*X E* such that there exists, in G, a path
going from (e, e”) to (1,1) via (£, /).

Example 9.6.]. The graph associated with the equation (xy, yz) is shown
mn Figure 9.1. The graph associated with the equation (xyz, zyx) is shown in
Figure 9.2.

By Corollary 9.5.4, the rank of the equation (e,e¢’) is equal to
Card(alph(ee’))— k, where k is the minimum, over all paths going from

Figure 9.1. Graph associated with the equation (xy, yz).
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Figure 9.2. Graph associated with the equation (xyz, zyx)

(e, e to (1, 1), of the number of edges labeled by a singular transformation
in such a path.

Example 9.6.1. (continued). The rank of the equation (xy, yz) equals
3—1=2. A solution of rank 2 is given, for example by the path o Przs €
defining the morphism:

p(x}=yx  w(y)=y @(z)=xy
Example 9.6.2. (continued). The rank of the equation (xyz, zyx) equals
3—1=2. For instance @(x}= @{z)= x and ¢(y) = y defines a solution of
rank 2 corresponding to the path labeled by e,.

When the graph associated with an equation is finite, its rank can be
computed effectively. Using, for any f& =¥, the {ollowing notation:

£ 1l = max(| f|,|x€ E]}

we can state a sufficient condition for the graph to be finite (see Lentin
1972b):

PROPOSITION 9.6.3. Assumne the two following conditions are satisfied:

() foreach x€ Z: Je|,|e'| . <=L:
(i) max{lleli,lle’]}=<2.

Then the graph associated with (e,e’) is finite.
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97. Quadratic Equations

An equation (e, e”) is guadratic if for all x€E we have Je], = |¢'|, =L
We write e = x,- - - x,, ¢’ = x]- - - x,, and we say that (e, e’} is irreducible if
for no integer 1 <i<<p,(x,--- x;, x;-- - x{) is a quadratic equation—-that is,
i { Xy, %) = {x},..., %]} holds only if i= p.

Using Corollary 9.5.4 we can compute the rank of such an equation via
the graph introduced in the preceding section. In fact, for such a special
type of equation, there exists a formula giving directly the rank.

Indeed, consider the quadratic equation

x'i...x’),

(x, - x ,

p’
and assume
= {xi}lﬁiﬁp = {x:‘}]s;igp-
Denote by 7 (resp. ) the bijection of E™{x,} onto E\{x,} (resp.
EN({x)} onto E\ (x,}) defined for all 1<i< p (resp. I <i<<p) by

1 — 4 r : ’ -
e if x;_ = x), (x)) = x] if xj, = x)
"(x)= R E B B
x;_; otherwise Xj,, otherwise

If we denote by o the permutation of ZX\ {x’,} equal to r-7’, then we
have (Lentin 1972b):

TueorEM 9.7.1. Assume (x,- - x

2 X100 x,) IS an irveducible quadratic
equation. Then its rank is equal to:

~14 p+2(0)
2

where z(0) is the number of cycles of the permutation o.

This result, based on several lemmas involving permutation groups, cannot
be treated here. Notice that a similar result has since been established for
quadratic equations in free groups by Piollet (1975).

Example 9.7.2. Consider the quadratic equation {x,x;x,x,, X;X3%,%,).
We compute:
(%) = x4, T(x3) = x,, (%) = X35
(%) = x3, '(x3) = xy, MENEETH

0 = () (x3)(x4)-
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Thus the rank equals (— 1+4+3)/2= 3. This is the rank, for instance, ¢
the principal solution ¢: E* - 4* defined by

p(x)=abe, @lx;)=abca,  @{x;)=bcab,  ¢(x4)= cabc,
where A= {a,b,c}.

9.8. Related Theories

The notion of an equation with constants is obtained by adding to the
alphabet = of unknowns, a disjoint alphabet I' of constants. Setting & = ZUT,
an equation with constants is any pair ( f, f'} of words in A%, A sofution of
such an equation is a morphism a of the free monoid A* into the free
monaid of constants T™* such that «(a) =« for all a€ T, satisfying ( f, )~
that is, verifying af f)=a( f'). (For the corresponding concept for free
groups, see Lyndon and Schupp 1977.)

Example 981, Consider == {x, y}, [ = {a, b} and the equation
(xbacy, ycabx). Then for cach imteger i 0, the morphism a: A% T,
defined by

a(x)=(ab)'a a(y)=(ab)"'a ala)=a a(b)=b
is a solution of the equation.

Example 9.8.2. Consider E= {x}, I'= {a, b}, and the equation (ax, xb).
Then by Proposition 1.3.4 of Chapter 1, this equation cannot be satisfied.

Makanin (1977) proved that given an equation with constants, it can be
decided whether it has a solution. Very intuitively, he shows that given such
an equation, an integer N can be computed effectively, with the property
that if the eguation can be satisfied, then after at most N particular
transformations of the original equation, one obtains an equation where the
alphabet of constants is reduced to one letter. This result has a direct
consequence for equations without constants. Indeed it impHes that the rank
of such equations can effectively be computed (cf. Pecuchet 1981).

Another theory dealing with equations is the theory of test sets.

Given two morphisms a, 8 of E* into a free monoid A*, their equality set
is the set of words in =* on which they agree-—that is, the set defined by the
following (cf. Rozenberg and Satomaa 1980):

E(a,B)= {weE*|a(w)=B(w))

Consider now any subset L of Z*. A test set for L is a finite subset Ly C L
such that for any pair of morphisms e, 8: =¥~ 4* the two motphisms have
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the same restriction to L, once they have the same restriction to Ly
Ly C E(w, B) implies L ¢ E(a, ).

It has been conjectured by Ehrenfeucht that every subset possesses a test
set. This has been positively proved in the case when I consists of two
letters (cf. Culik and Salomaa 1980, Ehrenfeucht et al, 1982). However, in
the general case, the problem is still open.

The problem can be reformulated in terms of systems of equations. Let =
be a disjoint copy of &, and for each x € E denote by ¥ the corresponding
letter in =. This application extends to a unique isomorphism w — W of Z*
onto =¥ With every pair a, §: ¥ — 4* of morphisms, we associate the
morphism a+8: (EUE)* » A* defined for all x& = by

axf(x})=f(x) and axp(x}= g(x)

Grven a subset I ¢ =*, we denote by £ the system of all equations (w, w)
where we L. Since any two morphisms «,8: E* - .4* have the same
restriction to L iff a* 8 is a solution of the system £, the problem of finding
a test set L, for L amounts to finding a finite subsystem £, C£ having the
same solutions as £.

More generally, we could ask under which conditions a system of equa-
tions is equivafent to a finite subsystem.

In this chapter the problem of finding solutions of equations has been
discussed. Let us conclude the chapter with a few words on the dual
problem, to wit: Given a morphism a: E* —» A% what is the family of
equations it satisfies?

The problem was considered by Spehner (1976, 1981) in the case when =
consists of three letters. He shows that the family of eguations a given
morphism satisfies is one of finitely many explicitly given types.

Finally, the dual problem has strong connections with some famous
problems such as the “Post correspondence problem.”

Recall that given a finite family of pairs {(u;. v,)}<;<n of words in the
free monoid A4*, the Post correspondence problem consists in asking whether
there exists a sequence of integers f,,...,1,, where r > 0 and 1<i, < n for all
1=<k=r, such that the following holds:

Example 9.8.3. Let A= {a, b} and consider the two pairs of words (u,, v,)
and (u,, v,) where u, = a, v, = ababa, u, = bababab, and v, = b. Then we
obtairt 4,4, 4,4, = v,0,0,0,0,, which shows that in this case the Post
correspondencc problem can be answered positively.

We set E= {x,,...,x,} and £ ={%,,...,%,} and we assume that Z and E
are disjoint. Let w — w be the natural lsomorplnsm between =* and =* and
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Equations in W,

let a be the morphism of (ZUZ)* into A* defined for each 1<i<p by

a{x,)=u, and ofX,)=1v,

Then the Post correspondence problem amounts to asking whether 4
satisfies an equation of the form (w, ).

Problems

Section 9.1

S.1.L

*9.1.2,

A morphistm a2 E* — 4* 15 elementary if for every factorization
a= 88 into two morphisms 8: =% B* and #: B* —» 4* we have
Card B = Card 4.

Using the defect theorem (1.2.5) of Chapter 1, show that each
elementary morphism is injective. Give an example of an injective
morphism that is not elementary.

Show that when X consists of two letters every injective morphism
is elementary (see Rozenberg and Salomaa 1980).

Let a: =% 4* be an clementary morphism (see the preceding
problem). Set

K= 3 (la(x)|-1)-

xe =

Show that if the words x, x"€ Z,w,w € E* satisfy |a(xw)| =K
and a{xw)u= a(x'w’) for some u€ A*, then x = x’. Fxhibit an
injective morphism that does not satisfy this property. Exhibit a
morphism that is not elementary and that satisfies this property.
Show that this result 15 a generalization of Proposition 1.3.5 of
Chapter 1 (see Rozenberg and Salomaa 1980).

Section 9.2

9.2.1,
9.2.2,

Solve the equation {xy", z™).
Solve the equation ((xy)"x,(zt)"z).

Section 9.3

9.3.1.

Find the parametric words, some values of which are solutions of
the equation (xyx, zxz). Do the same for the eguation (x°y, y%z).
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section 9.4

5.4.1.

9.4.2.

9.4.3.

9.4.4.

Characterize all the principal solutions of the equation (e, e”) where
e=g'

Give an example of an equation in n unknowns, of rank n— 1, all
the principal nonerasing solutions of which have a rank equal to 1.

in the next two problems, we consider a fixed equation (e, ) in the
unknowns 2= (x,,...,x,} and for 1 <i<p we set

A;=lel,, e,

Give a necessary and sufficient condition on the A,'s for (e,¢’} to
have a nonerasing solution.

Let @ E*— A4* be a cyclic morphism, and for every 1 i< p set
a(x;} = ur,, where u is a fixed element of 4* and r,7 0. Then a can
be identified with the p-uple (7,,...,r,) ENP. Further, « is a solution
of (e, ¢") iff the linear equation

2 Ap=0 (1)

I<i=p

in the unknowns p, is satisfied when assigning the value 7, fo p, for
all I=<i=p.

Denote by = the product ordering over N” defined by: z <1 iff
there exists w in N# with z +w = t. Show that every solution of (1} 1s
a linear combination, with coefficients 1n N, of the minimal solu-
tions. Show that there are finitely many minimal solutions (see
Problem 6.1.2) Application: Give all the cyclic solutions of the
equation (x,X, x%x; %, X, x3%,).

Section 9.5

9.5.1.

952

Show that if two principal solutions a: Z* — 4* and £: 5% — B* of
the same equation verify |a(x)| = | 8(x)] for all x& Z, then they are
equivalent.

Verify directly that all the principal nonerasing solutions a: Z* — A*
of the equation (xy, yx) are defined by

a{x)=a" aly)=a”, whered={a} and (n,m)=1

(n, m) denotes the greatest common divisor of n and m.

Using Proposition 9.5.2, exhibit a bijection of the set @, of
nonnegative rational numbers onto the free monoid generated by
two elements,
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9.5.3. Let a: E* > 4% be a solutjon of the equation (e,¢") and 4’ C 4 be
the subset of all letters a & 4 appearing as the first letter of afx) for
some x < . Show that rank (e, e")=> Card 4".

