Combinatorial Characterization of the Language
Recognized by Factor and Suffix Oracles

Alban Mancheron and Christophe Moan

L.I.LN.A., Université de Nantes, 2, Rue de la Houssiniere, B.P. 92208,
44322 Nantes Cedex 3, France
e-mail: {Mancheron, Moan}@lina.univ-nantes.fr

Abstract. Sequence Analysis requires to elaborate data structures which allow
both an efficient storage and use. Among these, we can cite Tries [1], Suffix
Automata [1, 2], Suffix Trees [1, 3]. Cyril ALLAUZEN, Maxime CROCHEMORE
and Mathieu RAFFINOT introduced [4, 5, 6] a new data structure, linear on the
size of the represented word both in time and space, having the smallest number
of states, and allowing to accept at least all the substrings of the represented
word. They called such a structure a Factor Oracle. On the basis of this
structure, they developed another one having the same properties excepting
the accordance of all the suffix of the represented word. They called it Suffix
Oracle.

The characterization of the language recognized by the Factor/Suffix Oracle of
a word is an open problem for which we provide a solution.

Keywords: Factor Oracle, Suffix Oracle, automata, language, characteriza-
tion.

1 Introduction

Within text indexation, several structures were developed. The objective of these
methods is to represent a text or a word s, ie. a succession of symbols taken in an
arbitrary alphabet denoted by 3, in order to “quickly” determine whether this word
contains some specific sub-word. In which case, we call this sub-word a factor of s.

Cyril ALLAUZEN, Maxime CROCHEMORE and Mathieu RAFFINOT described a
method allowing to build an acyclic automaton, accepting at least the factors of s,
having as few states as possible (|s|+ 1), and being linear in the number of transitions
(2|s| —1). They named such an automaton a Factor Oracle.

In this automaton, each state is final. Using the same automaton, but only keeping
“particular” states as final, one obtains a Suffix Oracle.

This structure has several advantages. First of all, the construction algorithm is
easy to understand and implement; this is not the case of the most efficient algorithm
for building Suffix Tree’s. Next, Oracles are homogeneous automata (ie. all the transi-
tions going to the same state are labeled with the same symbol). That means that we
do not need to label edges. This makes this structure very sparing in memory (much
more than Suffix Trees or Tries). Indeed, methods based upon this structure obtain

139

Proceedings of the Prague Stringology Conference "04

good results. Thus, LEFEBVRE & al. [7, 8, 9] use it for repeated motifs discovery over
large genomic data, and obtain results similar to the one obtained using thousands
of BLASTn requests, but in a few seconds. They also use the Factor Oracle in text
compression [10], and in some cases they have compression ratio comparable to bzip2
(which is one of the most efficient compression algorithm).

Nevertheless, at least two problems linked to these Oracles are still opened: the
first one is the characterization of the language recognized by Oracles; the second
one is: does there exist an algorithm, linear in time and space, to build an automa-
ton accepting at least the factors/suffixes of a word s being minimal in number of
transitions?

The first open problem is really important. Currently, the main difficulty when
using Oracles is to distinguish true positives from false positives. That is why we are
interested in the first problem. In the following section, we provide several definitions
relating to the construction of Oracles. Then we give the characterization of the
language recognized by this structure. To conclude, we show some results about the
Oracles.

2 Definitions

Subsequently, we use the notations hereafter (some of them are issued from [4, p. 2]):
we denote by Fact(s) (resp. Suff(s) and Pref(s)) the set of the factors (resp. suffixes
and prefixes) of s € Xt by Prefy(i) the prefix of s having length ¢ > 0. Given
x € Fact(s), we denote by Nbs(z) the number of occurrences of x in s, and we say
that x is repeated if Nbg(x) > 2.

Definition 2.1 Given a word s € X1 and z a factor of s, we define the function Pos
as the position of the first occurrence of x in s = uxv (u,v € 3*) such that x is not
repeated in ux): Poss(x) = |u| + 1. We also define the function poccur such that
poccury(z) = |u| + || = Posg(xz) + |x| — 1 (denoted by poccur(z,s) in [4, p. 2]).

In the following, we define the Oracles, then we give some notations and definitions
peculiar to factors, as well as properties about the newly defined objects. Finally, in
order to characterize the language recognized by Oracles, we define particular factors
and then operations linked to them.

2.1 Oracles

We give below the algorithm of ALLAUZEN & al. [4] which describes the Oracle
construction (cf. algorithm 1). In the same paper, authors give another algorithm
which allows to build the same automaton in linear time on the size of s. Nevertheless,
because we are only interested in the properties of the Oracle, we do not give it in
this paper.