9.5.4. Using the elementary transformations, show that for cvery princips]
solution a: Z¥ - A*, each letter a& A appears as the last letter of
o x) for some x € E. Show by symmetry, that “last” can be replaceq
by “first” in the preceding statement,

9.5.5. Using the preceding problem show that the equation (xpxzy,
zxxyzx) admits only cyclic solutions.

9.5.6. Extend the notion of principal solutions to the solutions of a finite
systemm & of equations as follows: A solution a: Z¥-» A% of § g
principal Aff all solutions §: 5% - B* dividing a are equivalent to o
The rank of & is defined as the maximum rank of its principal
solutions.

Show that every solution of & can be divided by some unique
principal solution. Show that the result of Problem 9.5.4 still holds,
Give a general condition on the two equations (e, 7} and (e,,e})
that ensures that the rank of the system 5 = {(e,, €}),(e;, €5)} 18 less
than or equal o Card(Z)—2.

Section 9.6

9.6.1. Draw the graphs associated with the equations (xyz, 1yx), (xyz, ztx),
and ((x%y, z2),(x2y%, 7).

9.6.2. Consider the equation (e,e’) with e=ux x,x,x, and € = x;x?x,.
Show that in the graph associated with the equation, there exst
arbitrarily long paths going from the vertex (e, ¢”) to the vertex (1,1)
and never going twice through the same vertex.

Section 9.7

9.7.1. Show that the rank of the quadratic equation (x,x,-«-x,
X, -+ X,;x,} is equal to [n+1]/2, where [p] denotes the largest
integer less than or equal to p,

9.7.2. Show that for each quadratic equation in more than two unknowns,
it is possible to extubit a solution of rank greater than 1.

Section 8.8

9.6.1. Show that the satisfiability of an equation with two constants
reduces to the satisfiability of a system of diophantine equations
(Hint: Let I'= {a, b}, %= {x,,...,x,} and let N|T'] to be semiring of
polynomials with coefficients in N, in the commutative inde-
terminates T = (z,;|1<i< p,1=< j<4}. Consider the morphism ¥
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of (TUE)* into the multiplicative monoid of all 2 X 2-matrices with
entries in N[T'], defined by

¥@=[3 1] ww=[} 9] ma w7 7

for every 1<i<p. Then use the fact that ¥(a) and ¥(b) freely
generatc the monoid of matrices with determinant equal to 1 and
with entries in N.

9.8.2. Let 5 be a finite system of equations with constants. Let the
alphabet of constants contain at least two elements. Show that there
exists a single equation (e, ¢’) with the same sets of unknowns and
constants that is equivalent to & — that is, such that every morphism
satisfies & iff it satisfies (e, e”).

9.8.3. Show that the equality set of two morphisms is a free submonoid
generated by a prefix (see Chapter 1).

9.8.4. Let a: E* — A* be an injective morphism and B: E* - 4* be a cyclic
morphism. Show that there exists a word w& E¥* such that E{a, 8)=
w*,

9.8.5. Using Makanin’s result, show that given any word w& E*, it can be
decided whether there exist two different morphisms a, 8, one of
which is not cyclic, satisfying a{w) = f{w) (see Cubk and Karhumiki
1980).

9.8.6. Consider the equation (abx, xGb) where x is the unique unknown
and o and b are two arbitrary words over the alphabet I' of
constants (4 and & are the reverse words of « and 5 (see Chapter 1)).
Show that the equation has solutions iff ab is the product of two
palindromes—that is, iff ab = cd where ¢ = & and d = d (see De Luca
15793,

*9.8.7. Let o, B: Z* — 4* be two injective morphisms such that «(Z) and
B(Z) are prefixes (see Chapter 1). Show that there exists an integer
n >0 with the property that for all u, v € E*, a{uv )= B{uv) implies
[leu)| — | B(u)i| << n (Hint; Denote by M the maximum length of
the words in a(Z) and B(E) and observe that for all u, v,we X*,
%, y€ & satisfying afuxv) = B(uxv) and e(uyw)= B(uyw), the in-
equality ||a()] — | B(u)][> M implies x = )
Using Problem 9.1.2, show that the preceding result is still valid
when « and f are elementary morphisms (see Rozenberg and
Salomaa 1980).



CHAPTER 10

Rearrangements of Words

10.1. Preliminaries

When ennmerating permutations of finite sequences according to certain
patterns (such as with a given number of descents, with a fixed up-dowp
sequence, or with given positions for the maxima) one is frequently led 1o
transfer the counting problem to another class of permutations for whch
the problem is straightforward or at least easier. Of course there is ng
general rule to make up those transfers, but we have at our disposal several
natural algorithms. The purpose of thus chapter is to descnibe those algo-
rithms and mention several applications.

The typical set-up for describing those algorithms is the following. Let 4
be a totally ordered alphabet and A* be the free moncid generated by 4. A
rearrangement of a nonempty word w=g,a,---a,, is a word w=a.a,

--a, , where iiy---i, is a permutation of 12---m. The set of all the
rearrangements of a word w is called a rearran gement cluss (or abelian class).
Given a subset X of 4* and two integral-valued functions D and E defined
on X, the problem is to construct a bijection of X onto itself that maps each
word w in X onto a rearrangement w’ of w with the subsidiary property that

D(w) = E(w). (10.1.1)

In most cases the set X is a union of rearrangement classes It then suffices
to give the construction on each such a class. From (10.1.1) it follows that
for each integer & and each rearrangement class ¥ contained in X we have

Card{wE Y| D(w) =k} = Card{we Y|E(w)=k). (10.12)

In probabilistic language this simply means that the statistics D and E are
identically disiributed on Y.

One of the reasons for constructing such bijections is to discover further
refinement properties of the distributions of the statistics involved (see, for
example, Section 10.7 and Problem 10.6.3). As will be seen, the construc-
tions of those bijections, also called rearrangements, make use of the



% The First Fundamental Transformation 185

fassical techniques described in this book (factorizations, cyclic shifts, and
5 on)-

%?The first example of such a rearrangement is the “first fundamental
giansformation” (sec Scction 10.2). [tis a bijection of the permutation group
%f the set of n elements onto itself. Its construction is based upen the fact
frat each permutation of 12---n can be expressed either as a word
5ia, - - a,, or as a product of disjoint cycles. It is worth noting that such a
%mple construction already gives nontrivial results about the distributions
Zif several statistics defined on the permutation group.

& The first fundamental transformation is further extended to each arbi-
ffary set of words (having repetitions). There is some algebraic work to do
sin order to achieve that extension. In particular a substitute for the notion
:of cycle, which the first fundamental transformation was based upoi, has to
be found. The algebraic structures to be introduced are first the flow monoid
{that is, a quotient monoid of (A X A)* derived by a set of commutation
‘sules), then a submonoid called the circuit monoid. This will be discussed in
:gﬁecﬁons 10.3 and 104. The first fundamental transformation is then de-
‘scribed in Section 10.5. Finally Sections 10.6 and 10.7 give a description of
the second fundamental transformation, on the one hand, and of the
Sparre-Andersen equivalence principle, on the other hand.

10.2. The First Fundamental Transformation

Let n be a (strictly) positive integer and w be a permutation of the set
‘[n]={1.2,...,n). Foreach i=1,2,...,n let a, be the image of i under w. The
“word @, a, - - a, will be referred to as the standard word associated to w and

also denoted by w. Assuming that the alphabet 4 contains the set N of the
natural numbers, the permutation group @, may be regarded as a subset of
A*, Before constructing the first fundamental transformation for each set
&, we mention a few notations valid for arbitrary words, not necessarily
standard.

Let w=a,4, - - @, be a nonempty word. Its first Jetter a, is denoted by
Fw. Rewriting its m letters in nondecreasing order, we obtain its nondecreas-
ing rearrangement denoted by W= g,8,- - a, (&, <d,<- - <4, If wis
an element of the permutation group &, its nondecreasing rearrangement
15 12--+m, If the letiers of w are not distinct, containing (say) 1, letters
1, m, letters 2,...,m,, letters n, then

TS L) LT (10.2.1)

Let (a, &) be an ordered pair of integers. Denote by », ,(w) (resp. £, (W)}
the number of integers i such that I<i<m—1 and a,=a,a;=b (resp.
I<sism-—1and a,= b,a,,,~ a). Clearly », ,(w} and §, ,(w) can only be
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equal to 0 or 1 if w is standard. The numbers

E(w)= 2 vnp(w)  D(w)= §b€a.b(W) (10.22)

a<l

are frequently referred to as being the number of exceedances and numbey
of descents of w, respectively. Each word w is said to be initially dominated if
a, > a, holds for all i with 2 <xi =<t n. Finally, an increasing factorization of w

is a sequence (w,w,,...,w,) of initially domnated words with the property
that

WE W W W,
and

Fw s Fmyss-. < Fw,,

For instance, the words w = 563182947 and w’'=311264622665175 admit
the increasing factorizations (5,631,82,947) and (3112,64,622,6,651,75),
respectively.

As shown in the following lemma, increasing factorizations are in fact
factorizations of the free monoid in the sense of Chapter 5 (see Problem
5.4.2).

LeMma 10.2.1. Every word w=a,a, - - - a, admits one and only one increas-
ing factorization.

Proof. Say that the letter g, is outstanding in w if =1 or 2<i<n and
a;<a, for all j<i-1. When cutting the word w just before each outstand-
ing letter we clearly obtain an increasing factorization. It remains to be
shown that it is the only one.

Suppose that there are two such factorizations, say (v, t,,...,v,) and
(W), Wy,..., ;). Let j be the smallest index such that v; # w,. We can assume
that v; is shorter that w;, so that w, = vu for some nonempty word u and
Fu= Fo,,,. Asw, is initially dominated, we have Fw, > Fu = Fu,,. On the
other hand, as (v;, v;....,0,) is an increasing factorization, we get Fw; = Fu;
< Fu,,,, leading to a contradiction. Thus the factorization is unique. |

The construciion of the first fundamental transformation (in the permuta-
tion case) goes as follows: First, let 7 be a cyclic permutation of a finite set

B={b, by,....b,} of mintegers. Then, define g() as the following word of
length s

g(7) = r™(max B)7™" '(max B)- - - +(max B).
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As 7 is cyclic, we have v™(max B} = max B. Furthermore, g(+) is a re-
arrangement of the m elements of B in some order. Clearly, g is a bijection
of the set of cyclic permutations of B onto the set of initially dominated
rearrangements of the word b, by - b,,.

Now let w==a,a,- - a, be the standard word associated to a permutation
of the set [n]. I the permutation has » orbits B,, B,,...,B,, we can assume
that those orbits are numbered in such a way that

max B, <max B, <--- <max B,. (10.2.3)

Let 7,7y, ...,7, be the restrictions of w to B,, B,,..., B,, respectively. As they
are all cyclic permutations, we can form the words ¢(7)), ¢(n),...,g(7.). We
then let w be equal to the juxtaposition product,

we=g(r)g{n) - ¢(s).

The sequence (g(7,), ¢(,),-..,g(7.)) is precisely the increasing factorization
of w. The mapping that associates W to w i5 a bijection, since there
corresponds to w one and only one sequence of cyclic permutations of sets
B, By,...,B,, with union {1,2,...,n} such that (10.2.3) holds. To such a
sequence (7, 7y,...,7.} there corresponds next one and only one sequence
(w,, Wy, ..., w, ) of initially dominated words such that Fw, << Fuy <<+ - - < Fw,
and w,wy- - -w, be a rearrangement of 12---n. From Lemma 10.2.1 there
finally corresponds to {w;.w;,...,w,} cne and only one permutation
admitting (w,,w,,...,w,) as its increasing factorization.