Definition 2.2 [4, pp. 2, 10] Given a word s € 3*, we define the Factor Oracle of s
as the automaton obtained by the algorithm 1 (p. 141), where all the states are final.
It is denoted by F'O(s). We define the Suffiz Oracle of s as the automaton obtained
by the same algorithm, where are final only the states such that there exists a path
from the initial state recognizing a suffix of s. It is denoted by SO(s).

140

© 0 N O s W N =

P T T Sy S
N = O © o N o s W N = O

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Notation 2.1 Given a word s € ¥*, we use the term Oracle to indifferently indicat-
ing SO(s) or FO(s), and we denote it by O(s).

Algorithm 1: Construction of the Factor Oracle of a word*

Input: X % Alphabet (supposed minimal) %
seX* % The word to process %
Output: Oracle % Factor Oracle of s %

Begin
Create the initial state labeled by eg

For i from 1 to |s| Do

Create a state labeled by e;

Build a transition from the state e;—; to the state e; labeled by s[i]
End For

For i from 0 to |s]—1 Do
Let u be a word of minimal length recognized in the state ¢
For All ae X\ {s[i+1]} Do
If wa € Fact(s[i — |u] 4+ 1..]s|]) Then
J = poccur i ju|11..|s) (uar) — |ul
Build a transition from the state e; to e;; labeled by o
End If
End For All
End For
End

We have an order relation between states in these Oracles. Indeed, if we have two
states e; and e; such that ¢ < j, we can say that e; < e;.

a
~(@)--)

Figure 2: Suffix Oracle of the word gaccattcte.

! As mentioned in [11], the term —|u/| (line 17) is unfortunately missing in the original algorithm.

141

Proceedings of the Prague Stringology Conference "04

Definition 2.3 Given a word s € ¥* and a word z accepted in the state e; (0 <7 <
|s|) by the Oracle of s, we define the function State as State(x) = e;.

Lemma 2.1 [/, pp. 2, 3] Given a word s € 3¥* and its Oracle, there is a unique
word having minimal length accepted at each state e; (0 < 7 < |s]) of O(s). It is
denote it by min(e;).

Lemma 2.2 [/, pp. 2, 8] Given a word s € ¥*, its Oracle and an integer i (0 < i <
|s|), then min(e;) € Fact(s) and i = poccurs(min(e;)).

Notation 2.2 Given a word s € 3*, we denote by #;,(e;) (resp. #out(€;)) the number
of ingoing (resp. outgoing) transitions in the state e; (0 < i < |s|) of the Oracle of s.

2.2 Canonical Factors & Contraction Operation

We first introduce some definitions about particular factors from a given word. We
use such factors for defining the contraction operation, as well as properties peculiar
to this operation. We next define the sets of words we obtain applying this operation.
At the end of this section, all that we need to characterize the language of Oracles
will be defined.

Definition 2.4 Given a word s € ¥* and its Oracle, we define the set of Canonical
Factors of s as following:

Fo={min(e;) | 1<i <|s| A (Foule:) >1 V #inles) > 1)}

Given a suffix ¢ of s and a Canonical Factor f of s, we say that f is a conserved
Canonical Factor of s in t if the first occurrence of f in s is contained in £. We denote
by Fs. the set of conserved Canonical Factors of s in ¢ (thus Fs: C Fs).

These particular factors enable us to define a set of couple of specific positions in
the word s. Those will be used in order to derive new words from s.

Definition 2.5 Given a word s € ¥* and a Canonical Factor f of s such that:

s = ufv (u,v € ¥¥)
fo = wfr (weXt xed)
Posy(f) = |u|+1

then we call the pair (Ju| + 1, |uw| + 1) a contraction of s by f, and s = ufx is the
result of this contraction.

Notation 2.3 Given a word s € ¥* and a Canonical Factor f € F,, we denote by
C/ the set of the contractions of s by f. We denote the set of all the contractions we
can operate on s by C; (= U C!). Let t be a suffix of s = t't (' € ¥*), we denote

feFs
by C:, the subset of C} such that C, = {(¢',¢') | (p,q) €C; N p>[t'| A (P,q) =

(p— [, q —)}

Since contractions will be used to produce new words, we only need to consider a
subset of the set of contractions.

142

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Definition 2.6 A set C of contractions is coherent if and only if it does not contain
two contractions (i, j1), (i, jo) such that: iy < is < j; < jo. Furthermore, we say
that C is minimal if and only if it does not contain two contractions (i1, j;) and (ig, j2)
such that 1, <19 < jo < j; or such that i; < j; =iy < Jo.

Now we can define the operation that, given a word, allows us to build some new
specific words.

Definition 2.7 Given a word s € ¥* and a coherent and minimal set of contractions
C ={(p1,q1),--,(pr,qx)} (associated to the set of canonical factors {fi,..., fx}),
then we define the function Word as following;:

Word(s,C) = s[l.p1 —1]s[qi..p2 —1]...8[qk—1..px — 1] s[qk..|s]]
= s[l.pr =1 fislg + L Alp2 =1 feslar + | fl-[s]]

We call this sequence the result of the contractions from C applied to s.