Example 10.2.2. Consider the permutation

The orbits written in increasing order according to their maxima are
B,={5}, B,={l1,3,6}, By={2,8}, B,={4,7,9}.
Let 7, be the restriction of w to B; (1< j=<4). Then
q(m)=5;
q(n) = 73(6) 77 (6) rp(6) = 631,

‘I("'a) = "'32(8) "'3(8) =32;
g(1g) = (917 (9) ,(9) = 947.



188 Rearrangements of Words 152

Hence

Ww=563182947.

Going back to the general case the construction of the inverse bijection i
made as follows: Start with a permutation v and consider the increasing
factorization, say (w,w;,...,w,) of v. The product (in the group-theoretic
sense) of the disjoint cycles g™ '(w,)g ™ '(w;) - - - ¢7Y(w.) is a permutation of
the set {1,2,.. ,n}. There corresponds to it a unique standard word w. Thep
W E D,

Working again with the foregoing example, with v=W, note that the
increasing factorization of © reads (5,631,82,947). We can then form the
product of the disjoint cycles:

B M

Erasing the parenthesis and rearranging the columns in such a way that the
top row is in increasing order we obtain the permutation

( 1 2 3 4 5 6 17 8 9)

38 6 9% 5 1 4 2 7/

The standard word w such that w = v is simply the bottom row of the Jatter
matrix.

The first fundamental transformation is now used to prove the following
combinatorial theorem, which essentially says that the number of ex-
ceedances E and the number of descents D (see Egs. (10.2.2)) are identically
distributed on each permutations group & .

Tueorem 10.2.3. For each pair of integers (a, b) with a<b and each
standard word w we have

v (W) =§, ,( ). (10.2.3)

In particular
E(w)= D(w).

Proof. Let w=aya,---a,. If v, (w)=1, then a=i<a, =& for some I
But { and a; belong to the same orbit, say 1. Let 7, be the restriction of w to
1. Then, the dominated word g(;) contains the factor a,i —that is, b a—and
so £, f(W)=1. Conversely, let w=0,b,---b, If £, ,(W)=1, there is one
and only one factor b5, of W that is equal to a. Let (w,,w,,...,w ) be
the increasing sequence of W. As b,> b, ,, the letter b, cannot be the last
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i

[gtter of a word w; and b, be the first letter of w,, . Hence b, ,, = baisa

roper factor of SOme WOI'd w;. With 7 =g~ (w) we then have b= T(a).
Thus b is the image of 4 under w; that i 13 v, o(w)= 1. The second part of the
ﬁworcm is an immediate consequence of the first part and definition
(10.22). »

4
“ 1t follows from Theorem 10.2.3 that for each integer k¥ we have
Card{we &, |E(w) =k} = Card{wE & |D(w)=k}

Their common value is the Eulerian number denoted by 4, ,. (See Problems
10.2.1-10.2.3)

10.3. The Flow Monoid

. Denote by M{A) the free monoid generated by the cartesian product
AX 4. It will be convenient to consider the elements of M(A4) as two-row

matrices W = ) with w and w’ two words of 4* of the same length. Two
elements W, and W, of M(A) are said to be adiacent if there exist U/ and ¥V

b’) with @, a’, b, ¥ in A,

in M(A) and two one-column matrices (‘:;),( 5

having the property that
asb (10.3.1)

and

)5 meef)() s
Naotice condition (10.3.1). The commutation rule refers only to the fop rows
of the matrices. Moreover, two adjacent matrices differ by two adjacent
columns whose top elements are distinct. Next two elements W, and W, are
said to be equivajent if they are equal or 1f there exist an integer p=] and a
sequence of elements V). V,,..., ¥, of M(A4) such that W, =V, W, =V, and
V,_; and V; are adjacent for 1=<i=< < < p. The equivalence relauon Jjust defined
is compatible with the juxtaposition product in M{ 4). The quotient monoid
of M(A) derived by this equivalence relation is catled the flow monoid and
denoted by F(A4). Its elements are called flows. The equivalence class of an

element W={"") will be denoted by IW]:[';;']. The map (Z)H[g] is

an injection of A X A4 into F(A), and F( 4) is generated by the set of all [g]
with g, bin 4. If v is a word of length m (where 1= 1) and 4 an element of

A, the flow [‘f:] has a single representative, namely (“v
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In the next lemma is determined an invarant of a flow. Let W= ( w’ be
the two-row matrix withw =a,a,---a, and w'= ajaj- - - a/,. For ea& ain
A let (i, 1y,...,1,) be the increasing sequence of integers i such thy,
| =i<m and a;=a. Then W* will denote the subword a, a, - - @ of w,

For instance, for

fwy_ (3 1 1 2 4 1 5
W*(w)“(z 301 2 2 4 1)’
we obtain
W'=1314.

Of course W4 is the empty word if  does not occur in w'.

w,) and Wzm(w
Wy

2
Wa

’

Lemma 10.3.1. Ler W]m—m{

) be two equivalent elements
of M(A). Then

(i) W¢=Ws holds for every a in A;
(1) The word w, (resp. wy) iz a rearrangement of w, (resp. w}).

Proof. Properties (i) and (ii} trivially hold when #, and W, are adjacent.
Hence, they are also true for any two equivalent elements of M(A). [ |

TueoreM 10.3.2. (i) Each nonempty flow f has a unique factorization of the

farm
f::[i)r:][aé] . [‘f] (10.3.3)

with @, a,,...,a, in A satisfying a,<a,<- - <a, and m,=l,m,=
l....m,=1.

(i) If Wﬂ("‘:’;} is any representative of f, then the ward af'*a5's- - al'~ is
the nondecreasing rearrangement of w’.
(iii) Finally

We=g foreach 1=1,2,...,n. (10.3.4)

Proof. Clearly (1) and (iif) are consequences of (i) and the previous
lemma. Let us establish (i).

As each flow of the form | 4" | with @ in 4 and v in A* has a single

v L . .
representative (au }, it suffices to prove that each nonempty element of
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=

T

L

XJ(A) is equivalent to exactly one product of the form

| EE) ()
; v, Uy v, I’
! 7 - .

that is, to a matrix (‘:) ) with o nondecreasing.

Existence. Let W= ( ‘:’v’) be an element of M(A) and assume that the
nondecreasing rearrangement of w’ is a{® a%?- - - @;. There is nothing to
prove when W has length 1. Assume now that the length of W is at least 2.
Denote by w; the longest right factor of w’ having no letter equal to a,,.
Then w'= wia,w; for some word w]. Also

AT AT
W, b Wy
for same words w,,w,, and some letter b, But
wi w4,
Wy Wy b

is equivalent to

By induction the matrix
W oWy
L Wy

is equivalent to an element (";’) with u' nondecreasing. As 1’ is a re-
arrangement of w| wy the word #'a, is nondecreasing. Thus the element

“ ‘; ]has the desired property. Moreover, it is equivalent to

(Wf w3 an)
wp Wy b

and, a fortiort, to (‘:’v) for the equivalence relation is compatible with the

u

product.
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Unicity. Let W = v, for i=1,2,...,n. Further, let

m g .. .,
{v’): ar et a,
v 6, v, - 0, )

We show that each element T = (rr ) equivalent to (t:;} with ¢" nonde-
creasing, 1s necessarily equal to (";) It follows from Lemma 10.3.1 (i) that

¢’ is equal to aaj'*- - a,'". Hence ( tt ) is equal to the product

a'l": a’é"'l d:”‘
t[ tZ In
for some words ¢, ¢5,...,¢,. But T% =1t (where | <i< n). As T'is equivalent
to W, Lemma 10.3.1 (i) implies that W% =T%; that is, v, =¢, for each
i=L2,..,n.Hencet=tty- -1, = 0,05 - 1, [
Cororrary 10.3.3. The cancellation law holds in the flow monoid F(4). In
other words, for any flows f, f', [ the equality "= [ " (vesp. f" [ = f" [}
implies [ = [’
Proof. Let f be a flow and a, b two letters. Consider the equation in g
fwg[g]. (10.3.5)
Using the factorization of f given in Theorem 10.3.2 we have
a|[as2]...[ar] [«
o, || v, v, | 8|l
But this equation has a solution only if a is equal to somea, (I1<i<n).If
a = a, (say), then v, = wb for some word w. Let

g )

42}

so that £ is a solution of (10.3.5). Any other solution is of the form

|7

Then
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3] =l

‘we conclude from Theorem 1032 that necessarily w;=v,...,ub=
wh,--.,u, = v,. Therefore (10.3.5) has at most one solution.
Consider now three flows f, ', f”. As

al _ . Ja
j{b] =7 [b]
[implies f = f’, we have by induction on the length of f” that f "= f* f o
implies f = f". The “resp.” part is proved in the same manmner.

‘10.4. The Circuit Monoid

Note that in each element ( ‘:’U } of M( A) the word w' is not necessarily a
rearrangement of w (although it is of the same length). When it is a
rearrangement, the equivalence class ‘;‘; is called a circuit. Clearly, the set

C(A) of all circuits form a submonoid of F(A), called the circuit monoid. Tt
follows from Theorem 10.3.2 that each circuit ¢ has one and only one

representative in the form [f] with v a word and & the nondecreasing

rearrangement of v. Let

F=¢ (10.4.1)
{c)=v. (10.4.2)

Conversely, to each word v of 4* there corresponds one and only one
two-row matrix of the form [ v] with © the nondecreasing rearrangement of
v. Define the circuit T(0v) by

m)r[ﬁ]- (104.3)

We then have T'TI{¢)= ¢ and IIT'(¢) = o for each ¢ in C(4) and v in 4*.
Thus the two maps

I1:C(A4) > A* and T:4*-C(A) (10.4.4)
are bijective and inverses of each other. Moreover
H{c)=¢ and T{v)=7o, (10.4.5)

denoting again by © the nondecreasing rearrangement of v.
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The definition of T" (given in {10.4.3)) is straightforward. As for obtaining
[I{c) (whose definition is shown in (104.2)) we can proceed as follows:

Take any representative W' = ¥} of ¢ and let a,<ap<---<a, be the

distinct elements of A that occur in w' (or w). Then Ii(c) is the word
vy vy - - 0y With

Wa=yp (i=12,...,n) (10.4.6)

The final step 1s to define another bijection A: 4* - C(A), and the
fundamental transformation wi»w will be the functional product 47 'eJ"
For each word w = a,a,- - - a,, denote by 8w the cyclic shift

Sw=aya,--a,0,.
Remember that a word is said to be (initially} dominated if its first letter is

(strictly) greater than all its other letters. In the same manmer, a circuit ¢ will
be said to be dominated if

=[] (104.7)

with w dominated. Clearly, for each circuit ¢ there is at most one dominated
word w such that (10.4.7) holds. When w is dominated, we wifl denote by
v(w) the circuit

y(w) :[5‘3’] (10.4.8)

Thus v is a bijection of the set of all dominated words onto the set of
dominated circuits. In (10.4.7) the first letter of the dominated word w,
previcusly denoted by Fw, will also be written Fe.