From now, we only consider coherent and minimal sets of contractions (since we
are interested in the results of contractions, it is easy to see why other sets don’t need
to be considered anymore). Let us notice that whatever the order of contraction, the
obtained word remains the same.

Definition 2.8 We define £(s) = U Word(s,C), and we call this set the closure of

ccer
s.

To illustrate the various definitions given above, we take the example gaccattctc
(cf. figures 1 and 2). Then the set of Canonical Factors is Fyaecattete = {a, ¢, ca, t, tc, ct},

and C;accattctc - {(2’ 5)7 (37 4)7 (37 8)7 (37 10)7 (67 7)7 (67 9)7 (77 9)} Let C = {(27 5)7 (77 9)}
(C C Craccattere)- Hence Word(gaccaticte,C) = gaftatt¢te = gattc. The closure of

gaccattcte is:

E(gaccattcte) = {

gac, gacate, gacatcte, gacattc, gacaticte, gaccate, gaccatcte,
gaccattc, gaccattcte, gacte, gate, gatcte, gatte, gatictc

3 Characterization of the language recognized by
Oracles

Given a word s € ¥*, we saw how to build the corresponding Factor (resp. Suffix)
Oracle. This Oracle allows to recognize at least all the factors (resp. suffixes) of s.
Nevertheless, it accepts a certain number of additional words too. For example the
word atc is accepted by the Factor (resp. Suffix) Oracle of gaccattcte (cf. figures 1
and 2), whereas it is either a factor nor a suffix of gaccattctc. We defined above
the set £(s). In this part, we show that the Suffix Oracle exactly recognizes all the
suffixes of the words from £(s). Then, we use this result to show that the Factor
Oracle recognizes exactly all the factors of the words from £(s).

We first recall some useful lemmas of [4].

143

Proceedings of the Prague Stringology Conference "04

Lemma 3.1 /4, p. 3] Given a word s € ¥* and an integer i (0 < i < |s|), then
min(e;) is suffix of all word recognized in the state e; of the Oracle of s.

Lemma 3.2 [/, p. 4] Given a word s € X* and a factor w of s, then w is recognized
in the state e; (1 <i < poccurs(w)) of the Oracle of s.

Lemma 3.3 [4, p. 4] Given a word s € ¥* and an integer i (0 < i < |s|), then every
path ending by min(e;) in the Oracle of s leads to a state e; such that j > i.

Lemma 3.4 [/, p. 5] Given a word s € X* and w € X* a word accepted by the Oracle
of s in state e;, then every suffix of w is also recognized by the Oracle in state e; such
that 7 < 1.

The proof of this last Lemma is given in [4] only for the Factor Oracle. We need
to extend this result for the Suffix Oracle.

Proof (Lemma 3.4)

If we denote by x a suffix of w, the original Lemma gives us that State(z) < State(w).
We need to prove that if State(w) is final, then State(x) is final. In order to do this,
we have to consider two cases:

Case 1: |xz| > |min(e;)|

That means that min(e;) € Suff(z), thus according to Lemma 3.3, we can conclude
that State(x) > State(min(e;)), and since State(min(e;)) = e; = State(w), then
State(x) = State(w).

Case 2: |z| < |min(e;)]

The state e; being final means that there exists a suffix ¢ of s such that State(t) = e;.
According to Lemma 3.1, we deduce that min(e;) € Suff(t) C Suff(s). Since x and
min(e;) are suffixes of w, then || < |min(e;)| = x € Suff(min(e;)). So x is also
suffix of s and, by Definition of the Suffix Oracle, State(x) is final. O

Before tackle demonstrations, we present two lemmas dealing with properties
linked to Canonical Factors.

Lemma 3.5 Giwen a word s € X*, a Canonical Factor f € Fy such that s =
ufv (u,v € ¥*) and f is not repeated in uf, and C € C* a set of contractions.
If there exists w € ¥* such that Word(uf,C) = wf then wf and f are recognized in
the same state in the Oracle of s.

Proof (Lemma 3.5)

We denote by C; C CI a set of contractions having cardinality . In the same way,
we denote by w; f the word obtained applying contractions C; to uf (warning: w;f =
Word(uf,C;) # w; = Word(u,C;)). Let us show by induction on the size of C; that
State(Word(uf,C;)) = State(f) (V C; € CY).

Let e, = State(f) (f = min(e,) by Definition of f) and e,; = State(Word(uf,C;)).
If we consider Cy, then Word(uf,Cy) = uf. According to Lemma 3.3, x; > x.
Furthermore, according to Lemma 3.2 applied to uf, we have x, < poccurs(uf).
However by Definition of f, poccurs(f) = |uf| = poccurs(uf). This implies zj < z,
and finally xj = .

144

© 00 N O Ut W N =

11

13

14

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Let us show now that if this lemma is true for a set of contractions C; C C},
then it is true for a set C;y1 = C; U {(p,q)}. We assume without loss of gener-
ality that (p,q) is the last contraction (by ascending order over the positions) in
Civ1. Let b the Canonical Factor used by this contraction. We can write uf =
s[l.p — 1] s[p..q — 1] s[g..|uf]]. Since we choose (p,q) being the last contraction, all
the contractions in C; are applicable to s[1..p — 1]. So there exists a,c € ¥* such that
w;f = aslp..|uf|] = abe, and d € ¥* such that w1 f = as[qg..Juf|] = abd. We also
could write ab = Word(s[l..p — 1]b,C;) (the opposite would mean that the contrac-
tion (p,q) can’t be operate from b), and according to the induction hypothesis, we
have State(ab) = State(b). From this, we deduce that State(abc) = State(bc) and
State(abd) = State(bd). Since bd(= s[q..|uf|]) is a suffix of be(= s[p..|uf]]), according
to the Lemma 3.4:

State(bd) < State(bc)
& State(abd) < State(abc)
& State(wip1f) < State(w;f)
& State(wi1 f) < State(f)
But, according to Lemma 3.3, we have State(w;1f) > State(f), consequently we
obtain State(w; 1 f) = State(f). So, this lemma is true for all C; C C;. O

Lemma 3.6 Let s be word in ¥X*, O(s) be its Oracle, and e; be a state of O(s) such
that w = min(e;) and v € F,. Let p be a transition issued from e; labeled by o to a
state e;j (j > 1). Then there exists at the position (i+ j — |u|) of s an occurrence of
uc. Moreover, we have the contraction (i — |u| + 1,4+ j — |u|) of s by u.

Proof (Lemma 3.6)

By construction (cf. algorithm 1), the transition p from e; to e;4; is added because
there exists a position j in s[i — |u| + 1..|s|] such that: j = poccurgp—juj41..|s(uer) —
lul. We also have ua € Fact(s) since ua € Fact(s[i — |u| + 1|s|]). CLEOPHAS
& al. [11] have proved that since u = min(e;) and ua € Fact(s), then i — |u| +
POCCUT s —ju|41..|s](ua) = poccurs(uc). Hence, we have i + j = poccurs(uc), and
finally s[i + 7 — |u|,i + j] = ua. O

Algorithm 2: Obtaining the contractions generating w starting from ¢ in the Oracle
of s

Initialization: S%=t, SO =w, Co=0, sdec=|s|—|t| %t is a suffiz of s %

Input: S'e¥* % A suffiz of s that can still be ‘‘contracted’’ %
St eX* % The word to process %
Ci % Set of contractions %
Output: a set of contractions
Begin
pi — longest common prefix between S* and S! (Property 3.1, item 1)

ey, < State(p;) (Property 3.1, item 2)
fi < min(e,,)
If (|pi| <|S%|) Then
e —Transition (e, S,[|pi| +1]) (Property 3.1, item 4)
Civ1 — CiU{ci}, ¢ = (ri — |fil + 1 —sdec,r; — | fi| — sdec) (Property 3.2, item 2)

145

Proceedings of the Prague Stringology Conference "04

Sirt— Sillpi|l — | fil +1..|SL|] (Property 3.1, item 3)
Sl —t[rl — |fi| — sdec..]t]] (Property 3.1, item 3)
Return Contractor (S, SiHL Ciuq)
Else
If (|9 >1S.|) Then
Civ1 — CiU{ci}, ¢ = (ri —|fil +1— sdec,|s| — |fi| + 1 — sdec) (Property 3.3)
Else
Ci+1 — C; (Property 3.3)
End If
Return C;;
End If
End

Our goal in this part is to give a characterization of the language accepted by the
Oracle of a word s. To do that, we use the algorithm Contractor (cf. algorithm 2).
Given a word s € ¥* and its Suffix Oracle SO(s), Contractor needs a word w ac-
w[l] = t[1]
|t/ maximal
of Contractor is a set C of contractions such that w = Word(t,C). After a first brief
presentation of Contractor, we will introduce the notations of the algorithm.

cepted by SO(s) and a suffix ¢ of s chosen such that The result

We saw (in the Definition) that Word(t,C), for a set of contractions C, is a
concatenation of substrings of . We can see these sub-words as prefixes of suffixes
of t. A jump from one substring to the next one is a contraction. The question is
now how to find the correct suffixes and their prefixes. The answer is Contractor.
This is a recursive algorithm that finds all the contractions used to contract ¢ in w,
by searching the suffixes of ¢ which we talk about. The main idea of Contractor is to
read the words ¢ and w from left to right, and when the one-to-one characters differ,
to use a contraction in ¢ to reach a further position in order to allows the reading of
the same characters than w.