By definition a dominated circuit factorization of a clrcuit ¢ is a sequence
(d,.d,,...,d,) of dominated circuits with the property that

c=didy - -d,
and
Fd <Fd,<---<Fd,. (104.9)

THEOREM 10.4.1. Each nonempty circuit admits exactly one dominated
circuit factorization.

The proof of Thecrem 10.4.1 actually gives the construction of the
factorization. The dominated circuits are to be sorted one by one out of the
1nitial circuit. Let us first prove the following lemma:
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EEmMMa 10.4.2. Let v be a nonempty word and © be its nondecreasing
rearrangement. If there exists an integer (1, a sequence (ag, a;,---,a;") of

o

letters and an element (v,. of M(A) with the properties that

(i) a; is different from each of the letters af,...,a};
(i) (7} is equivalent 1o

. Y] r s ’”
viyla, .y a4y 0 4y 4o
o)l a af ceeay oal]’

i i1

4 L
then a letter af!, and a matrix ( v’*" ) of M{ A} can be found so that condition
i1

(it} holds when i is replaced by i +1.

Proof. Define a},, as the bottom element of the rightmost one-column
’

submatrix of { /| whose top element is equal to a). This definition makes

sense, for oondit'ions (1) and (ii) imply that ¢ contains a letter equal to a'.
Hence, the following factorization holds:

o _fui)[ & \(uh
Y w @ f\ug ]
with no letter equal to 4’ in u}. Then put
(vEH}Z(Hi u’z}
Uit up uyf’

The following two elements of M(A4):

() = (o)
and Iy
v Vgt )\ i
are equivalent. Thus condition (i} also holds when i is replaced by i+1. W
We are now ready to complete the proof of Theorem 104.1. Let v=
b by---b, be a word with a nondecreasing rearrangement given by &=

ajay - -a,’,,:flf"aa”z- - ap(where a; <a, <--- <a,; m=lLm,=1l...,
m, # 1}. Consider the circuit

= = v == a; ﬂé a:”
2=T(0v) [v] [b] b, - bm].
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If vis of length one, then -
e=[?] = [Bv]
v v
and the theorem is proved. Assume m=2. 1f b_ = a, (= a,), let

a, a; - a;mﬂ] [ﬂn}
ol and d= .
[bl by B a

"

Then
c=e'd.

By induction on m, the circuil ¢ admits the umique dominated circuig
factorization

Cf: didZ. e dr'
As d is trivially dominated and g, is the maximum letter of v, we also have

Fd, < Fd,<- - <Fd, < Fd.

Therefore ¢ has the following dominated circuit factorization
c=d,d, --dd.

If b, +a,, let ay=9,, a;=a,, v,=a,ay-a,., and v =
by by -+ b, ;. Then conditions (i) and (i) of Lemma 1042 both hold for
i=1. By applying Lemmma 1042 inductively we can form a sequence
{ag, ay, ...)of letters. Let i -+ 1 be the first integer for which Lemma 1042
does not apply. Such an integer exists since the sequence is necessarily
finite. We then have a4/’ ; = a¢, but still f different from each of the letters
al,...,a’ . Mi+l=m—1,let

m " I ,r
a4 4., - a4 4

12

ag ay ey af

’
LA

-

and dz{

i

Then d is dominated (by the maximum letter aj = a,). If d,d,- - -d, is the
dominated circuit factorization of ¢/, then we conclude, as before, that

ddy--dd

is a dominated circuit factorization of c.

It remains for us to prove the umcity of the factorization. Let ¢;¢,- - ¢,

and 4,d,- - - d, be two dominated circuit factorizations of a circuit ¢ = I['(v).
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Let v, = by b+~ & and w,= by b -~ b’ be two dominated words defined
by y(v,)= ¢, and v(w,)=d, (see (10.4.8)). Thus

so,} [&5 -+ B b
o frees
|y, L T -

and

g = Sw by -+ B By
Tlw || e B, B
But &} and b} are both equal to the maximum letter of v. Therefore 5] = 8;".
Assume s < ¢. By induction b, =8 ,...,By= b ;. But bi=b]. Asw_is
dominated, the equation by =5, can hold only if 7=s. Hence v,=w,
and ¢, = d,. As the cancellation law holds in F{ 4} (see Corollary 10.3.3), we
obtain ¢ ¢y - - ¢, =d,d,- - - d,_;. The unicity follows by induction on the
length. [ |

10.5. The First Fundamental Transformation for Arbitrary
Words

We are now ready to define the second bijection A: A* - C{A). Let
(w),wy,...,w.) be the increasing factorization of a word w (see Lemma
10.2.1). Remember that each factor w; is donunaied so that we can form the
dominated circuit

Sw, .
Y(Wr)ﬂ[ w-']’ (131,2,...,.?“).
Taking their product in C(A4) we obtain the circuit

Alw)=vy(w )1(wy) - v(w ). (10.5.1)

By construction
AMw)=w (10.5.2)

{see definition (10.4.1}). On the other hand, vy is a bijection of the set of
dominated words onto the set of dominated circuits with the property that
¥{w)=w (see (10.4.8)). The map that associates {w,w,...,w.} to
(v(w, ), YOup ), . ., ¥(w, )} transforms the increasing factorization of w into the
dominated circuit factorization of A(w). It then follows from Lemma 10.2.1
and Theorem 10.4.1 that A is bifective.
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The essential property of A is that the adjacent letters ba of w with g <3
are transformed into vertical pairs g] in A(w). We make this definitioy
more precise by introducing a function 7, , on circuits as follows: Let

I A A AR 2
e a4, a|la, a,,

a4 @
be a circuit. Then 1, ,(¢) is defined as the number of vertical occurrences of
“lin ¢, that is, the number of integers { with 1 <i<m and a;=gq, b;=p,

Remember that £, ,(w) is the number of two-letter factors of the word w
that are equal to ba.

Turorem 10.5.1. For each nonempty word w of A* and each ordered pair
{a, b) of letters satisfying a <b, we have

£ (W) =1, (A(w)). (10.5.3)

Proof. Let (w), w,,...,w,) be the increasing factorization of a word w and
a<b. First, b cannot be the last letter of w,, while @ is the first letter

Sw,
of the successive factor w; . Second, each word wj’ of M(4) cannot end

with the letter {g) Hence the horizontal pairs ba and vertical pairs (g)
can occur only as shown schematically in the next equation

so= e

Thus Eqg. (10.5.3) holds, n

Denote by A~ the inverse of A that maps C(A) onto A*. If w is a word,
let

w=Aa71(T(w)). (10.5.4)

THEOREM 10.5.2. The mapping wW is a bijection of A~ onto itself having
the following properties:

(i) W Is a rearrangement of w;
(i) for each pair (a,b) with a <b then

v, o{w) = £, (). (10.5.5)

Moreover

E(w) = D(W). (10.5.6)
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Proof. Asboth T and A™" are bijective, their composition product is also
bijective. Property (i) follows from (10.4.5) and (10.5.2). Now let w=a,a,
.--a, be a word and w=ajaj- - - a, be its nondecreasing rearrangement.
Remember that », (w) is the number of integers / with @/ =a and @, = b.
The relation v, (w)=1n, ((I'(w)) for a<b is a trivial consequence of the
definitions of #, , and 7, ,. From (10.5.3) we deduce that

Ea.b(ﬁ}) - nab(A(ﬁ))) = na.b(r(w)) = I”’4::.&("""’)'
As for (10.5.6) it follows from (10.5.5) and definition {10.2.2). [ ]

Example 10.5.3. Let us lustrate with an example the construction of the
bijection w»w and its inverse. Consider the word

w=231514226672615.
Its nondecreasing rearrangement reads

W=11122234556667.
Then T(w) (see (10.4.3)) is the circuit

w11 2 2 2 3 4 5 5 6 6 6 7
r“”“{w]“[s 1 51 4 22 66 7 2 6 1 5]
To compute A~ {T{w)) we have to determine the dominated circuit factori-

zation of I'(w) as indicated in Theorem 10.4.1. This is achieved by sorting
out the successive dominated circuits from right to left:

-

F(vv)ﬂﬂ- 1 11 2 2 2 3 4 5 6 6 6J5 7
3 1 5 1 4 2 2 6 6 2 6 117 5

_[v 1 2 2 2 3 4 6 6]fs 1 6]ls 7

(3 11 4 2 2 6 2 6lle 5 1ll7 5

_[t 1 2 2 2 3 4 6}[6"5 1 6lfs 7

(3 1 1 4 2 2 6 2ll6lle 5 1ll7 5

_fr 1 2 3 [4 2 2 6][6"5 1 6lfs 7

13 1 1 2fl6 4 2 2§l6ile 5 1H7 5

The word w= A~ (T'(w)) is then the juxtaposition product of the words
occurring in the bottom row in the last product, namely

w=31126422665175.

Conversely, to obtain w from w—that is, w = I'"(A{W})—we first form
the increasing factorization of w

(3112,6422,6,651,75),
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then define A(W) (see (10.4.1)), namely
N 1T 2 3 4 2 2 6 6 5 1 6 5 79
‘1‘(‘”)“[31126422665175]-
Then we reshuffle all the columns of A(W) so that the top row js i,
increasing order (see (10.4.2)). We find again I'(w), and finally w occurs i
the bottom row.

In the example boldface type in I'(w) marks the letters of w that aye
greater than the corresponding letters of w above them. We have the vertica)

(3 () (2 (6)-(2)- (3):

In w we have the horizontal pairs

31,64,42,65,51 and 75.
Thus E{w) =6~ D(W}.

10.6. The Second Fundamental Transformation

Let w=aa,"--a, be a word of length m=1. lis inversion number,
denoted by INV w, is defined as the number of ordered pairs ({, j) with
I<i<j<m and a,>a; The down set of w, denoted by DOWN w, is
defined by

DOWNw={i[l<i<m~—1, a,>a,,}, (10.6.1)

and the mgjor index of w, denoted by MAFJ w, as the sum (possibly zero) of
the elements in DOWN w.
For instance, with

1 2 3 4 5 6 7T 8 9

w= 4 4 2 3 4 1 3 2 3
we have INV w= 20, DOWN w={2,5,7}, so that MAY w=2+5+7=14,
MacMahon (1913, 1915) introduced the function MAJ in the study of
ordered partitions, Let X be a rearrangement class of A* (sec Section 10.1)

and let

I(g)=Z2q""", M(q)= g™V (we X) (10.6.2)

be the generating functions for X by number of inversions and major index,
respectively. MacMahon obtained (1916) the surprising result that I(g) and
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§(q) have the same expression (see Problem 10.10). Schutzenberger (private
unication 1966) raised the problem of finding a bijection ® of 4* onto
If with the property that for every word w

i) ®(w)is a rearrangement of w;
i) INV &{w)=MAF w.

The bijection ® described below was found in Foata (1968) and later
feferred to as the “second fundamental transformation.” When @ is re-
gicted to the permutation group, it has further interesting properties (see
roblem 10.6.3).
- The construction of ¢ gocs as follows: Let 2 be an element of 4 and w a
nempty word. If the last letter of w is smaller than or equal to (resp. is
greater than} , the word w clearly admits the unique factorization

(viby. 0550,
called its a-factorization having the following properties:

(i) Fach b, (1<i= p) is a letter satisfying b, < a (resp. b,>>a);
(i) Each v; (1= = p)is a word that is either empty or has all its letters
greater than (resp. smaller than or equal to) a.

Then let
']/a(W) wb]ulbz 132" .. bP UP.