Si+1

Figure 3: Tllustration of a step in the algorithm Contractor (o = S. [|p;| + 1]).

The inputs are words S and S¢, (i > 0), and C; a set of contractions. Initially, we
have S° = ¢, SY = w and Cy = (). We denote by p; (line 9) the longest prefix of S°
and S!. So, we can write:

St = piS/i
{ Sw = piSy (3.1)
Let e,, = State(p;) (line 10) and f; = min(e,,) (line 11). Due to Lemma 3.1, we have:
pi = pifi (i €X7) (32)

146

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

About the other variables, e,/ (line 13) is the state reached by the transition from
e,, and labeled by a = S [|p;| + 1] = S”[1], Ci11 is a set of contractions (which has
cardinality i+ 1). We need to use the variable sdec = |s| — |t| to translate the indexes
of each contraction. Indeed, the positions for a contraction are computed using the
indexes of the states (each state e; is linked to the " character of s, not to the
character (i — |s| + |t|) of ¢). Thus, a contraction would be correct for s, but not for

t Hence, we proceed as for the Definition of C},, ie. we remove |s| — |¢|.

The figures 3 and 4 illustrates Contractor, and are useful to understand the prop-
erties below. The following Property 3.1 claims some interesting characteristics of
the variables used by Contractor.

Property 3.1
For all 7 > 0, the following assertions are true:

L. fia € Pref(pit1).
2. S'=tr; — |pi| + 1 — sdec..|t]].

3. S and Sif! are respectively suffixes of S* and S!; S* and S! (i > 0) are
respectively suffixes of ¢t and w.

4. The transition from e,, to e, and labeled by « always exists.

Proof (Property 3.1)

1. Since f; = min(e,,), and according to Lemma 3.6, we can write s[r; — | fi|..r}] =
tlri—|fi|—sdec..ri—sdec] = f;a. So S™™! begins with f;ar, and S5 too (line 15).

2. For ¢ = 0 (initialization case), S® = ¢ and ¢ is the longest suffix of s be-
ginning by w[l]. Then we can easily see that if e, = State(S°[1])(¢ > 0),
then t[g — sdec..|t|] = S° and State(py) = q + |po] — 1 = e,,. Thus S° =
slro — |po| + 1 — sdec..|s|].

Now, let us see the recursive case. We have S = t[r! — |fi| — sdec..|t|] (Con-
tractor, line 16). Since SiM begins by fyar (cf. item 1), 7441 = 7i+|piy1| — | fi| = 1.
Finally

ST =t[rl — | f;] — sdec..|t|] = t[ris1 — |pis1| + 1 — sdec..|t]].

3. This is obvious for S! because Sif! is suffix of S¢ by construction (line 15)
and S = w. Concerning S*, we have S° = ¢ thus the property is true for
i = 0. Let us suppose that S? is suffix of ¢, and show it for i + 1. We prove
now that S is suffix of S?. From the preceding point (item 2), we have
St = t[r;—|pi| +1—sdec..|t|]. In Contractor, we have S™ = t[rl—|f;| — sdec..|t|]
(line 16). According to equality 3.2, r; — |p;| = r; — |pi| — | fi|. Because |p}| >0,
we obtain r; — | f;| > r; — |p;|. Furthermore 7} > r;. Finally 7} — | f;| > r; — |pi
and S is a suffix of S°.

4. According to item 3 in this Property, S’ is suffix of w. Then S! is recognized
by O(s) (Lemma 3.4). According to equality 3.1 with S”[1] = «, the transition
must exists. That implies that #,.:(e,,) > 2, and then, by Definition of the
Canonical Factors, we deduce that f; = min(e,,) € Fs.

147

Proceedings of the Prague Stringology Conference "04

O
From equality 3.1 and the above Property 3.1 (item 4), we can write:
t = S (t; € ¥¥)
Lo 2 s = s e 3

Before giving more explanations about Contractor, we need to prove the items of
the following property.

Property 3.2
For all 7 > 0:

1. State(w.p;) = State(t.p;) = State(p;) = e.,.

2. ¢; is a contraction of ¢S (resp w!S%) by fi. The result of this contraction is
tipl S (resp. prZS”l = w}, ;. S").

Proof (Property 3.2)

1. This is obvious for i = 0 because t; = w; = €. Let us suppose the property is
true for ¢, and prove this is true for i+ 1. From Property 3.1 (item 2), we deduce
that the word read in O(s) starting from e,,_,, to ey by using only “main”
transitions (ie. transitions of type e; — €;41) is S*. According to Property 3.1
(item 3) we deduce:

St =uS" (u € X¥) (3.4)

So, there exists the state e, (¢ > r; — |p;|) such that the word read from e,
to ejs using only “main” transitions is S*"'. In particular, ¢ = 7, — | f;| — 1.
We have ti,, = tiu (cf. equality 3.3 and 3.4) and State(tju) = e,. Then,
since f; = min(e,,) and since there exists a transition from e,, to e, labeled
by a (cf. Property 3.1, item 4), we have State(t,,fia) = State(tjufio) =
State(f;a) = e,,. Furthermore p;y1 = fiav (v € ¥*). So we can deduce that
State(t; ., fiav) = State(t;,,pit1) = State(pit1).

2. From the equalities 3.1, 3.2 and 3.3, we deduce that:
t=tS"=tp.f;S" (3.5)

Since S € Suff(S"), we have S* = uS™™ (u € ¥T). Hence, we deduce from
equality 3.5 that t/p. f;S" = tiuS"™'. According to the Property 3.1 (item 1), we
have t.p. f;S" = t’uflau (u' € ¥*). Because we have State(t.p.f;) = State(f;)
and |u| > [pl] (S"[1] # «), we can contract t,S® by f;; the result is:

il fiou' = tipi STt (3.6)

Since State(w!p;) = State(t.p;), we can deduce that w}S" = prZS” is contracted
by fi in prZS "1, According to equality 3.3, we deduce that w),; = w}p}. Then
p Sz+1 _ w Sz+1

O

148

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

The Property 3.2 shows us that ¢; (a contraction of #,S* by f;) is a contraction
for ¢ and, more interesting, for w!S’. Before concluding about these contractions, we
need to examine the termination of Contractor and its final case. For all i > 0, we
have either |S? | > S5, nor |S% | = | S| and |piy1| > |pi] (if fi = p;). Since p; > 0,
we deduce that we finally obtain p; = SJ (j > i). The following property concerns
the final cases of Contractor.

Property 3.3
Let j > 0 be such that p; = S7. If [S7| # |S7|, then ¢ needs a last contraction. Else
C; is the final set.

Proof (Property 3.3)

The word obtained up to now with the contraction of C; is w;-ij'j (cf. Property 3.2,
item 2). If S9 = S7 then S” = € and C; is complete (line 20). According to Prop-
erty 3.2 (item 1), we have State(w)p;) = e,,. Thus min(e,,) € Suff(w) (Lemma 3.1)
and min(e,;) € Suff(t) (by Definition of the final state in a Suffix Oracle). Then a

last contraction completes the set of contractions (line 22). O
s t |
4 | s | v i S |
] 5" | 3 N
T 5 | i %
4 A [se] | i []e] |
B Cwip [P [osE]
t;+1 ---- | gitl | w w§+1 | it |
o~
contraction

Figure 4: Visualization of Contractor on S* and S! .

Now, let us see how a step of Contractor works. We consider the i call of
Contractor, whose inputs are S* = p;S", S = p;S” and C;. The contractions already
used to contract the beginning of ¢ (ie. t}) into the beginning of w (ie. w}) are in
C;. At this point we consider the longest common prefix (denoted by p;) of S* and
S¢ (p; is both a factor of ¢ and w, Property 3.1). The algorithm has two cases. If
Ipi| = |S%|, we are in a final case we described above. Else, the prefix p; is not S
and then we need at least one other contraction until |p;| = |S?%|. Thus we search for
another suffix S of ¢ with which we can continue to contract. From Property 3.2,
we have the contraction is the right one, and we continue with the suffix S*!. When
we reach the end of the process (ie. the end of w), we return the last up-to-date set
Civ1 and w = Word(t,Ciy1).

149

Proceedings of the Prague Stringology Conference "04

We can notice that:

1. C is not always minimal. The algorithm could be modified but would become
more difficult to understand. However, the minimality is not an objective here.

2. C is coherent. Let (a,b) and (¢, d) be two contractions added successively to C.
We have a < b and ¢ < d because ; > r; and |s| > r; (cf. lines 14 and 20).
Next, either e, , = State(pi11) = e,y and so b = ¢, or e, > e, (because we
can have p;y1 = f;av (o = S [|p:| + 1]) where v # ¢, and thus b < c.

Lemma 3.7 Given a word s € ¥X*, its Suffix Oracle, a word w € ¥* accepted by
SO(s), andt being the longest suffix of s such that w[1] = t[1], then Contractor(t, w, ()
returns a set C such that w = Word(t,C').