(Note that w= v, b v, b, -~ v, b,.) The bijection will be defined by induc-
tion on the length of the words as follows:

If w has length 1, let
®(w)=w, {10.6.3)

If |w| =2, write w = va with g the last letter of w. By induction determine
the word ¢/ =y, (®(0v)) and let #(w) be the juxtaposition product

®(w) = v'a( = v,(2(v))a). (10.6.4)

Let us describe the effective algorithm for ®.
ALGORITHM 10.6.1, Let w=a,a,-- - a,, be a word,

L Leti=1wi=a,;
2. Ifi=m, let ®{w)=w’ and stop; else continue;



202 Rearrangements of Wors 10.6

3. If the last letter of w/ is smaller than or equal to (resp. greater than
@iy, split w) after each letter smaller than or equal to (resp. gregre,
than} a;,

4. In each compartment of w; determined by the splits move the last letter 1,
the beginning; let v' be the word obtained after making those moves, [
W, = v'a,, ; replace i by i+1; goto 2.

For instance, the image under @ of the word w== 442341323 is obtaineq
as follows.

wi=4

w; =44

wj =442
wi=2]4]4]3]
w; =2]4]4]3/4|
wi=2]443]41f

w}=23|4]4|14]3|
wg=3|2]4441|32]
(w)=w;=321444323.

The algorithm can be reversed (see Problem 10.6.1).

THEOREM 10.6.2. The map © is bijective. Furthermore, the image ®(w) of
each word w is a rearrangement of w. Finally, the following identity holds

INV®(w)=MAIw. (10.6.5)

Proof. The first two statements are easy to prove. As for the last one, let
w=4d,dy 4, and for each a in A let I (w) (resp. r,(w)) be the number of
subscripts ¢ with 1<i<m and a, < a (resp. a, > a). Of course, I,(w)+r(w)
= |w{. Furthermore,

INVwa=INVw-+r,(w).
Now if the last letter of w is less than or equal to a, we have

INVy,(w)=INVw —r,(w)
MAJT wa = MATw,
When the last letter of w is greater than a4, we have this time
INVy,(w)=INVw+I (w)
MAJwa=MAIw+1I (w)+r(w).
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iroperty (10.6.5) is then a consequence of these five relations together with
0.6.4). First

INV®(wa)=INVy,(®(w))a
= INVy,(®(w)) + r,(v.(2(w)))
= INVy,(@(w)) + r(w),
'%ince ¥,(®(w)) is only a rearrangement of w. Then, if the last letter of w is
fess than or equal to a, we get (by induction):
INV®(wa )= INVy,(®(w)}+r,(w)
= (INVO(w)—r,(w))+7.(w)
=MATw
—MAJwa.

Finally, if the last letter of w is greater than a, we have (by induction)

INV®(wa)=INVy,(®(w)}+r(w)
=INVO(w)+ L{w)+r,(w)
=MATw + |w|
=MATwa. u

Working with the foregoing example w=4 4 234 1 3 2 3 and ®(w)
321444323, weobtain

MAJTw =14 = INV®(w).

10.7. The Sparre-Andersen Equivalence Principle

The Sparre-Andersen equivalence principle was presented in Proposition
5.2.9. Let us recall that if w=a,a,- - - a,, 15 a word of A* with A the field of
the real numbers, we let

o{w)=a,+a,+- - ta (10.7.1)

i

be the total sum and o {w)=0,0(w)=0a(a))=a,,e{w)=ela,a,)~a,+
ay,...,a,(wy=a{a,a, +a,})—=a,+a,+ - +a, be the partial sums of
w. For each k=0,1,...,m let IT,, .(w) be the number of subscripts i for
which

* Fither 0<i<k — 1 and o,(w)= o (w),

18.7.2
* Ork+l<i<mand o{w)> e (w) ( )
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Thus I, (w) is the number of partial sums greater than or equal to o, (w
{with the convention that whenever two partial sums are equal the left-hapq
one is counted before the right-hand one with o(w) itself not being
counted.)

For instance, with m=8, k=35, and w=1,—-2,0,3, — 1,1, =2, 1, the g.
quence of partial sums is (0,1,—1,~1,2,1,2,0,1), as graphically repre-
sented in Figure 10.1. As 0,(w) = a;(w)} =1, we obtain I, (w)=3.

Clearly I1,, (w) is the number of (strictly) positive partial sums that wag
denoted by L{w) in Chapter 5. Now the index of the first maximum in
(o{w) 0,(w)....,0,(w)) is equal to k—a quantity denoted by II{w) i
Chapter 5—1if and only if fI,, (w)= 0. The Sparre-Andersen equivalence
principle expresses the fact that in each rearrangement class X there are for
each integer k as many words with L(w) (=11, ,(w)) =k as words w’ with
H(w"=k; that is, IT,, (w)=0.

Later Sparre-Andersen (1962) obtained a further extension of his princi-
ple as follows,

TueoreM 10.7.1. Let j, k be two integers with 0= j, k*<m. Then in each
rearrangement class X of words of length m there are as many words w with

10, k(w)=j as words w' with I1,, (w'}= k.

Theorem 10.7.1 wili be proved by constructing a bijection p, of X onto
itself with the property that

Hm.k(w):jmnm.j(pk(w))wk' (10.7.3)

The following bijection p was defined in Chapter 5, If w is the empty

word 1, let p{w)=w, while if a is a letter of 4, define by induction on the
length m of w

p(wa)=p{w)a if o, (wa)<0
=ap(w) otherwise. (10.7.4)

P )

Figure 19.1. Graph associated with a sequence of partial sums
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Ei‘{was shown in Proposition 5.2.9 that p was a bijection of each rearrange-
ient class onto itself and also

L{w}=II{p(w)},

ﬂlat is,
I, (w) = j = I,y {p(w)) =0. (10.7.5)

;élearly (10.7.5) is a particular case of {10.7.3) obtained for £ = 0. But how is
p to be defined for the other values of &? This is the purpose of this
section,

i In Example 5.2.8 it was noted that the two sets

R={reA*|r=uv=0(v)>0}
S={seA*|s=uv=0(u)<0}
were submonoids of 4* and each word w' has a unique factorization
w=rs, r&R, sES§. (10.7.6)
Moreover, it was shown that the length of r is equal to the index of the first
maximum in the sequence of the partial sums of w’, a result that can also be
expressed, if {w|=m, by
ir|=jeI, (w)=0.
It follows from (10.7.5) that if

p(wy=rs, r€éR, sES, (10.7.7)

IL,, o(w}=]rl. (10.7.8)

CONSTRUCTION OF THE BUECTION p,. Let k be a fixed integer with
0O<k=mand w=a,a, - a, bea word. To obtain p,(w) calculate succes-
sively

1. w, and w, by

w=wiwy, |w| =k
2.1y, 1,5, 5, by

p(W,)=ris;, p(wy) =ry 55, with r), 1, € R and s,,5,€ S and p defined in
(10.7.4);
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3. u, and u, by

;= 07 Ny s)), uy== o~ (s,
4. p WY=T,u,.

TueoREM 10.7.3. The mapping p, defined previously maps each rearrange.
ment class onte itself and satisfies property (10.7.3),

Proof. Clearly p, is a rearrangement. As p is bijective and the factoriza-
tion given in {10.7.6) is unique, the map p, is also bijective. On the other
hand, II,, (w) is also the number of subscripts / for which

* Either 0<i=<k~—1 and o{a,, a;,5 - a,)=<0;
*Orikti<is=mand o(a,., 8,5 - a)>0.

Thus
ﬂm,k(w)mnk.k(wt)+nmmk.0(“'2)-
As the reverse image w, of w, has the same total sum as w,, we deduce that
U, w)=k~ IT, o090,
Therefore
Hm.k(w)ﬂkmnk,o(wn)*ﬂmwk,o(wz)- (10-7-9)
Let |4, = |#,| = j. In the same manner
Hm,j(pk(w)) = ﬂj,o(“l)“*” Hmmj,o(“2)‘
On the other hand, (10.7.7) and (10.7.8) applied to Wy, w,, u,, and u, yield
O o(®}=1nl i olm) =113,
H;‘,o(“l): 721, Hmwj,o(“z)ﬂ |7y
Hence
Hm,k(w) =k—1r|+|n]
= fsrl gl = u] = Jj,
and
Hm,j(pk(w)) =J~|n|+]n
=5 || = |w| = k.

Thus property (10.7.3) is verified. |
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Example 10.74. The construction of p, can be illustrated with the
example shown in Figure 10.1. There m = 8, k = 5, w= |,
~2,0,3,~1,1,—2,1 and Iy o(w) == j= 3. Again consider the four steps of
the construction of p,

Low,=1,—2,0,3,~1, w, =1, 2,1,
2. p(W)=10,3,—1,—2; plwy)y=1,-2 1.

- As the indices of the first maxima of the partial sums of p(#,) and p(w,) are
-equal to 3 and 1, respectively, we have

r=10,3; 5 =-1,—2; ry=l; 8y —2,1;

3. wy=p (s} =1-1-2
uy=p (r5)=-21,301

4. pw) =T uy,= —~2,—1L1,—2,1,3,0,1, which corresponds to the par-
tial sum graph drawn in Figure 10.2,

The number of partial sums of p,(w) that are greater than or equal to
o (w)) = ay(ps(w)) = —2is equal to k = 5,

Notes

The first fundamental transformation for permutations is already implicit
in Riordan (1958, Chapter 8). It is an essential tool in the study of Eulerian
polynomials, as shown in Foata and Schiitzenberger (1970). The extension
of the first fundamental transformation to arbitrary words was obtained by
Foata (1965). Then Cartier and Foata (1969) derived a convenient set-up to
describe it first by introducing the monoids subject to commutation rules,
second by developing the study of the flow and circuit monoids. Lallement
(1977) took up again this study in one chapter of his book. The circuit
monoid was also used by Foata (1979,1980), in particular to derive a

Figure 10.2. Graph associated with a sequence of partial sums.
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noncomrmutative version of the matrix inversion formula. Mobius inversiop,
identities can be obtained for commutation rule monoids (see Cartier ang
Foata 1969). Content, Lemay, and Leroux (1980) proposed a general setting
for M&bius inversion that includes locally finite partially ordered sets apg
commutation rule monoids. The second fundamental transformation was
derived by Foata (1968) and further used in Foata (1977) and Foata ang
Schitzenberger (1978). See MacMahon (1913, 1915, 1916) for the first
studies of the major index. Several multivariate distributions on &, involy-
ing the major index and inversion number have been calculated, particularly
by Stanley (1976), Gessel (1977), Garsia and Gessel (1979), Rawlings (1981},
The extension of the equivalence principle is due to Sparre-Andersen (1962),
Other combinatorial constructions have been found that basically involve
rearrangements of sequences. See for example Dumont and Viennot (1980),
BPumont (1981) and Strehl (1981).

Problems
Section 10.2

10.2.1. For 0<k=n let 4, , denote the number of permutations in &,
having k descents. Take a permutation w=@a,a,- -+ a,._,(n= 2) and
insert n before w, after w or between two letters. The number of
descents remains alike or increases by one. This provides the recur-
rence relation for the Eulerian numbers A, ,, that reads

A ,=1, 4, ,=0 for k=l
and forn=2 and 0sk<sn—1
A, = (k+l)Anml,k+(n . k)Aan,k-—I'

(See Foata and Schiitzenberger 1970).