Proof (Lemma 3.7)
Let j > 0 such that SJ*' = p; 1. Then, according to Property 3.2, we deduce that
Cj+1 1s a coherent set of contractions of ¢. Then, we have:

Word(t,Cji1) = w;ﬂsﬁl = w;HSfflu = wipj+u (u€ X7

because p;;1 is prefix of S9T. If u = €, we have Word(t,C;41) = w (equality 3.3).
Else (cf. Property 3.3) a ultimate contraction c;;; contracts w;HSZ)“u by fj+1 in
Wi, ST =w = Word(t,Cjp1 U{cjz1}).

Finally Contractor provide a set C such that w = Word(t,C). O

The following two theorems are the main purpose of this paper.

Theorem 3.1 FEzactly all the suffizes of the words from E(s) are recognized by the
Suffiz Oracle of s .

Proof (Theorem 3.1)

‘=" Each suffix of a word from E(s) is recognized by the Suffiz Oracle of s.
According to Lemma 3.4, if w is accepted by SO(s), then each suffix of w is also
accepted by SO(s), so we only need to prove that each word from £(s) is accepted
by SO(s).

Let C € C; be a set of contractions applicable to s. Let us build w = Word(s,C), and
show that w is accepted by SO(s). Let C; be the set of the first i contractions of C
(chosen without loss of generality by ascending order over the positions), (z;,y;) be
the j™ contraction, and f; € F, the Canonical Factor used by (z;,v;) (1 < j <).
We note w; = Word(s,C;). The property (P) to check is that w; is accepted by
SO(s). Because wy = s, the property (P) is true for i = 0. Let us suppose that it is
true for ¢, and show that (P) is true for i + 1. We have:

{ w; = s[l.xy — 1] sfyr..z0 — 1] ... s[y;..|s]]
slyi-ys +1fil =1 = fi

By Definition of the Canonical Factors, f;;1 does not occur in s before the position
Zir1 (i1 > v;). Thus we can write, in particular, w; and w;,; as:

w; = v’leu ith v’ = S[l..ﬂfl — 1]8[3/1..33‘2 — 1] c. S[yi...ri+1 — 1]
wirr = Vfad fipiw = o fipg (u" € 3%)

150

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Because the contraction concerns (11, y;+1), then we also have |s| —|fiju|+1 =
xip1 and |s|—| fiz1u/|+1 = y;21. This is true because the contractions are in ascending
order, so the word s is not yet modified after the positions z;,1 and y; ;1 (hence f; 1 u
and f; v’ are suffixes of s). Let g be the state of SO(s) such that ¢ = State(f;11).
According to the Lemma 3.5:

State(v' fiv1) = q (3.7)

Furthermore, f;.ju is a suffix of s, so it is necessary recognized by SO(s). This
requires to pass through the state ¢ when the word f; v’ is read in SO(s). Thus,
starting from ¢, we can read v’, and reach a final state. So, according to equality 3.7,
wiy1 = U fipu’ is accepted by SO(s). To conclude, we just showed that w; is rec-
ognized by SO(s), for all ¢ < |C|. Finally, Lemma 3.4 allows to conclude that each
suffix of a word of £(s) is recognized by SO(s).

‘<": Fach word recognized by the Suffix Oracle of s is suffix of a word from E(s).

Let w be a word accepted by the Suffix Oracle of s, and ¢ be the longest suffix of
s (s = §'t) such that w[l] = ¢[1]. Then there exists a set C of contractions such that
w = Word(t,C) (Lemma 3.7). Since C C C;,, there exists a set ' C C;, obtained
by translating the indexes of C with sdec, such that s'w = Word(s't,C"). Because
s'w € E(s), we can conclude that each word accepted by SO(s) is a suffix of a word
from £(s). O

On the basis of this previous result, we can give a similar theorem, which is
available for the Factor Oracle instead of being available for the Suffix Oracle.

Theorem 3.2 FEzactly all the factors of the words from E(s) are recognized by the
Factor Oracle of s .

Proof (Theorem 3.2)

‘=" Each factor m of a word from E(s) is recognized by the Factor Oracle of s.

Let SO(s) be the Suffix Oracle of s, and u € £(s) be such that m is prefix of a suffix
of u, denoted by mv (v € ¥*). Then mv is accepted by SO(s) (cf. Theorem 3.1),
thus there exists a single path (eg — e, — ... — ez, . ,) in SO(s) that recognizes
mv. Therefore, there exists a path (eg — e;;, — ... — e;,,) (with e, final) that
recognizes m.

‘=": Fach word m recognized by the Factor Oracle of s is factor of a word from E(s).
Let SO(s) be the Suffix Oracle of s. If m is recognized by SO(s) then m is a suffix of
a word of £(s) (cf. Theorem 3.1). Let us suppose that m is not recognized by SO(s),
then m is recognized by F'O(s) in the state e, (not final in SO(s)). By construction,
ex,, € {ex|0 <k <|s]}, the set of the states of FO(s), with (eg — e; — ... — ¢)
the path that accepts the word s itself (with e;, among others, final in SO(s)). Thus,
there exits a path from e, = to ey in SO(s). So, m is prefix of a word recognized by
SO(s). That implies that m is prefix of a suffix of some u € £(s). Therefore, m is a
factor of a word of £(s). O

4 Properties upon Oracles & Future Works

In the conclusion of their article, CLEOPHAS & al. [11] show that the Oracle is not
minimal in number of transitions among the set of homogeneous automata.

151

Proceedings of the Prague Stringology Conference "04

Furthermore, if we consider the set of homogeneous automata recognizing at least
all the factors (resp. suffixes) of s, having the same number of states and at most the
same number of transitions than the Factor (resp. Suffix) Oracle, we show that the
Oracle is not minimal on the number of accepted words. We can see that the Oracle
of azttyabedeatzattwu (cf. figure 5) has 35 transitions. The Factor Oracle accepts
247 words and the Suffix Oracle accepts 39 words, though there exists another ho-
mogeneous automaton (cf. figure 6) recognizing at least all the factors (resp. suffixes)
of axttyabcdeatzattwu, and having only 34 transitions. The “Factor” version of this
automaton recognizes only 236 words and its “Suffix” version accepts only 30 words.
This example shows that the Oracle is not minimal in number of accepted words
among the set of homogeneous automata having the same number of states and less
transitions.

Figure 6: This automaton (considering only the continuous lines) accepts at least
all the factors of the word axttyabedeatzattwu. The bold transition is the only one
which is not present in the Factor Oracle of this word (cf. figure 5) though the two
dotted ones are present in the Factor Oracle, but not in this automaton.

We observe that, in some cases, the number of words accepted by Oracles does not
allow to give confidence to this structure when it is used for detect factors or suffixes
of a word. Because, even if the number of false positive can sometimes be null
(eg. aaaaaa . ..), it can also be exponential. Indeed, we can build a word s such that
each subset of C! is coherent and minimal. For example: s = aabbccddee The set
C? of contractions which are available on such a word is {(1, 2), (3,4), (5,6), ..., (|s| —
1,|s])}. If we consider any (non-empty) subset C C (C*\ {(1,2)}) of contractions, it
is easy to notice that Word(s,C) ¢ Fact(s). Besides, all the words obtained from
such subsets are pairwise different.

152

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

The number of these subsets is:

s|

ICSI=1 /1 sy 20 sl .
Z('CS|. 1)22(2,1):221—1
7 7

=1 i=1

So the number of words that will be accepted by the Oracles but are not factor /suffix
of s is (’)(2'5‘).

In order to better benefit from this structure, it has to be improved, or to be

slightly modified. However, it could be useful for future works to improve the knowl-
edges about the Oracle structure. Effectively, it could be interesting to have either an
empirical nor a statistical estimation of the accuracy (time and quality of the results)
of the Oracle when substituted to Tries or Suffix Trees in algorithms.

References

[1]

2]

[9]

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: computer science
and computational biology. Cambridge University Press, 1997.

Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M. T.
Chen, and Joel Seiferas. The smallest automaton recognizing the subwords of a
text. Theorical Computer Science, 40(1):31-55, 1985.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Oracle des facteurs,
Oracle des Suffixes. Technical Report 99-08, Institut Gaspard-Monge, Université
de Marne-la-Vallée, 1999.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Factor Oracle: A
New Structure for Pattern Matching. In Conference on Current Trends in Theory
and Practice of Informatics, pages 295-310, 1999.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experi-
mental String Matching by Weak Factor Recognition. In Proceedings of the 12
conference on Combinatorial Pattern Matching, volume 2089 of Lecture Notes in
Computer Science, pages 51-72. Springer-Verlag, 2001.

Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a fac-
tor oracle. In L. Brankovic and J. Ryan, editors, Proceedings of the 11" Aus-
tralasian Workshop On Combinatorial Algorithms, pages 145-158, Hunter Valley,
Australia, 2000.

Arnaud Lefebvre and Thierry Lecroq. A heuristic for computing repeats with

a factor oracle: application to biological sequences. International Journal of
Computer Mathematics, 79(12):1303-1315, 2002.

Arnaud Lefebvre, Thierry Lecroq, Hélene Dauchel, and Joél Alexandre. FOR-
Repeats: detects repeats on entire chromosomes and between genomes. Bioin-
formatics, 19(3):319-326, 2003.

153

Proceedings of the Prague Stringology Conference "04

[10] Arnaud Lefebvre and Thierry Lecroq. Compror: on-line lossless data compression
with a factor oracle. Information Processing Letters, 83(1):1-6, 2002,

[11] Loek Cleophas, Gerard Zwaan, and Bruce Watson. Constructing Factor Oracles.
In Proceedings of the 3¢ Prague Stringology Conference, 2003.

154