10.2.2. For each permutation w =a,a,---a, the number of rises of w,
denoted by R(w), is defined to be the number of integers j with
0=<j<n—1anda;<a,,, (by convention a, = 0), while the number
of O-exceedances of w, denoted by Ey(w), is the number of integers j
with 1= j<n and a;> j. Note that E;# E + 1.

Consider the following sequence
w:a]az---an!
W, T .4y @, 8
wy = W, (“first fundamental transformation™)

wy = wy (reverse image).
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10.2.3.

The mappings wwy and wyeswy are bijections of & onto itself
with the property that

Eo(w) = R(w;) = (13 D)(w,).

(See Foata and Schiitzenberger 1970.)
For each positive integer n let

A(6)=23 A, fF0<k<sn—1)
be the nth Eulerian polynomial. From Problem 10.2.1 it follows that
A(t)=2 P (wes,),
and from Problem 10.2.2
t4,(t) =2 * " (we ).

By classifying the permutations according to the position of the
letter # we have

A,(0= 4, O+ 3 (" 1) 4,(0) 4, (0)

0=m=n-2; n=1)
and

(1) =3 ("~ 1)ed, ()14, (1)
(0sm=n-1; n=1)
The former identity is equivalent to
14+ YA (Hu/nt= exp(w}» Emm_l{t)u”’/m!)
(n=1; m=2),
whereas the latter one is equivalent to
1+ S, (ut/nt = exp Sed, (u/nt (n=1),

The last two identities form a system of two equations with two
unknowns. Solving this system yields

T+ DA (Du"/nt=(1—1)/(— t +exp(ut —u))
I+ 4, (u/nt=(1—1) /(1 - texp(u—ut)) (n=1).
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Problems

Section 10.4

104.1.

10.4.2.

10.4.3.

10.4.4,

Let IT be the bijection of the circuit monoid C(A) onto 4* and I b
the inverse bijcction, as they were defined in Section 10.4. For eqp
pair of words w,w’ in 4* the formula wrw'=(E(w)T'(w")) defineg
a new product in A*, called the intercalation product. The ordereq
pair C'(A)=(A4* 1) is called the intercalation monoid. 1t is isomor-
phic to C(A). Let w,w’ be two words and denote by a, a,.. .4, the
increasing sequence of the letters occurring in either w or w', Lot
m = |wl|, (resp. m;= |w'[,,} be the number of occurrences of g, in
w (resp. 1 w') and (w,wy,.,m,) (Tesp. (wi,wi,..., %)) be the
factorization of w defined by |w]|=m; (resp. of w' defined by
[w/] = m}). Then
WrW T W W W WY - W W

For instance, with w=311454 and w’'==52243 we have wrw =
31521245443, (See Cartier and Foata 1969.)

A ¢ycle 1s defined to be a nonempty circuit

Sw| |ayay --a,, a . _
¢ == = with w=aa, -a,
w @y, dy

standard. Two cycles ¢ = 8w | and o' = 8"1 are said (o be digiaint
w W

if w and w” have no letter in common. The circuit monoid C(4) is
generated by the set of all cycles submitted to the following commu-
tation rule that c¢’ = ¢’c whenever ¢ and ¢ are disjoint. (See Cartier
and Foata 1969.}

Let n be a positive integer and A4 be the finite alphabet {1,2,...,n}.
Construct the circuit monoid C(A). I a circuit ¢ is a product of
exactly p(c} disjoint cycles, let

p(e)=(~1)".

In the other cases, let p(c)= 0. The characteristic series of C{A) s
given by

Sce={Iu(c)e)” (cec(a).

(See Cartier and Foata 1969.)

Let B=(b(i, /) {1<i,7<n)be an n X n matrix. We assume that
the n? entries b(i, j} are indeterminates subject to the following
commutation rule that b{i, j) and &(i’, j*) commute whenever i and
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i’ are distinct. Let Z[[B]] denote the Z-algebra of formal power
series in the variables b(7, /s (still subject to the foregoing commu-
tation rule). The polynomial det(]— B) (with I the identity matrix
of order n) belongs to Z[[ B]]. For each nonempty circuit

¢

8 a4 a,

a, 4y @,
let
B(c)mb(a;,a,)b(a’z,al)- "b(a:”, am)

and B(c)=11if ¢ is the empty circuit. The following identity holds:
det(1—8) = X pn(c)B(c).

By extending f to 2 homomorphism of the large algebra of C(4)
into Z{[ B]] we deduce from Problem 10.4.3 that

(det(I—B)) '=B(c)  (cEC(A)).

{See Cartier and Foata 1969.)
10.4.5. Let X, X,,..., X, be n commuting variables, and let B'=(b]))
(1<, j<n) be a matrix with real entries. Let a(b(i, j)}= b, X, and
extend the definition of a to all of Z[[ B]] by lrearity. The image

under a of the latter identity is
=BX, o K|

- ;]Xl l_b:an
Nalm,,my,...,m )X X2 - X7
(m,=0,m,=0,...,m,=0),

where a(m,, m,,...,m,} is the coefficient of the monomial X"+ X"
- -+ X7« in the expansion of

mll

(3w0) (0" (3

This identity constitutes the essence of the MacMahon Master
Theorem. (See Cartier and Foata 1968.)
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Problems

Section 10.0

10.6.1.

10.6.2,

10.6.3.

The algorithm for the inverse ™' of the second fundaments)

transformation can be described as follows:
Letw=a,a, --a, be aword.

L Leti=m,v'"=a,ay - a,; .

2. Let b, be the last letter of v'; if i=1, let &~ '(w)® b,...p
else let v,_, be defined by v'=v,_,b;;

3. If the first letter of v,.., is greater than (resp. smaller than or
equal to) b, split v,., before each letter greater than (resp,
smaller than or equal t0) &;;

4. In each compartment of v, determined by the splits move the
first letter to the end; let v* be the word obtained after making
those moves; replace i by i —1 and go to 2.

(See Foata 1968; Foata and Schiitzenberger 1978.)

Let g be a real or complex variable and for each positive integer m

let [m]=1+g+qg*+ - +gm"" and [m]=1 if m=0. Also let

[m=[m])[m—1]---]2][1]. Let X be the rearrangement class of the

word 171272, .. p”»_ Then

[, +my+ -+ m |
[ Jtlmo - [

(See Andrews 1976, Chapter 3).

For each w = a,a,- - - a,, in the permutation group &, let IDOWNw
be the down set of the inverse w™' (in the group & ). Clearly, the
integer / belongs to IDOWN w if and only if in the word a,a,- - - a,
the letter 7 +1 occurs to the left of the letter i. Let IMAJw be the
sum of the elements in IDOWN w. The second fundamental trans-

formation, restricted to the permutation group &, preserves IDOWN:
that is:

= Zq"Vr= T (we X).

IDOWN @ (w) =IDOWNw.

Denote by i(w) the inverse w™" of the permutation w and consider
the transformation

¥ = idid i
Then ¥ is a bijection of & onto itself with the property that
MAJ¥(w)=INVw and INV¥(w)=MAIw,

In particular, the six ordered pairs (MAJ,INV), (IMAILINV),
(IMAJ, MAJ), (MAJ,IMAJ), (INV,IMAJF), and (INV,MAJ) have
the same bivarate distnibution on & ,. (See Foata and Schiitzen-
berger 1978.)



CHAPTER 11

Words and Trees

11.0. Introduction

The aim of this chapter is to give a detailed presentation of the relation
between plane trees and special families of words: parenthesis systems and
other families. The rclation between trees and parenthesis notation is
classical and has been known perhaps since Catalan 1338,

Because trees play a central role in the field of combinatorial algorithms
(Knuth 1968), their coding by parenthesis notation has been investigated so
very often that it is quite impossible to give a complete list of all the papers
dealing with the topic. These subjects are also considered in enumeration
theory and are known to combinatorialists (Comtet 1970) as being counted
by Catalan numbers. Note that a generalization of the type of parenthesis
system often called Dyck language is a central concept in formal fanguage
theory. These remarks give a good account of the main role played by trees
and their coding in combinatorics on words,

Presented here are three ways to represent trees by words. The first one
consists in constructing a set of words (one for each node) associated to a
plane tree. The second is the classical parenthesis coding, and the third
concerns Lukaciewicz language (known also as Polish notation).

The combinatorial properties of Lukaciewicz language were investigated
by Raney (1960) in order to give a purely combinatorial proof of the
Lagrange inversion formula (see also Schiitzenberger 1971). This proof is
presented in Section 11.4 of the present chapter as an application of our
combinatorial constructions.

Among the many ways of defining trees, the most usual is to say that a
tree is a connected graph with no cycles. The preferred definition here uses a
characteristic property of mapping that assigns to any node the set of its
“sons.” This definition allows easy generalization for the introduction of
plane trees. These definitions are given in the first section, which ends with
Dewey notation,

In the second section the parenthesis coding of a tree is introduced as a
consequence of the canonical decomposition of a tree into two subtrees. In
the third properties of Lukaciewicz languages are investigated and another

213
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coding for trees is constructed. In the fourth Raney’s proof of Lagrange
inversion formula is presented.

11.1. Trees and Plane Trees

Let § be a finite set, its elements to be called nodes; let r be a
distinguished element of 8. A tree with root r is a mapping a from S into the
set P(S) of all subsets of § satisfying the following condition:

(T): For any 5 in § there exists a unique sequence (s,, 5,...,5,)
(p=Dsuchthat s, =r, s, =5, and 5, (Ea(s,) fori=1,p—1.

Such a sequence will be called a path from r to 5. The condition (') is very
strong, particularly the uniqueness part. It implies for instance that r does
not belong to any a(s) and that for any s, 5 # r there exists a unique ¢ with
SE a(t). Also for any sequence s,,5,,...,5, such that 5, € a(s,) for i=
I,....p—1 one has 5, €a(s,). This last remark aliows us to prove the
following proposition, the complete proof of which is left to the reader,

A leaf in a \ree & is a node s for which «s) =@, given a subset T of § the

restriction ay of a to T is defined by e (¢) = a(¢}NT, for any tin T.

ProposiTION 1111, Let & be a tree on the set S of nodes with root r; then
there exists at least one leaf s; in S. Moreover if § contains more than one
element, the restriction of o to S \{s;) is still a tree.

From that result many properties on trees may be proved using induction
on the cardinality # of the set § of nodes; let us as an illustration prove the
following omne:

ProrosirioN 1552, If a is a tree on a set 8 of cardinality n, then:

> Carda(s)=n—1,
58

Proof. The result is trivially obtained when # =1 since in that case § = {r}
and a(r}=@. If (S, «) is a tree with n + 1 nodes, then by property 11,1},
there exists s, with a(s,}=9, and o, the restriction of o to S\ {s,}, is a
tree, The induction hypothesis implies

dCarda’(s)=n—1.

But «{s)=a(s) except for the unique ¢ verifying s, €a(¢), for which
a(t) = a’(£)U {s/}. This ends the proof. |



11 1 Trees and Plane Trees 215

A sequence (sy, 55,...,5,) of elements of § is said to be proper if 5; =5,
implies i = j. A plane tree on the set of nodes § with root r is a mapping ¢
into the set of proper sequences of elements of § such that the mapping b
from S into 9(S) induced by ¢(+E$(s) if ¢ occurs in G(s)) verifies
condition (T).

For any tree a, a representation of a is a plane tree ¢ such that ¢ = a: if n,
denotes for each s the cardinality of the set a(s) then the number of
representations of the tree a is equal to the product

II =t

sES

Example I1.1.5. The tree a defined on §={1,2,3,4,5,6,7} by a(l) = {2};
a()={3,4,5}; a(3)={6,7}, and a(i) =& for i =4 has 12 representations,
one of which is ¢{1) = 2; &{2) = (4,3,5); ¢(3) = (7,6); (i) =@ for i >4. See
Figure 11.1,

From now on, the discussion will deal only with plane trees, so henceforth
in this chapter the word tree will be an abbreviation for plane tree.

If 4 is an alphabet on which is defined a total order <, recall that the
lexicographic order (denoted also by <) on the free monoid A* extends <
in the following way:

If (u, ©) &€ 4%, then u < v if ¢ither » € ud™ or u = ras,v = rbt, where g and
b are elements of 4 such that @ <\b. For each u in A fet us denote by inf(u)
the set of words v such that uS vd* oru=vw'a,v=ub, a, b A and b<a.
Remark that if v belongs to inf(x), v <u and |»| < ||, but the converse is
not true: if we take A = {q, b}b < a, then abb < aab but abb &ini(aab). We
say that a subset C of 4* is closed if for any u in € mf(#) CC. For any
subset C of A* let ¢(u) (for vE ) be the sequence of elements
(4, 43,...,4,) of CNud in increasing order (u; <wy--- <u,).

ProposiTIoN 11.1.4. For any closed subset C of A*, the mapping ¢ Is a tree
(that is, plane tree) with root 1. Conversely for any tree ¢ on the set S there

Figure 11.1. A representation of a tree,
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Figure 1L2. The subset associated 10 the \ree ¢ of Example 11 1.3,

exists an alphabet A, a closed subset C of A*, and a bijection f from § onto ¢
such that

¢’(5) - (SI’SZ’--"SP) g ¢’C(B(3)) = (B(Sl)s 3(5'2),--- PB(Sp))
(Dewey notation).

Proof. Let f be an element of C, f=a,a, - a,; then | <a <aja,<
o <aaye - d,. < f. Denote by g, the word a,a;- - - a;; then clearly g,
belongs to $-(g,), and (1, g1, g2,.--,8,—1» f) is a path from | to f. Now if
(1, hy, by, k= f) is a sequence with k,, € dc(hy), then [k =1, ¢=p,
and by definition of ¢, h,=f, ,a,, thus k., =g, ,, and by induction,
we obtain g, = h, for every i. We have thus proved that ¢ is a tree.

Conversely, let ¢ be a tree on a set § with root r; dencte by u=
(51, 82,.--,5,) the longest sequence among all the ¢(s), and let 4 be the
alphabet {a,, a,...,a,} ordered by a; <a,--- <a,. For any s in S, condi-
tion (T') ensures the existence of a path (¢, =r, t;,...,1;,...,1, = 5) from r to
s; this allows the definition of the mapping 8 from § to 4* by

Bls)= a,ap 8y,

where i; is such that ¢, , is the i th element in the sequence ¢(¢;).
It is not difficult to verify that B(S) is a closed subset of A* and that 8
satisfies the conditions of Proposition 11.1.4. |

Example [I1.2.5. The subset C = B(S} associated to the tree ¢ of Example
11.1.3 is A={a,,ay,a, ;U= {1,a, a,a,,a,a,,a,a;,a,a,a,, a,a,a,}. See
Figure 11.2.

11.2. Trees and Parenthesis Systems

The “coding” of a tree by a parenthesis system follows from the fact that
a tree can be decomposed into subtrees in the same way as parenthesis
systems can be decomposed into subsystems.
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Let us first examine the decomposition of trees. Let ¢ be a tree on the set
8 with root r. If § is not reduced to {r}, then ¢{r) is not empty. Denoting
then by (r, ,...,7,; the sequence ¢(r), one has g=1. Let us consider the
subsets Sq, S)...., S, of § defined by Sy={r} and §; (for 1 <ixy)
the set of all the nodes s such that the path (s, = 7, §(,...,5, = s} from r to s
is such that s, = r,, Clearly, these subsets define a partition of §, and if s is in
the subset S, then this also holds for any 7 in ¢(s).

Moreover, the restriction ¢, of ¢ to the subset S, is a tree with root r; we
will denote by F(¢) the tree ¢. If we put T'=S5,US,--- US, then the
restriction of ¢ to T is also a tree, which will be denoted by G{¢).

The following two propositions state that the F(¢) and (F(¢), G{))} are
sufficient to reconstruct ¢. Their proofs are feft as exercises.

ProposiTioN 11.2.1. The pair (F(¢), G($)) of trees defined on two disjoint
subsets uniquely determines the tree ¢ defined on the union of these subsets.

PropoSITION §1.2.2. The sequence (F\($), Fx(),..., F (@) of trees uniquely
determines the tree ¢,

Consider as isomorphic ¢wo trees differing only by a renaming of their
nodes, and let a, be the number of porusomorphic plane trees, with »
vertices, Then as a consequence of Proposition 11.2.1 we have

- I

aﬂﬁ 2 apanmp'
pe=l

Denoting by a(x) the generating power series
2 ax’
=0

we obtain

a(x)=x+(a(x)",
and expanding | — (1 —4x)'/2, we have the following:

CoROLLARY 11.2.3. The number of plane trees with n vertices is the Catalan
number:
(2n —2)!
ni{n —1)!

Let us now consider the alphabet {4, 4} and let 8§ be the morphism of
{a, @}* into the additive group Z of rational integers defined by 8(a) = — |
and 8(a)=1. A parenthesis system is a word f of {a, @}* such that §{)=0
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and 8( />0 for any left factor /' of f. Let P denote the set of parenthegis
systems.

PROPOSITION 11.2.4. Any word f of P different from | has a unigue
decomposition { = a @ fy with fi, HE P. Conversely, if f;, LE P then a f,z f
is also an element of P.

Proof.

Let fbe an element of P and let g be the shortest nonempty left factor of f
whose image by 8 is zero. Clearly, g begins with a and ends with &, if not, f
would possess a left factor k& such that 8(h)= —1. Denote g =a f,d aud
f=af a fy; itis then easy to verify that 8( f,) = 8( £,) =0 and that any lefy
factor of f, or f;, has a nonnegative image by & (use the minimal length of 4
and the fact that f& P). Now if f has two decompositions, f=a f,d f, =
ag,ag,; fi€Pand 8(g,a)= — imply | f,] =|g,|- Symmetrically| /|| <|g |
and thus f, = g,, f, = g,, which proves the first part of the proposition. The
converse is easy to establish and is left as exercise. ]

Comparing Propositions 11.2.1 and 11.2.4 ope can define a mapping IT
from the set of trees on § onto the set of parenthesis systems recursively on
the size of S,

If §={r} then the only tree ¢, on § verifies ¢,(r) =@ and II(¢,) is the
empty word .

Let II be defined on the set of trees with less than n nodes; if ¢ is a tree

with n nodes let
Ii(¢) = all( F\(¢)}aTl{6(9))

TagoreM 11.2.5. To any tree ¢ with n nodes 11 associates a parenthesis
system of length 2n — 2. Moreover 11 is surjective, and two trees with the same
image by 11 differ only by a renaming of the set of their nodes.

Figure 11.3. The parenthesis system associated with a tree.
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The proof by induction is a direct consequence of Propositions 11.2.1 and
11.23,

Example 11.2.6. The parenthesis system =~ aadaaddaa is associated
with the tree shown in Figure 11.3.

11.3. Lukaciewicz Language

In this section and the following, 4 will denote the infinite alphabet
A={ay a,....a,...} and § the morphism of 4* into the additive group Z
of rational integers defined by

8(a,)=n—1

The Lukaciewicz language L is the set of words f of 4* such that
8(f)= —1 and 8( /)= 0 for any left factor f* of f. Let us now investigate a
few combinatorial properties of this language, properties that will be used in
Section 11,4 for the Lagrange formula,

Lemma 11.3.1. Let f be a word with 8(f)= — p, p>0; then, for any q,
0= g << p there exists a left factor f* of f such that 8(f}= —q.

Proof. (by induction on the length of /). If f is of length 1, then f=a,,
p=—1,and |, a, are two left factors of f with 8(1) =0, 8(ay)= —1. Let f
be of length n >1; then f = gay; if i >> 0 the existence of f” is obtained by the
inductive hypothesis applied to g as in 8(g)=8(f)—(i—=<—p. If
/= gay, then either ¢ = p and then /' = [ satisfies 8( )= — g, org=p—1
and the inductive hypothesis applied to g,{8(g) = — p +1) gives the result.

[ ]

ProrosiTioN 11.3.2. Any word of L7 has a unique decomposition as a
product of words of L.

Proof. This is a direct consequence from the fact that L is prefix. More
precisely, assume that it is not true, and let f be the shortest word having
two distinct decompositions as a product of words of L.

f::gl...gp:::hl ..hq_

Then by the minimality of f one has g, # f,, and one of the two has the
other as a left factor, in contradiction with

8(g,)=8(h)=—1, g€L, hEL.
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ProrosiTioN 11.3.3. 4 word [ is in L* if and only if 8(f)= — p ang
8(f"y> — p for any left factor {'(f'# £} of J.

Proof i f=g,-+-g,1sin LP(g,€ L) then clearly

5(7)= 3 8(s)=—»p

P ]
and for any left factor f* of f one has
Ii=gy e gl

where g, =g/g/ and 1<i<p. Thus 8(f)= —(i—1)+8(g/) and g/ as a
left factor of a word of L satisfies 8(g/) = 0; thus 8( /Y= 1—i= — p+1.
Conversely, let f be such that 8(f)= —p and 8(f)> — p for any left
factor f* of f, then by the Lemma 11.3.1, f has a left factor of which the
image by 8 is —g¢, and this for any ¢ < p. Let £, (¢ < p) be the shortest left
factor with image by 8 equal to ~ g. Then, also by Lemma 11.3.1, £ 1 is a left
factor of f, for any i. Let us write f,,,= fig,., and f,=g;; we obtain
f=g18 " g, Clearly 8(g,)=8( f, )~ 8(f)= —1 and any left factor g/
of g, verifies 8(g))> 0, because, if not, f,g/ by Lemma 11.3.1 would have a
left factor 7 such that 8( £} = - (i +1) in contradiction with the minimality
of fir1 [ ]

ProrosiTiON 11.34. Any word  of L has a unique decomposition =
dkfl ‘o ‘fk With_n%L.

Let fbe in L, then f == g, g with g, in 4. Clearly g verifies §(g) = 8( f)—
8(ay= —1—(k—1y= —k; and for any left factor g’ of g, a,g’ is a left
factor of f; then 8(a, g’} =0 and 8(g") > — k. Thus by Proposition 11.3.3, g
belongs to L* and by 11.3.2, g has a uniqus decomposition g=g,--- g,
yielding the decomposition of f. |

From Propositions 11.2.2 and 11.3.4 we can construct a mapping A from
the set of trees onto L in the same way as I was constructed in Section
11.2:

Aldg) = ay.

If A is defined on the set of trees with fewer than »n nodes, then:

A()=a A F($)A(F9))- -~ A(E($)).
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We have also:

TeroREM 11.3.5. If ¢ has n nodes A(p) has length n, Moreover A is
surjective, and two trees with the same image by A differ only by a renaming of
the set of their nodes.

A factorization of a word f is a pair (£}, f3) of words such that f,#1 and
= f,f,- A word f has then exactly | /| factorizations.

Tueorem 11.3.6. Any word f, with 8(f)= —p (p>0) has exactly p
factorizations (f,, f,) such that f, f,& L*.

Let us first prove the result for a word f=g,g, - g, of L?; clearly,

(81,827 8,0(8182: 82" 8,) (8182 " 8p—1 Bp)s and (g, g, 1)arep
such factorizations. Let us show that these are the only ones. If (), fz) is
such that f, € L? and f = flfp,. then f,= 2,2y " 8186 L= &I gm g
and g, =g/g’; then fof, =gl '8, "~ 8,81" " " §1~18(- Because g is a left
factor of a word of L,8(g/)=0 and &(g/'g;+ 8, * - g1—1) < — p. This con-
tradicts Proposition 11.3.3 unless g/ =1, and this gives fy=g; - - g,;.

Now let f be any word with 8( )= — p and, among the left factors of f
with minimal image by 8, let g be the shortest; then f = gh and 8(g) < — p.
Let us consider the word fig; clearly 8(hg) = — p and any left factor of hg is
either a left factor A’ of k or of the form hg’, where g’ is a left factor of g.
But §(h") =0 by the minimality of 8(g), and 8(hg" > 8(g"} is greater than
— p for the same reason.

Thus kg verifies the sufficient conditions of Proposition 11.3.3 and is then
an element of L?. Remarking that the factorizations of hg vield factoriza-
tion of gh and using the first part of our proof, we obtain the theorem. W

Observe that Theorem 11.3.6 is a direct consequence of Theorem 5.4.1
considering the bisection of A* defined by X, = L and X, = L'U{A\ (g }),
where L'={(f|fa,& L}.

11.4. Lagrange Inversion Formula

This section is devoted to a combinatorial proof of the Lagrange formufa,
It begins with statements of a few properties of a morphism U from 4*
(where A is the alphabet considered in Section 11.3) into a field K; this
morphism is defined for any formal power series u of K((r}).

Let X be a (commutative) field, K|[¢]] denotes the ring of formal power
series in the indeterminate 7. A series u will be denoted by I u;7 the
coefficient u; of #' in u, will also be written (u, ').. =0
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To any series u is associated the morphism I/ from 4* into X considereg
as a monoid for the multiplication by
Ha,)=u,

This morphism can be extended to finite subsets of A* by

U(B)= 3 U(f).

fesp

Clearty, the image by U of the union of disjoint subsets B, and B, of A4* is
the sum U(B,)+ U(B,), and if any word in B, B, has a unique decomposi-
tion as a product of an element of B, by an element of B,, then /(B,B,) =
U(B)U(B,).

Let U be the mapping from the set of alf subsets of 4* onto K[[¢]) defined
by
(O(B), t*y = U(BNA").

Then clearly the foregoing properties hold also for U. Letting §~'( p) denote
the set of words f of 4* such that &(f )= p, we have the following:

ProrosiTioN 11.4.1. Let u™ denote the nth power of u. Then
(ut 10y =U(A4"nd~ (g — n)).
Proof. Clearly
(u", 19y = > (upy, - u, )

W+ + +i =q

which is also
> Uaya, -a,)
it iy=g
But i, +i,+ - +i,is equal to 8(a;a; - - a; )+ n thus (u*, (%) = 2U(f),

the sum being extended to all words f of length n with 8( /)y =¢ —n, and
this gives the result. [

Let us now consider the equation

£=tu(f), (114.1)

which can be written also as
f=ugr+uE tugtf o gt +

Remark that £ tu(£) is a “contraction” (i1.4.1) in the ultrametric space of
formal power series K'[{#]]. This implies that (11.4.1) has a unique solution
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x(t) in K[[¢]). The first few terms of x(¢) can be computed easily, giving:

x( )= upt +ugugt? +(uguguy + wyuuy )

SR T Ty T T S IRV TIR VIS S VT TN P TRV PO PRT I SETITI TNV [ SR

Comparing these few terms with the words of length | to 4 of L suggests the
following proposition:

PROPOSITION 11.4.2. The unique solution of Eq. (11.4.1) Is U(L).

Proof. By Proposition 11.3.4 one has L as the disjoint union of the subsets
a, L¥; then the remarks given about U imply

o(Ly= 3 Oa)O(L)*

k#»0Q
= 3 ut(O(LY)".
k>0
Clearly U( L) verifies Eq. (11.4.1), and is thus its unique solution. |

PropPOSITION 11.4.3. The following equality holds for p,n >0

nU(LPNA")= pU(A*N§~'(— p}).

Proof. Consider the subset H, of A*X A* consisting of pairs of words
(f,g) such that fg€ L?, | fg| =n and f# 1 U is extended into a map of
A¥X A* into K by defining U(/, g) to be U( fg) =U(f W(g)=U(g)U({)
as K is commutative. Because any word k of length n has exactly n
factorizations,

U(H,)=nU(L"NA").
But by Theorem 11.3.6, for any k in A°N§ '(— p) there are exactly p

elements ( f, g} in H, such that gf = k. Hence U(H, )= pU(4*N&"'(— p)),
which proves the equality, |

THEOREM 11.44. The unigue solution x of Eq. (11.4.1) in K[ft]] satisfies
ndx, ")y = (u" "7,

Proof. By Proposition 11.4.2 one has

{x, "y =U(LNA4").
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Then considering the case p = | in Proposition 11.4.3 gives
n(x, My =0(A"N8 (- 1)).

Further, Proposition 11.4.1 with ¢ #= ] yiclds
U(ATS (= 1)) = (w177,

which proves the theorem. ]

Let K be the field € of complex numbers; the Lagrange formula jg
generally presented in the equivalent following form:

CorROLLARY 11.45. Ler u(z) be a function of the complex variable
analytic in and inside a coniour C surrounding a point a. Let  be such thy
equation £ = a + (&) has a unigque solution x inside C. Then the expansion of
X is given by

w=at 3 GO0

=1
nzl) d z=g

Progf. We may assume that @ = 0. In fact, the general case follows from
a =0 changig z in z - a.

Considering x as a formal power series in ¢ we obtain from Theorem
I1.4.4

AN ml_ n n—1
(x,!)mn(u,z .
But as 4" is analytic, the Taylor expansion of u" gives

(u, 2"y = l d" “"(2)]
’ (n—~Dtl e r=0

and the result holds.
Theorem 11.44 can be generalized in the following way:

THEOREM 11.4.6. Let F be any formal power series of |[1]]. The solution x(¢)
of Eq. (11.4.1) verifies for n > 01

nd F(x), ey = (F'()u, 1" "),

Proof. Let us denote by f, the coefficient (¥(¢), 17}, then since (x?,1") =0
if p > n, one has:

(). = S £y,

=1
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But, by Proposition 11.4.2, (x?, ™) = (J(L))?, 1"}, and because any word
in £.# has a unique decomposition as a product of p words of L:
(xP My =U(L*NA").
Applying Proposition 11.4.3 and taking ¢ =n - p in 11.4.1, we obtain
n(XP, 1% = plut, 1778
and thus

A(F(x) 1%y = S, ph(u, )
ES

XL Iun R,

p=1

The result fotlows from the definition of the product of two formal power
Sertes. n

As for the preceding theorem (11.4.4), there is an analytic function
version of the Theorem 11.4.6:

CorolLary 11.4.7. Let F(z) be an analytic function of the complex
variable; then, under the same assumptions as in Corollary 11.4.5, one has

F(x(t)) = F(a)+"§] [:: ], ’(Z)u"(z)]zza

Problems
Section [1.1

11.1.1. Prove that if in a tree « with root r, if 5 is an element of § such that
the restriction of & to S\ {s} is still a tree, then s is a leaf,

11.1.2. A binary tree on § is a tree a in which for any s, Card a(s) =0 or 2.
Prove that for a binary tree the number of leaves is (Card S +1)/2.

11.1.3. Let ¢ be a plane binary tree on § and let A be the alphabet {a, b).
Show that if 8 is the bijection defined in Proposition 11.1.4, F the
sets of leaves of ¢ then C = B(F) satisfies

L6GEC, UEA*, = qu=e¢ =0, (1)

€ A*=3c suchthat u=cu or c=uu,. (2)
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Section I1.2

11.2.1. Let 4={ay, ay,...,8,... }. Show that the morphism 6§ of 4* onio
{a, @) given by #(a,)=a'd is a bijection from L onto Pa.

Section 113

11.3.1. Let & be a binary tree. Prove that A(¢) is a word of P'a, (where P
is Obtained from P by setting @ = a,, @=a,).

11.3.2. Use Theorems 11.3.5 and §1.3.6 to give the number of plane trees
such that {s|Card¢(s)==i}=d,. (See Harary, Prins, and Tutte
1964).

§1.3.3. Use Theorem 11.3.6 and Problem 11.2.1 to show that the number of
parenthesis systems of fength 2r is the Catalan number (2} /(n!
(n+ 1N

11.34. Let A={ay, a,...,a,,...}, B={by,b,,...,b,,...} be two infinite
alphabets, and let € be the subset of 4 X B* of pairs (a,, g);, ¢, € 4
and |g| = k. Show that C* is a free submonoid of 4* X B*,

For any (f,g) in C*, g=1b,b,,- - - b; define A(f, g} to be

=i+ 2 i

jwl k

Let M be the subset of C* consisting of all pairs (£, g) satisfying
M/, g)= —1 and A(f,, £,)20 for all (£,, g,)€ C* such that (, 5)
=(f11 8.8} (f#1). Construct subsets C,,C,,G,,...,C,,... of
C satisfying

M= T CM'.

i=0

Verify that Theorem 11.3.6 holds also for M. Deduce from this
theorem that for any (f, g) in C* satisfying A(f, g)= —!, there

exist exactly | g| factorizations (f; g) = (fi, £, /, ,). g, %1, such
that (£, 7, 8,8, € M. (See Chottin 1975).

Section [1.4

11.4.1. Let u and v be formal power series in K{[#,]] and K{[¢,]]. respec-

tively. Let x(¢,¢,) and y(s;, t,) be the solution of the system of
equations

Ext}”("l):ﬁ(“o"'”m*“uzﬂz*“ et ugf + )

‘7:’—”?2”(5):?2(1—’{)"'0154‘02524‘ cua +vP§P+ . )
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Let U and U/ be the morphisms of 4*X B* on K and K[f7,,1]],
respectively, defined by

Ula,Y=u,  Ul,b)=v,
Oa, =ut, U(1, ) =04

Prove the following identities;

i, iy =U(A g —m)nax B") (1)
x(£y=0(M) (2)

nU(MNA" X B™)=U{A™{— )n4" X B™) 3)

Good formula:  n{x, 1725 = (u” 730", 177"y (4)

(See Good 1960, Chottin 1975)

11.4.2. A peak of a word f of {a, d@}* is a factor f of the form ad of f. Verify

that for any word fa satisfying 8(f@)= —1, each factorization
(f1, fy) of f constructed by Lemma 11.3.1 is such that £, f, has as
many peaks as f,

Prove that the number of elements of Pd with p peaks length
2n—is 1 /(n — p) the number of elements of 8~ {(— )N {a, &)*" 3
with p peaks.

Deduce that the number of elements of P with p peaks and length

2nis
i (n) n—1
n—p+ilplip—1}

_What is the number of plane trees with n + ! nodes, p of which
being leaves? (See Narayana 1959; Gouyou Beanchamps 1975).
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